Skip to main content
Log in

Dual-Tree Complex Wavelet Coefficient Magnitude Modeling Using Scale Mixtures of Rayleigh Distribution for Image Denoising

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Denoising an image, while retaining the important features of the image, has been a fundamental problem in image processing. Dual-tree complex wavelet transform is a recently created transform that offers both near shift invariance and improved directional selectivity properties. This transform has been used in many techniques, including denoising. However, these techniques have used the real and imaginary components of the complex-valued sub-band coefficients separately. This paper proposes the use of coefficient magnitudes to provide an improvement in image denoising. Our proposed algorithm is based on the maximum a posteriori estimator, wherein the heavy-tailed scale mixtures of bivariate Rayleigh distribution are considered as the noise-free wavelet coefficient magnitudes’ prior distribution. Also, in our work, the necessary parameters of the bivariate distributions are estimated in a locally adaptive way to improve the denoising results via using the correlation between the amplitudes of neighbor coefficients. Simulation results delineate the performance of the proposed algorithm in both MSSIM and PSNR metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Achim, P. Tsakalides, A. Bezerianos, SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Trans. Geosci. Remote Sens. 41(8), 1773–1784 (2003). https://doi.org/10.1109/TGRS.2003.813488

    Article  Google Scholar 

  2. A. Achim, D. Herranz, E.E. Kuruoglu, Astrophysical image denoising using bivariate isotropic cauchy distributions in the undecimated wavelet domain, in International Conference on Image Processing, 2004, ICIP ‘04, vol. 1222, 24–27 Oct 2004, pp. 1225–1228

  3. A. Achim, E.E. Kuruoglu, Image denoising using bivariate α-stable distributions in the complex wavelet domain. IEEE Signal Process. Lett. 12(1), 17–20 (2005). https://doi.org/10.1109/LSP.2004.839692

    Article  Google Scholar 

  4. A. Achim, A. Bezerianos, P. Tsakalides, Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans. Med. Imaging 20(8), 772–783 (2001). https://doi.org/10.1109/42.938245

    Article  Google Scholar 

  5. S.G. Chang, Y. Bin, M. Vetterli, Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans. Image Process. 9(9), 1522–1531 (2000). https://doi.org/10.1109/83.862630

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Chen, W. Zhu, W. Xie, Wavelet-based image denoising using three scales of dependency. IET Image Process. 6(6), 756–760 (2012). https://doi.org/10.1049/iet-ipr.2010.0408

    Article  MathSciNet  Google Scholar 

  7. D. Cho, T.D. Bui, Multivariate statistical modeling for image denoising using wavelet transforms. Signal Process. Image Commun. 20, 77–85 (2005)

    Article  Google Scholar 

  8. M.S. Crouse, R.D. Nowak, R.G. Baraniuk, Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. Signal Process. 46(4), 886–902 (1998). https://doi.org/10.1109/78.668544

    Article  MathSciNet  Google Scholar 

  9. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007). https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  10. D.L. Donoho, I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995). https://doi.org/10.2307/2291512

    Article  MathSciNet  MATH  Google Scholar 

  11. R.A. Fisher, Moments and product moments of sampling distributions. Proc. Lond. Math. Soc. s2-30(1), 199–238 (1930). https://doi.org/10.1112/plms/s2-30.1.199

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Guang, Generalized Wiener estimation algorithms based on a family of heavy-tail distributions, in IEEE International Conference on Image Processing 2005, 14–14 Sept 2005, pp. I-457

  13. P.R. Hill, C.N. Canagarajah, D.R. Bull, Image segmentation using a texture gradient based watershed transform. IEEE Trans. Image Process. 12(12), 1618–1633 (2003)

    Article  MathSciNet  Google Scholar 

  14. P. Hill, A. Achim, D. Bull, The undecimated dual tree complex wavelet transform and its application to bivariate image denoising using a Cauchy model, in 2012 19th IEEE International Conference on Image Processing, 30 Sept.–3 Oct. 2012, pp. 1205–1208

  15. P.R. Hill, N. Anantrasirichai, A. Achim, M.E. Al-Mualla, D.R. Bull, Undecimated dual-tree complex wavelet transforms. Signal Process. Image Commun. 35, 61–70 (2015). https://doi.org/10.1016/j.image.2015.04.010

    Article  Google Scholar 

  16. P.R. Hill, A.M. Achim, D.R. Bull, M.E. Al-Mualla, Dual-tree complex wavelet coefficient magnitude modelling using the bivariate Cauchy–Rayleigh distribution for image denoising. Signal Process. 105, 464–472 (2014). https://doi.org/10.1016/j.sigpro.2014.03.028

    Article  Google Scholar 

  17. W. Hu, Calibration of multivariate generalized hyperbolic distributions using the EM algorithm, with applications, in Risk Management, Portfolio Optimization And Portfolio Credit Risk (2005)

  18. Q. Huynh-Thu, M. Ghanbari, Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008). https://doi.org/10.1049/el:20080522

    Article  Google Scholar 

  19. J. Ilow, D. Hatzinakos, Applications of the empirical characteristic function to estimation and detection problems. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). Signal Process. 65(2), 199–219 (1998). https://doi.org/10.1016/S0165-1684(97)00219-3

    Article  MATH  Google Scholar 

  20. S. Kaur, N. Singh, Image denoising techniques: a review. Int. J. Innov. Res. Comput. Commun. Eng. 2(6), 699–705 (2014)

    Google Scholar 

  21. N. Kingsbury, The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters, in IEEE Digital Signal Processing Workshop (1998)

  22. S. Kotz, S. Nadarajah, Multivariate T-distributions and their applications (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  23. S. Kotz, T. Kozubowski, K. Podgorski, in The Laplace Distribution and Generalizations (2001)

  24. R. Kwitt, A. Uhl, Lightweight probabilistic texture retrieval. IEEE Trans. Image Process. 19(1), 241–253 (2010). https://doi.org/10.1109/TIP.2009.2032313

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Li, Z. Jia, J. Yang, Y. Hu, D. Li, An algorithm for remote sensing image denoising based on the combination of the improved BiShrink and DTCWT. Procedia Eng. 24, 470–474 (2011). https://doi.org/10.1016/j.proeng.2011.11.2678

    Article  Google Scholar 

  26. S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989). https://doi.org/10.1109/34.192463

    Article  MATH  Google Scholar 

  27. M.K. Mihcak, I. Kozintsev, K. Ramchandran, P. Moulin, Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Process. Lett. 6(12), 300–303 (1999). https://doi.org/10.1109/97.803428

    Article  Google Scholar 

  28. M. Miller, N. Kingsbury, Image modeling using interscale phase properties of complex wavelet coefficients. IEEE Trans. Image Process. 17(9), 1491–1499 (2008). https://doi.org/10.1109/TIP.2008.926147

    Article  MathSciNet  Google Scholar 

  29. M. Miller, N. Kingsbury, Image denoising using derotated complex wavelet coefficients. IEEE Trans. Image Process. 17(9), 1500–1511 (2008). https://doi.org/10.1109/TIP.2008.926146

    Article  MathSciNet  Google Scholar 

  30. H. Naimi, A.B.H. Adamou-Mitiche, L. Mitiche, Medical image denoising using dual tree complex thresholding wavelet transform and Wiener filter. J. King Saud Univ. Comput. Inf. Sci. 27(1), 40–45 (2015). https://doi.org/10.1016/j.jksuci.2014.03.015

    Article  Google Scholar 

  31. B.N. Narayanan, R.C. Hardie, E.J. Balster, Multiframe adaptive Wiener filter super-resolution with JPEG2000-compressed images. EURASIP J. Adv. Signal Process. 2014(1), 55 (2014)

    Article  Google Scholar 

  32. M. Nasri, H. Nezamabadi-pour, Image denoising in the wavelet domain using a new adaptive thresholding function. Neurocomputing 72(4), 1012–1025 (2009). https://doi.org/10.1016/j.neucom.2008.04.016

    Article  Google Scholar 

  33. H. Om, M. Biswas, A generalized image denoising method using neighbouring wavelet coefficients. Signal Image Video Process 9(1), 191–200 (2015)

    Article  Google Scholar 

  34. J. Portilla, V. Strela, M.J. Wainwright, E.P. Simoncelli, Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003). https://doi.org/10.1109/TIP.2003.818640

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Rabbani, M. Vafadust, S. Gazor, I. Selesnick, Image denoising employing a bivariate Cauchy distribution with local variance in complex wavelet domain, in 2006 IEEE 12th Digital Signal Processing Workshop and 4th IEEE Signal Processing Education Workshop, 24–27 Sept 2006, pp. 203–208

  36. H. Rabbani, M. Vafadoost, Wavelet based image denoising based on a mixture of Laplace distributions. Iran. J. Sci. Technol. 30(6), 711 (2006)

    MATH  Google Scholar 

  37. H. Rabbani, M. Vafadust, Image/video denoising based on a mixture of Laplace distributions with local parameters in multidimensional complex wavelet domain. Signal Process. 88(1), 158–173 (2008)

    Article  Google Scholar 

  38. Y. Rakvongthai, A.P.N. Vo, S. Oraintara, Complex Gaussian scale mixtures of complex wavelet coefficients. IEEE Trans. Signal Process. 58(7), 3545–3556 (2010). https://doi.org/10.1109/TSP.2010.2046698

    Article  MathSciNet  MATH  Google Scholar 

  39. H. Sadreazami, M.O. Ahmad, M.N.S. Swamy, A study on image denoising in contourlet domain using the alpha-stable family of distributions. Signal Process. 128, 459–473 (2016). https://doi.org/10.1016/j.sigpro.2016.05.018

    Article  Google Scholar 

  40. I.W. Selesnick, R.G. Baraniuk, N.C. Kingsbury, The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005). https://doi.org/10.1109/MSP.2005.1550194

    Article  Google Scholar 

  41. L. Sendur, I.W. Selesnick, Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Process. 50(11), 2744–2756 (2002). https://doi.org/10.1109/TSP.2002.804091

    Article  Google Scholar 

  42. L. Sendur, I.W. Selesnick, Bivariate shrinkage with local variance estimation. IEEE Signal Process. Lett. 9(12), 438–441 (2002). https://doi.org/10.1109/LSP.2002.806054

    Article  Google Scholar 

  43. E.P. Simoncelli, Bayesian denoising of visual images in the wavelet domain, in Bayesian Inference in Wavelet-Based Models, ed. by P. Müller, B. Vidakovic (Springer, New York, 1999), pp. 291–308

    Chapter  Google Scholar 

  44. M. Smith, C. Rose, Mathematical Statistics with Mathematica (Springer, Berlin, 2002)

    MATH  Google Scholar 

  45. C. Su, L.K. Cormack, A.C. Bovik, Closed-form correlation model of oriented bandpass natural images. IEEE Signal Process. Lett. 22(1), 21–25 (2015). https://doi.org/10.1109/LSP.2014.2345765

    Article  Google Scholar 

  46. J. Wang, M.R. Taaffe, Multivariate mixtures of normal distributions: properties, random vector generation, fitting, and as models of market daily changes. INFORMS J. Comput. 27(2), 193–203 (2015)

    Article  MathSciNet  Google Scholar 

  47. X.Y. Wang, N. Zhang, H.-L. Zheng, Y.-C. Liu, Extended shearlet HMTmodel-based image denoising using BKF distribution. J Math Imaging Vis 54(3), 301–319 (2015)

    Article  Google Scholar 

  48. M. Yin, W. Liu, X. Zhao, Q.-W. Guo, R.-F. Bai, Image denoising using trivariate prior model in nonsubsampled dual-tree complex contourlet transform domain and non-local means filter in spatial domain. Optik 124(24), 6896–6904 (2013). https://doi.org/10.1016/j.ijleo.2013.05.132

    Article  Google Scholar 

  49. W. Zhou, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nezamabadi-pour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

1.1 Univariate Rayleigh–Student’s t Distribution

Using Eq. (12) and by assuming gamma distribution for \( u \) as follows:

$$ h(u;\upsilon ) = \frac{{(\upsilon /2)^{\upsilon /2} }}{\varGamma (\upsilon /2)}u^{\upsilon /2 - 1} \exp ( - \upsilon u/2), $$
(52)

we obtain

$$ \begin{aligned} f_{{rt_{\text{SMN}} }} (r,\sigma ,\upsilon ) & = \int_{0}^{\infty } {\frac{ru}{{\sigma^{2} }}\exp \left( {\frac{{ - r^{2} u}}{{2\sigma^{2} }}} \right)h(u;\upsilon ){\text{d}}u} \\ & = \int_{0}^{\infty } {\frac{ru}{{\sigma^{2} }}\exp \left( {\frac{{ - r^{2} u}}{{2\sigma^{2} }}} \right)\frac{{(\upsilon /2)^{\upsilon /2} }}{\varGamma (\upsilon /2)}u^{\upsilon /2 - 1} \exp ( - \upsilon u/2)} \\ & = \frac{r}{{\sigma^{2} }}\frac{{(\upsilon /2)^{\upsilon /2} }}{\varGamma (\upsilon /2)}\int_{0}^{\infty } {u^{{\left( {\frac{\upsilon + 2}{2}} \right) - 1}} } \exp \left( { - \left( {\frac{\upsilon + 2}{2}} \right)u\left( {1 - \left( {\frac{{2\sigma^{2} - r^{2} }}{{\sigma^{2} (\upsilon + 2)}}} \right)} \right)} \right){\text{d}}u. \\ \end{aligned} $$
(53)

Let

$$ 1 - \left( {\frac{{2\sigma^{2} - r^{2} }}{{\sigma^{2} (\upsilon + 2)}}} \right) = A\quad {\text{and}}\quad uA = u^{\prime } . $$
(54)

Also, we have

$$ \int_{0}^{\infty } {h(u;\upsilon )\,{\text{d}}u} = \int_{0}^{\infty } {\frac{{(\upsilon /2)^{\upsilon /2} }}{\varGamma (\upsilon /2)}u^{\upsilon /2 - 1} \exp ( - \,\upsilon u/2) = 1} . $$
(55)

Therefore,

$$ \int_{0}^{\infty } {h(u;\upsilon ){\text{d}}u} = \int_{0}^{\infty } {\frac{{\left( {\frac{\upsilon + 2}{2}} \right)^{{\frac{\upsilon + 2}{2}}} }}{{\varGamma \left( {\frac{\upsilon + 2}{2}} \right)}}u^{{\left( {\frac{\upsilon + 2}{2}} \right) - 1}} \exp \left( {\frac{ - (\upsilon + 2)u}{2}} \right) = 1} . $$
(56)

Using Eqs. (53), (54), and (56), we have

$$ \begin{aligned} f_{{rt_{\text{SMN}} }} (r;\sigma ,\upsilon ) & = \int_{0}^{\infty } {f(r|u)f(u){\text{d}}u} = \frac{r}{{\sigma^{2} }}\frac{{(\upsilon /2)^{\upsilon /2} }}{\varGamma (\upsilon /2)}\frac{1}{{A^{{\left( {\frac{\upsilon + 2}{2}} \right)}} }}\int_{0}^{\infty } {u^{{\prime \left( {\frac{\upsilon + 2}{2}} \right) - 1}} } \exp \left( { - \left( {\frac{\upsilon + 2}{2}} \right)u^{\prime } } \right){\text{d}}u^{\prime } \\ & = \frac{r}{{\sigma^{2} }}\frac{{(\upsilon /2)^{\upsilon /2} }}{\varGamma (\upsilon /2)}\frac{1}{{A^{{\left( {\frac{\upsilon + 2}{2}} \right)}} }}\frac{{\varGamma \left( {\frac{\upsilon + 2}{2}} \right)}}{{\left( {\frac{\upsilon + 2}{2}} \right)^{{\frac{\upsilon + 2}{2}}} }}. \\ \end{aligned} $$
(57)

By substituting \( A \) into Eq. (57) and after some algebra, we have

$$ f_{{rt_{\text{SMN}} }} (r;\sigma ,\upsilon ) = \upsilon^{{\frac{\upsilon + 2}{2}}} \frac{{r\sigma^{\upsilon } }}{{(\upsilon \sigma^{2} + r^{2} )^{{\frac{\upsilon + 2}{2}}} }}. $$
(58)

1.2 Univariate Rayleigh–Laplace Distribution

Using Eq. (12) and by assuming \( u \sim {\text{IG}}\left( {1,\frac{1}{2}} \right) \) as follows:

$$ h(u) = \frac{1}{2}u^{ - 2} \exp ( - 1/2u), $$
(59)

we will have:

$$ \begin{aligned} f_{{rL_{\text{SMN}} }} (r;\sigma ) & = \int_{0}^{\infty } {\frac{ru}{{\sigma^{2} }}\exp \left( {\frac{{ - r^{2} u}}{{2\sigma^{2} }}} \right)h(u){\text{d}}u} = \int_{0}^{\infty } {\frac{ru}{{\sigma^{2} }}\exp \left( {\frac{{ - r^{2} u}}{{2\sigma^{2} }}} \right)\frac{1}{2}u^{ - 2} \exp ( - 1/2u)} \\ & = \frac{r}{{\sigma^{2} }}\frac{1}{2}\int_{0}^{\infty } {u^{ - 1} } \exp \left( {\frac{ - 1}{2}\left( {\frac{{r^{2} u}}{{\sigma^{2} }} + \frac{1}{u}} \right)} \right){\text{d}}u. \\ \end{aligned} $$
(60)

Also, we have [17]

$$ \int_{0}^{\infty } {x^{\lambda - 1} } \exp \left( {\frac{ - 1}{2}(\chi x^{ - 1} + \psi x)} \right) = \frac{{2K_{\lambda } (\sqrt {\chi \psi } )}}{{\chi^{ - 1} (\sqrt {\chi \psi } )^{\lambda } }}. $$
(61)

Using Eqs. (60) and (61), we derive

$$ f_{{rL_{\text{SMN}} }} (r;\sigma ) = \frac{r}{{\sigma^{2} }}K_{0} \left( {\frac{r}{\sigma }} \right). $$
(62)

Appendix 2

Using Eq. (19) and by the assuming gamma distribution for \( u, \) we have

$$ \begin{aligned} f_{BRt} (r_{1} ,r_{2} ;\sigma ,\upsilon ) & = \int_{0}^{\infty } {\frac{{r_{1} r_{2} u^{2} }}{{\sigma^{4} }}\exp \left( {\frac{{ - r_{1}^{2} u}}{{2\sigma^{2} }}} \right)\exp \left( {\frac{{ - r_{2}^{2} u}}{{2\sigma^{2} }}} \right)h(u;\upsilon ){\text{d}}u} \\ & = \int_{0}^{\infty } {\frac{{r_{1} r_{2} u^{2} }}{{\sigma^{4} }}\exp \left( {\frac{{ - r_{1}^{2} u}}{{2\sigma^{2} }}} \right)\exp \left( {\frac{{ - r_{2}^{2} u}}{{2\sigma^{2} }}} \right)} \frac{{(\upsilon /2)^{\upsilon /2} }}{\varGamma (\upsilon /2)}u^{\upsilon /2 - 1} \exp ( - \upsilon u/2) \\ & = \frac{{(\upsilon /2)^{\upsilon /2} }}{\varGamma (\upsilon /2)}\frac{{r_{1} r_{2} }}{{\sigma^{4} }}\int_{0}^{\infty } {u^{{\left( {\frac{\upsilon + 4}{2}} \right) - 1}} \exp \left( { - \left( {\frac{\upsilon + 4}{2}} \right)u\left( {1 - \left( {\frac{{4\sigma^{2} - (r_{1}^{2} + r_{2}^{2} )}}{{\sigma^{2} (\upsilon + 4)}}} \right)} \right)} \right){\text{d}}u} . \\ \end{aligned} $$
(63)

Let

$$ 1 - \left( {\frac{{4\sigma^{2} - (r_{1}^{2} + r_{2}^{2} )}}{{\sigma^{2} (\upsilon + 4)}}} \right) = A\quad {\text{and}}\quad uA = u^{\prime } , $$
(64)

therefore

$$ \begin{aligned} f_{BRt} (r_{1} ,r_{2} ;\sigma ,\upsilon ) & = \frac{{r_{1} r_{2} }}{{\sigma^{4} }}\frac{{(\upsilon /2)^{\upsilon /2} }}{\varGamma (\upsilon /2)}\frac{1}{{A^{{\left( {\frac{\upsilon + 4}{2}} \right)}} }}\int_{0}^{\infty } {u^{{\prime \left( {\frac{\upsilon + 4}{2}} \right) - 1}} } \exp \left( { - \left( {\frac{\upsilon + 4}{2}} \right)u^{\prime } } \right){\text{d}}u^{\prime } \\ & = \frac{{r_{1} r_{2} }}{{\sigma^{4} }}\frac{{(\upsilon /2)^{\upsilon /2} }}{\varGamma (\upsilon /2)}\frac{1}{{A^{{\left( {\frac{\upsilon + 4}{2}} \right)}} }}\frac{{\varGamma \left( {\frac{\upsilon + 4}{2}} \right)}}{{\left( {\frac{\upsilon + 4}{2}} \right)^{{\frac{\upsilon + 4}{2}}} }}. \\ \end{aligned} $$
(65)

By substituting \( A \) into Eq. (65), we have

$$ f_{BRt} \left( {r_{1} ,r_{2} ;\sigma ,\upsilon } \right) = \frac{{\left( {\upsilon + 2} \right)r_{1} r_{2} }}{{\upsilon \left( \sigma \right)^{4} }}\left( {1 + \frac{{r_{1}^{2} + r_{2}^{2} }}{{\sigma^{2} \upsilon }}} \right)^{{ - \left( {\frac{\upsilon + 4}{2}} \right)}} \text{, }\quad r_{1} > 0,\,\,\,r_{2} > 0. $$
(66)

2.1 Bivariate Rayleigh–Laplace Distribution

Using Eq. (19) and by assuming \( u \sim {\text{IG}}\left( {1,\frac{1}{2}} \right), \) we derive

$$ \begin{aligned} f_{\text{BRL}} (r_{1} ,r_{2} ;\sigma ) & = \int_{0}^{\infty } {\frac{{r_{1} r_{2} u^{2} }}{{\sigma^{4} }}\exp \left( {\frac{{ - r_{1}^{2} u}}{{2\sigma^{2} }}} \right)\exp \left( {\frac{{ - r_{2}^{2} u}}{{2\sigma^{2} }}} \right)h(u){\text{d}}u} \\ & = \int_{0}^{\infty } {\frac{{r_{1} r_{2} u^{2} }}{{\sigma^{4} }}\exp \left( {\frac{{ - r_{1}^{2} u}}{{2\sigma^{2} }}} \right)\exp \left( {\frac{{ - r_{2}^{2} u}}{{2\sigma^{2} }}} \right)} \frac{1}{2}u^{ - 2} \exp ( - 1/2u) \\ & = \frac{1}{2}\frac{{r_{1} r_{2} }}{{\sigma^{4} }}\int_{0}^{\infty } {\exp \left( { - \frac{1}{2}\left( {\frac{{r_{1}^{2} + r_{2}^{2} }}{{\sigma^{2} }} + \frac{1}{2u}} \right)} \right){\text{d}}u} . \\ \end{aligned} $$
(67)

Using Eqs. (61) and (67), we derive

$$ f_{\text{BRL}} \left( {r_{1} ,r_{2} ;\sigma } \right) = \frac{{r_{1} r_{2} }}{{\left( \sigma \right)^{4} }}\frac{{K_{1} \left( {\sqrt {\frac{{r_{1}^{2} + r_{2}^{2} }}{{\sigma^{2} }}} } \right)}}{{\left( {\frac{{r_{1}^{2} + r_{2}^{2} }}{{\sigma^{2} }}} \right)^{1/2} }}\text{,}\quad r_{1} > 0,\,\,\,r_{2} > 0. $$
(68)

Appendix 3

In probability theory and statistics, kurtosis is a measure of the tailedness of the probability distribution of a random variable and variance is the expectation of the squared deviation of a random variable from its mean and is defined as:

$$ \text{var}\left( x \right) = E\left( {x - \mu } \right)^{2} = M_{2} , $$
(69)
$$ \text{kurtosis}\left( x \right) = \frac{{E\left[ {\left( {x - \mu } \right)^{4} } \right]}}{{E\left[ {\left( {x - \mu } \right)^{2} } \right]^{2} }} = \frac{{M_{4} }}{{M_{2}^{2} }}, $$
(70)

where \( M_{4} \) and \( M_{2} \) are fourth and second central moments, respectively.

The cumulants \( k_{n} \) of a random variable \( x \) are defined via the cumulant generating function \( (K(t)) \), which is the natural logarithm of the moment generation function:

$$ K(t) = \log E\left[ {e^{tx} } \right]. $$
(71)

The fourth and second cumulants are related to the central moments by the following equations [11, 44]:

$$ M_{2} = k_{2} , $$
(72)
$$ M_{4} = k_{4} + 3k_{2}^{2} . $$
(73)

Kurtosis and variance in terms of cumulants are:

$$ \text{var} \left( x \right) = M_{2} = k_{2} , $$
(74)
$$ \text{Kurtosis}\left( x \right) = \frac{{M_{4} }}{{M_{2}^{2} }} = \frac{{k_{4} + 3k_{2}^{2} }}{{k_{2}^{2} }} = \frac{{k_{4} }}{{k_{2}^{2} }} + 3. $$
(75)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeedzarandi, M., Nezamabadi-pour, H. & Jamalizadeh, A. Dual-Tree Complex Wavelet Coefficient Magnitude Modeling Using Scale Mixtures of Rayleigh Distribution for Image Denoising. Circuits Syst Signal Process 39, 2968–2993 (2020). https://doi.org/10.1007/s00034-019-01291-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01291-y

Keywords

Navigation