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Abstract We consider the robust principal component analysis (RPCA) problem
where the observed data is decomposed to a low-rank component and a sparse compo-
nent. Conventionally, the matrix rank in RPCA is often approximated using a nuclear
norm. Recently, RPCA has been formulated using the nonconvex `γ-norm, which
provides a closer approximation to the matrix rank than the traditional nuclear norm.
However, the low-rank component generally has sparse property, especially in the
transform domain. In this paper, a sparsity-based regularization term modeled with
`1-norm is introduced to the formulation. An iterative optimization algorithm is de-
veloped to solve the obtained optimization problem. Experiments using synthetic and
real data are utilized to validate the performance of the proposed method.

Keywords Robust principal component analysis · `γ-norm · Sparse prior · Low-rank

1 Introduction

Many applications in signal processing and machine learning involve data of high
dimensions, and various dimensionality reduction methods have been developed by
projecting the original high-dimensional spaces to low-dimensional spaces [16]. A-
mong these methods, robust principal component analysis (RPCA) is one of the most
efficient algorithms, and it reduces the dimensionality of the data based on the low-
rank structure of the data and the sparsity of the outliers. RPCA is extended from prin-
cipal component analysis (PCA) [15] by enhancing the robustness to outliers, and is
also known as low-rank and sparse decomposition (LRSD) [7], [31]. RPCA has been
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applied to various problems , such as pattern recognition [28], image processing [23],
video surveillance [5], [7], background subtraction [8], and image alignment [24].

Assuming the observed data X ∈ Rm×n has an underlying low-rank structure,
RPCA aims to decompose the data matrix X to a low-rank component Z ∈ Rm×n
and a sparse component E ∈ Rm×n. Generally, this problem can be formulated as

min
Z,E

rank(Z) + λ ‖E‖l

s.t. X = Z + E,
(1.1)

where rank(Z) denotes the function that returns the rank of the matrix Z, and ‖E‖l
denotes a regularization term like `0-norm [4], `1-norm [4], or `2,0-norm [21] for
promoting the sparsity of E. The parameter λ is employed to balance the low-rank
and sparse components in X . The optimization problem (1.1) is generally NP-hard
as the rank function is discrete and nonconvex. Thus, the rank function is usually
relaxed as a convex surrogate. In particular, the nuclear norm, which is defined as
the sum of all singular values of a matrix, can be employed as a convex relaxation
to address the rank minimization problem [4], [6]. For example, using nuclear norm
as the convex surrogate of the rank of Z and `1-norm to promote the sparsity of E,
the RPCA problem can be reformulated as a convex optimization task [10], [29],
as both the nuclear norm and `1-norm in the objective function are convex and the
constraint X = Z + E is also convex [3]. In this case, the RPCA problem can
be addressed effectively using convex optimization techniques [3], e.g. alternating
direction augmented Lagrangian method [10] and proximal gradient method [29].

The low-rank prior involved in RPCA is also widely used in the matrix comple-
tion problem [9], however, they are actually two different problems. Firstly, the aim of
matrix completion is to recover the original matrix from an incomplete observation,
while RPCA aims to recover both the low-rank component and the sparse compo-
nent from the observed data. Secondly, in low-rank matrix completion, the indices
corresponding to the observed entries of the low-rank matrix are given, while related
information about the low-rank component in RPCA is unknown.

It should be noted that when nuclear norm is used to approximate the matrix
rank, the summation of all singular values is minimized and thus the nonzero singu-
lar values make different degrees of contributions to the rank of the matrix. In fact,
all nonzero singular values have the same degree of impact on matrix rank. This indi-
cates that the matrix rank cannot be well approximated by the nuclear norm [11], and
existing RPCA methods using the nuclear-norm-based relaxation may lead to biased
results. Variations of the nuclear norm have been proposed recently to approximate
the rank operator more accurately and improve the results of RPCA. For example,
the truncated nuclear norm, which is proposed originally for matrix completion [11],
[9], has been employed to formulate the rank of a matrix in the RPCA problem [7],
and achieved better results as compared with the nuclear-norm-based methods [4],[6].
Kang et al. in [16] present a nonconvex `γ-norm that can be used as a tighter approx-
imation to the rank of a matrix than the nuclear norm. Although this approximation
is nonconvex, an iterative optimization method has been developed, which is shown
theoretically to converge to a stationary point.
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The existing algorithms for RPCA consider the low-rank property of data in high-
dimensional space to model its underlying low-dimensional structure. Note that data
in real applications is generally sparse [30], [13], [14], which also reflects the low-
dimensional characteristic of the data. The employment of the sparse prior has been
demonstrated to be effective in rank minimization related problems, including low-
rank matrix completion [9] and RPCA [31]. In this paper, we propose a novel for-
mulation for RPCA by introducing an additional sparsity-based regularizer. In par-
ticular, the sparsity-based regularizer promotes the underlying sparse structure of the
low-rank component, and `γ-norm is utilized to model the rank of the matrix to pro-
vide a more accurate approximation to matrix rank than the traditional nuclear norm.
In addition, we develop an iterative optimization algorithm to solve the nonconvex
optimization problem resulting from the proposed formulation.

The rest of this paper is organized as follows. Section 2 introduces related work.
Section 3 provides the details of the proposed formulation and the corresponding opti-
mization algorithm. Experimental results are presented in Section 4, and conclusions
are drawn in Section 5.

2 Related Work

In general, a typical formulation of the RPCA problem uses the nuclear norm as the
convex relaxation of matrix rank, i.e.

min
Z,E
‖Z‖∗ + λ ‖E‖1

s.t. X = Z + E.
(2.1)

Here ‖Z‖∗ =
∑
i σi(Z) denotes the nuclear norm of Z where σi(Z) is the ith

largest singular value of Z, and ‖E‖1 =
∑
ij |Eij | represents the `1-norm of E.

Many existing RPCA algorithms are based on this formulation and various optimiza-
tion approaches have been developed to solve this problem. Based on a fast iterative
shrinkage-thresholding (FIST) algorithm [1], an accelerated proximal gradient (APG)
algorithm is proposed in [26]. The inexact augmented Lagrange multipliers (IALM)
method proposed in [20] achieves a trade-off on time and precision. In [32] and [25],
the alternating direction method (ADM) is also utilized to solve the RPCA problem
via updating the variables alternately.

Since the nuclear-norm-based formulation may lead to biased solutions as ex-
plained in Section 1, variations of the nuclear norm have been proposed or employed
to formulate the RPCA problem. In [7], Cao et al. applies the truncated nuclear norm
(TNN) to the RPCA problem and proposes a novel method named as low-rank and s-
parse decomposition using truncated nuclear norm (LRSD-TNN), whose formulation
is as follows

min
Z,E
‖Z‖r + λ ‖E‖1

s.t. X = Z + E,
(2.2)

where ‖Z‖r denotes the truncated nuclear norm of the matrix Z, defined as the
summation of the smallest min(m,n)−r singular values of Z. This truncated nuclear
norm based method can obtain better results than the nuclear-norm-based methods.
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Based on the LRSD-TNN algorithm [7] and our previous work on low-rank ma-
trix completion [9], we have also introduced the sparse assumption to the formulation
of LRSD-TNN, i.e. equation (2.2), and proposed an RPCA algorithm named as low-
rank and sparse decomposition using truncated nuclear norm and sparse regularizer
(LRSD-TNNSR) [31]. In particular, the low-rank component Z is assumed to be s-
parse in a transform domain, and the formulation of LRSD-TNNSR is

min
Z,E
‖Z‖r + λ ‖E‖1 + γ‖G(Z)‖1

s.t. X = Z + E,
(2.3)

where the truncated nuclear norm is used to model the rank of the matrix, G(·) denotes
the transform operator, and ‖G(Z)‖1 promotes the sparsity of Z in the transform
domain. This algorithm provides better performance than LRSD-TNN in many cases.

As mentioned in Section 1, the truncated nuclear norm approximates the rank
of a matrix more accurately than the traditional nuclear norm by only considering
the summation of a few smallest singular values and suppressing the influence of
the remaining larger singular values on the matrix rank. However, as the truncated
nuclear norm is also based on the summation of singular values, larger singular values
considered in the summation will still make higher degrees of contributions to the
rank of the matrix. Thus, the truncated nuclear norm based methods [7], [9] cannot
completely overcome the shortcomings of nuclear-norm-based methods [4],[6].

More recently, Kang et al. in [16] propose a nonconvex function, i.e., γ-norm, as
a surrogate of the rank function and present a new nonconvex RPCA (noncvxRPCA)
method. In this method, the RPCA problem is formulated as

min
Z,E
‖Z‖γ + λ ‖E‖l

s.t. X = Z + E,
(2.4)

where ‖Z‖γ denotes the γ-norm of Z and it is defined as

‖Z‖γ =
∑
i

(1 + γ)σi (Z)

γ + σi (Z)
, γ > 0. (2.5)

It is clear that lim
γ→0
‖Z‖γ = rank(Z) and lim

γ→∞
‖Z‖γ = ‖Z‖∗. With a small value

of γ, the γ-norm approximates the rank function more closely than the nuclear nor-
m. In fact, γ-norm can be seen as a scaled version of the traditional nuclear norm.
The employment of the factor γ in its definition helps balance the contributions of
different singular values. The noncvxRPCA approach is demonstrated to outperform
state-of-the-art RPCA algorithms in recovery accuracy [16].

3 Proposed Method

3.1 Problem Formulation

As inherent sparse structures have been revealed in real data under many circum-
stances, we introduce a sparse prior to the low-rank component of RPCA. In partic-
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ular, the low-rank component Z is assumed to be sparse in a transform domain, the
proposed formulation for the RPCA problem is as follows

min
Z,E
‖Z‖γ + λ ‖E‖1 + β‖W‖1

s.t. X = Z + E

W = G(Z),

(3.1)

where G denotes the forward transform and W = G(Z) is the transformed data.
The sparsities of W and E are both promoted using the `1-norm, and the γ-norm is
utilized as an approximation to the rank of Z.

It should be noted that this proposed formulation is different from the formulation
of the LRSD-TNNSR algorithm [9]. In particular, the proposed formulation (3.1)
employs the nonconvex γ-norm as the approximation of matrix rank, while in LRSD-
TNNSR, the truncated nuclear norm is utilized instead as shown in equation (2.3). As
the γ-norm has the potential to balance the contributions of different singular values
to matrix rank better than the truncated nuclear norm, it is used as the surrogate of
the rank function in the proposed formulation.

3.2 Optimization Method

The proposed formulation (3.1) is nonconvex, and it is not trivial to obtain the op-
timal solution. To address this problem, an efficient optimization method based on
the framework of the alternating direction method of multipliers (ADMM) is de-
veloped. By introducing two multipliers Y and P , and the quadratic penalty terms
corresponding to the constraints in (3.1), the augmented Lagrangian function of (3.1)
can be obtained, that is

L (Z,E,W, Y, P, µ) = ‖Z‖γ + λ‖E‖l + β ‖W‖1
+ 〈Y,Z + E −X〉+ µ

2
‖Z + E −X‖2F

+ 〈P,W − G (Z)〉+ µ

2
‖G (Z)−W‖2F ,

(3.2)

where µ is the positive penalty parameter, 〈·, ·〉 returns the inner-product of two ma-
trices, and ‖ · ‖F denotes the Frobenius norm of a matrix.

Based on ADMM, the solution to the problem (3.2) can be obtained in an iterative
way, by only updating one variable at a time and keeping the others fixed. Specifically,
in the kth iteration, the variables and the penalty parameter are updated based on the



6 Jing Dong et al.

following steps

Zk+1 = argmin
Z
L (Z,Ek,Wk, Yk, Pk, µk) ,

Ek+1 = argmin
E
L (Zk+1, E,Wk, Yk, Pk, µk) ,

Wk+1 = argmin
W
L (Zk+1, Ek+1,W, Yk, Pk, µk) ,

Yk+1 = Yk + µk (Zk+1 −X + Ek+1) ,

Pk+1 = Pk + µk [Wk+1 − G(Zk+1)] ,

µk+1 = ρµk,

(3.3)

where ρ > 1 is a constant. The details for updating the variables Z,E and W will be
presented in the following subsections.

3.2.1 Update Z

The update of Z involves solving the sub-problem as follows

Zk+1 = argmin
Z
L (Z,Ek,Wk, Yk, Pk, µk)

= argmin
Z
‖Z‖γ + 〈Yk, Z + Ek −X〉

+
µ

2
‖Z + Ek −X‖2F + 〈Pk,Wk − G (Z)〉

+
µ

2
‖G (Z)−Wk‖2F

= argmin
Z
‖Z‖γ +

µk
2

∥∥∥∥Z − (X − Ek − 1

µk
Yk

)∥∥∥∥2
F

+
µk
2

∥∥∥∥Wk − G (Z) +
1

µk
Pk

∥∥∥∥2
F

,

(3.4)

where G(·) is assumed to be a unitary transform and its corresponding inverse trans-
form is denoted as S(·) According to Paseval’s theorem [22], a unitary transformH(·)
(e.g., Discrete Fourier Transform, Discrete Cosine Transform (DCT) and Hadamard
Transform) can conserve the energy of the original matrix u, that is ‖H(u)‖2F =

‖u‖2F . Therefore, applying the inverse transform S to
∥∥∥Wk − G (Z) + 1

µk
Pk

∥∥∥2
F

, (3.4)
can be recast as

Zk+1 = argmin
Z
‖Z‖γ +

µk
2

∥∥∥∥Z − (X − Ek − 1

µk
Yk

)∥∥∥∥2
F

+
µk
2

∥∥∥∥Z − S (Wk +
1

µk
Pk

)∥∥∥∥2
F

= argmin
Z
‖Z‖γ + µk

∥∥∥∥Z − 1

2

[(
X − Ek −

1

µk
Yk

)
+S

(
Wk +

1

µk
Pk

)]∥∥∥∥2
F

.

(3.5)
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To address the γ-norm minimization problem (3.5), the following theorem can be
used [16].

Theorem 1 Let A = Udiag(σA)V
T denote the SVD of A ∈ Rm×n, and F (Z) =

f ◦ σZ denote a unitarily invariant function, where σA and σZ denote the singular
values of A and Z, respectively. The optimal solution to the problem

argmin
X

F (X) +
µ

2
‖X −A‖2F (3.6)

is X∗ = Udiag(σ∗)V , where σ∗ = proxf,µ(σA) is the proximity operator of f with
penalty µ, defined as

proxf,µ(σA) := argmin
σ>0

f(σ) +
µ

2
‖σ − σA‖22 . (3.7)

Based on the theorem above, the optimal solution to (3.5) is

Zk+1 = Udiag(σ∗)V, (3.8)

where σ∗, the solution to (3.7), can be approximated by linearizing the concave term
f(σ) iteratively. Specifically, in the (l + 1)th inner iteration, σ can be updated as
follows

σl+1 = argmin
σ>0

〈∇σf(σl), σ〉+
µ

2
‖σ − σA‖22

= max {σA −
∇σf(σl)

µ
, 0},

(3.9)

where

A =
1

2

[(
X − Ek −

1

µk
Yk

)
+ S

(
Wk +

1

µk
Pk

)]
, (3.10)

∇σf(σl) is the gradient of f at σl, and µ = 2µk.

3.2.2 Update E

The variable E is updated by solving the problem as follows

Ek+1 = argmin
E
L (Zk+1, E,Wk, Yk, Pk, µk)

= argmin
Z
λ‖E‖1 + 〈Yk, Zk+1 + E −X〉µ

2
‖Zk+1 + E −X‖2F

= argmin
E

λ‖E‖1 +
µk
2

∥∥∥∥E − (X − Zk+1 −
1

µk
Yk

)∥∥∥∥2
F

.

(3.11)

The solution to this problem is [2]

Ek+1 = ST λ
µk

[
X − Zk+1 −

1

µk
Yk

]
, (3.12)

and here ST λ
µk

denotes the element-wise soft-thresholding operator which is defined
as

STτ (x) = sgn(x) ·max{|x| − τ, 0}, (3.13)

with the function sgn(·) returning the sign of the given operand.
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3.2.3 Update W

Based on the steps given in (3.3), W is updated by addressing the following problem

Wk+1 =argmin
W
L (Zk+1, Ek+1,W, Yk, Pk, µk)

= argmin
Z
β ‖W‖1 + 〈Pk,Wk − G (Zk+1)〉+

µ

2
‖G (Zk+1)−Wk‖2F

=argmin
W

β‖W‖1 +
µk
2

∥∥∥∥W − G (Zk+1) +
1

µk
Pk

∥∥∥∥2
F

.

(3.14)
Similar to (3.11), the above problem has the closed-form solution as follows [2]

Wk+1 = ST β
µk

[
G (Zk+1)−

1

µk
Pk

]
. (3.15)

3.2.4 Summary of the optimization method

The complete procedure to solve the proposed model (3.1) is summarized in Algo-
rithm 1.

Algorithm 1 Optimization method to address the proposed model (3.1)
Input: X,λ, β, γ, µ1, ρ, ε.
Initialization: Initialize the iteration number k = 1, Z1 = X and E1, Y1,W1, P1

as zero matrices.
Repeat

1. Update Z:
Obtain σ∗ iteratively based on equation (3.9), and update Z using Zk+1 =
Udiag(σ∗)V .

2. Update E:
Ek+1 = ST λ

µk

(
X − Zk+1 − Yk

µk

)
.

3. Update W :
Wk+1 = ST β

µk

[
G (Zk+1)− Pk

µk

]
.

4. Update Y : Yk+1 = Yk + µk(Zk+1 −X + Ek+1).
5. Update P : Pk + µk[Wk+1 − G (Zk+1)].
6. Update µ: µk+1 = ρµk.

Until ‖Zk+1 − Zk‖F ≤ ε, or ‖Ek+1 − Ek‖F ≤ ε
Return Z and E
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4 Simulation Results

Experiments with synthetic data and real data are performed to demonstrate the effec-
tiveness of the proposed approach. The applications to real data contain face image
shadow removal, singing voice separation, and video background subtraction. The
proposed algorithm is compared with several state-of-the-art algorithms including
LRSD-TNNSR [31], noncvxRPCA [16], LRSD-TNN [7] and IALM [20]1.

4.1 Experiments with synthetic data

In this experiment, randomly generated matrices are used to evaluate the performance
of the proposed algorithm. Each synthetic matrix X0 of size m× n is composed of a
low-rank matrix Z0 and a sparse matrix E0, i.e. X0 = Z0+E0, where the rank of Z0

is r and the sparse ratio of E0 is spr. In particular, the low-rank matrix Z0 is generat-
ed based on equation Z0 = LRT where the matrices L ∈ Rm×r and R ∈ Rn×r are
randomly generated using Gaussian distribution with zero mean and unit variance.
The non-zero entries of the sparse matrix E0 are independently and uniformly dis-
tributed in the range [−t, t], where t denotes the maximum of the absolute values of
all elements in Z0.

The performances of the algorithms are measured with total reconstruction er-
ror (Totalerr), low-rank reconstruction error (LRerr), and sparse reconstruction error
(Sperr). These measurements are computed as follows

Totalerr =
‖X −X0‖F
‖X0‖F

, (4.1)

LRerr =
‖Z − Z0‖F
‖Z0‖F

, (4.2)

Sperr =
‖E − E0‖F
‖E0‖F

, (4.3)

where X0, Z0, and E0 denote the ground-truth matrices in the generated synthetic
data, and X , Z and E denote the matrices recovered using the algorithms.

In the proposed algorithm, the regularization parameters are set as λ = 0.4
and β = 0.1. The initial penalty parameter of the quadratic penalty terms is set
as µ1 = 0.63 empirically, and the coefficient for updating µ is set as ρ = 1.1.
The parameters of noncvxRPCA are empirically set as λ = 0.1, µ1 = 0.9, and
ρ = 1.1. The parameter γ in the γ-norm term in both the proposed algorithm and
noncvxRPCA is set as 0.01. In the LRSD-TNNSR method, the parameters are set as
λ = 0.9/

√
max(m,n) and γ = 0.9/

√
max(m,n). The parameters of the LRSD-

TNN and IALM algorithms are set as the values suggested in the original papers
respectively.

1 The codes of noncvxRPCA were downloaded from the website https://github.com/
sckangz/noncvx-PRCA. As the codes of the LRSD-TNN algorithm are not available, we implement-
ed this algorithm by ourselves. The codes of IALM were downloaded from http://perception.
csl.illinois.edu/matrix-rank/sample_code.html.
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Various parameters related to the synthetic matrices are used for illustrating the
performances of the algorithms in different situations. Specifically, the size of the
matrices is set as m = n ∈ {200, 500}, the rank of the low-rank component Z0 is
r = 5 or 10, and the sparse ratio of the sparse component E0 is 0.01mn or 0.05mn.
The results obtained by different algorithms are summarized in Tables 1-4. In general,
all algorithms can obtain good results in decomposing the low-rank component and
the sparse component. The LRSD-TNNSR algorithm achieves the best performance
in most cases, except when spr = 0.05mn. The proposed algorithm outperforms
noncvxRPCA and IALM in all cases, which demonstrates the effectiveness of the
proposed method.

Table 1 m = n = 200, rank(Z0) = 5, sparse ratio = 0.01mn.

Algorithm Totalerr LRerr Sperr Iteration Time

Proposed 1.63× 10−7 1.96× 10−7 9.36× 10−8 46 0.6516

LRSD-TNNSR 1.96×10−10 2.27×10−10 3.40×10−10 68 0.7329

noncvxRPCA 4.48× 10−7 5.51× 10−7 3.24× 10−7 20 0.2622

LRSD-TNN 1.21×10−10 1.50×10−10 9.30×10−11 38 0.3544

IALM 8.81× 10−6 2.43× 10−6 1.83× 10−5 8 0.7678

Table 2 m = n = 500, rank(Z0) = 5, sparse ratio = 0.01mn.

Algorithm Totalerr LRerr Sperr Iteration Time

Proposed 1.93× 10−7 2.34× 10−7 8.20× 10−8 44 4.1578

LRSD-TNNSR 9.34×10−11 1.11×10−10 1.97×10−11 69 4.9170

noncvxRPCA 3.49× 10−7 4.31× 10−7 1.97× 10−7 11 1.2281

LRSD-TNN 4.35×10−11 4.96×10−11 1.56×10−11 36 2.2404

IALM 7.35× 10−6 2.44× 10−6 1.39× 10−5 8 1.4911

4.2 Face image shadow removal

Face images of the same subject under different illumination conditions generally lie
in a low-dimensional subspace, while the outliers resulting from lighting variations
can be assumed to be sparse [29], [4]. Therefore, RPCA algorithms can be used to
deal with the task of face shadow image removal [29], [7]. In this subsection, we use
this application of RPCA to evaluate the performances of the algorithms.

Face images from the Extended Yale B dataset [18] are used in our experiments.
This dataset contains face images of 39 subjects and for each subject there are 64
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Table 3 m = n = 200, rank(Z0) = 5, sparse ratio = 0.05mn.

Algorithm Totalerr LRerr Sperr Iteration Time

Proposed 1.14× 10−7 2.23× 10−7 6.67× 10−8 52 0.7194

LRSD-TNNSR 1.21×10−11 0.89 0.61 215 2.0218

noncvxRPCA 9.27× 10−7 3.85× 10−2 2.64× 10−2 61 1.0188

LRSD-TNN 1.17×10−10 1.54 1.06 210 1.6060

IALM 1.93× 10−6 1.76× 10−6 2.60× 10−6 11 0.8309

Table 4 m = n = 200, rank(Z0) = 10, sparse ratio = 0.01mn.

Algorithm Totalerr LRerr Sperr Iteration Time

Proposed 8.49× 10−8 1.09× 10−7 7.50× 10−8 53 0.7187

LRSD-TNNSR 3.51×10−10 4.11×10−10 6.50×10−11 65 0.7331

noncvxRPCA 6.80× 10−7 1.10× 10−2 1.81× 10−2 60 1.0462

LRSD-TNN 1.07×10−10 1.26×10−10 1.80×10−10 197 1.6446

IALM 7.03× 10−6 3.86× 10−6 1.49× 10−5 10 0.6963

images with resolution 192×168 captured with various environmental illuminations.
In the experiments, each sample of a subject is reshaped as a column vector of size
32256 × 1, and a matrix of size 32256 × 64 corresponding to this subject is con-
structed by using each of the samples as one column. This matrix is assumed to be
composed of a low-rank matrix corresponding to the face images without shadows
and a sparse matrix reflecting shadows in the images, and RPCA algorithms are em-
ployed to remove shadows by recovering the low-rank component from the observed
data.

The parameters in the proposed algorithm are set as λ = 10−3, β = 10−4 and
µ1 = 0.3. The parameters in noncvxRPCA method are empirically set as λ = 10−3

and µ1 = 0.5. The parameters ρ and γ in these two algorithms are the same as in
experiments with synthetic data. The parameters of LRSD-TNNSR, LRSD-TNN and
IALM algorithm are set as in the original papers.

Experimental results for subjects yaleB01 and yaleB05 in the Extended Yale B
dataset are shown in Figs. 1 and 2, respectively. We can find that both LRSD-TNN
and IALM can only remove light shadows, as shown in the first samples of yaleB01
and yaleB05. For strong shadows in face images, as the second samples of the sub-
jects, the proposed algorithm, LRSD-TNNSR and noncvxRPCA outperform LRSD-
TNN and IALM significantly. For the subject yaleB05 shown in Fig. 2, the results of
the proposed algorithm are similar to those of the noncvxRPCA and LRSD-TNNSR
algorithms. For the subject yaleB01 in Fig. 1, the proposed algorithm can achieve
much better results than noncvxRPCA. This demonstrates the superiority of the pro-
posed algorithm as compared with the baselines.
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(a) (b)

Proposed

LRSD-TNNSR

noncvxRPCA

LRSD-TNN

IALM

Fig. 1 Experimental results of shadow removal for face images of subject yaleB01. The subfigures (a) and
(b) are two sample images of yaleB01. The subfigures below the samples are the low-rank and the sparse
components recovered from the corresponding samples, using the proposed method, LRSD-TNNSR, non-
cvxRPCA, LRSD-TNN, and IALM, respectively.

4.3 Singing voice separation

Music accompaniment in a song can be assumed to lie in a low-rank subspace due to
the repetition structure, and singing voices with more variations can be considered to
be sparse. Based on this assumption, RPCA can be used to solve the singing voice
separation problem [12].
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(a) (b)

Proposed

LRSD-TNNSR

noncvxRPCA

LRSD-TNN

IALM

Fig. 2 Experimental results of shadow removal for face images of subject yaleB05. The subfigures (a)
and (b) are two sample images of yaleB05. The subfigures below the samples are the low-rank and the s-
parse components recovered from the corresponding samples, using the proposedmethod, LRSD-TNNSR,
noncvxRPCA, LRSD-TNN, and IALM, respectively.

In the experiment, MIR-1K2 database is employed as test data. The singing voice
and the music accompaniment are mixed at 5 dB signal to noise ratio (SNR). Fol-
lowing the experiments in [12], the spectrogram of the mixture is computed via the
Short-Time-Fourier Transform (STFT) with window size being 1024 and hop size

2 http://perception.i2r.astar.edu.sg/bk_model/bk_index.html.
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being 256, and the RPCA methods are applied to the obtained spectrogram matrix to
estimate the singing voice component.

In order to evaluate the separation results of the algorithms, we compute energy
ratios utilizing BSS-EVAL [27], [12] in terms of source to distortion ratio (SDR),
source to interference ratio (SIR), source to artifacts ratio (SAR) [17], and the nor-
malized SDR (NSDR), which are defined as

SDR = 10 log 10
‖Starget‖2

‖einterf + enoise + eartif‖2
, (4.4)

SIR = 10 log 10
‖Starget‖2

‖einterf‖2
, (4.5)

SAR = 10 log 10
‖Starget + einterf + enoise‖2

‖eartif‖2
, (4.6)

NSDR(v̂, v, x) = SDR(v̂, v)− SDR(x, v). (4.7)

Here Starget denotes the energy of the true component of target signal from the sep-
aration results, einterf , enoise and eartif are the interference, noise, and artifact error
terms, respectively. v̂ and v denote the reconstructed singing voice and the original
clean singing voice respectively, and x denotes the mixture. In addition, the Totalerr,
which has been used in the experiments with synthetic data, is employed to evaluate
the overall performance of the algorithms.

The parameters in the proposed algorithm are set as λ = 28/
√
max(m,n),

β = 0.3, and µ1 = 0.003. The parameters in the LRSD-TNNSR method are set
as λ = 0.0095/

√
max(m,n) and γ = 0.003/

√
min(m,n). The parameters in non-

cvxRPCA method are set as λ = 1/
√
max(m,n) and µ1 = 0.1. The parameters

ρ and γ in these two algorithms are the same as in the previous experiments. The
parameters of LRSD-TNN and IALM algorithm are set as suggested in the original
papers.

Table 5 Experimental results for singing voice separation.

Algorithm SDR SIR SAR NSDR Totalerr

Proposed 8.18 18.32 8.69 10.74 9.10× 10−9

LRSD-TNNSR 4.14 12.08 5.16 6.70 3.30× 10−6

noncvxRPCA 3.75 7.73 6.66 6.32 8.46× 10−8

LRSD-TNN 6.06 14.36 6.91 8.62 2.61× 10−4

IALM 6.33 12.74 7.67 8.89 2.72× 10−6

Table 5 shows the results of the proposed method, the LRSD-TNNSR, noncvxR-
PCA, LRSD-TNN and IALM algorithms on singing voice separation. Fig. 3 shows
the waveform of the original signing voice and waveforms of singing voices recov-
ered by different algorithms. In terms of SDR, SIR, SAR, and NSDR, the proposed
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(a) Original
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(b) Proposed
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(c) LRSD-TNNSR
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(d) noncvxRPCA
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(e) LRSD-TNN
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(f) IALM

Fig. 3 Results for singing voice separation. (a) shows the waveform of the original singing voice, subfig-
ures (b), (c), (d), (e) and (f) present waveforms of the singing voice separated by the proposed method,
LRSD-TNNSR, noncvxRPCA, LRSD-TN, and IALM, respectively.

method outperforms the baseline algorithms, and it also achieves a higher recon-
struction accuracy according to Totalerr. From Fig. 3, it can be seen that the voice
waveform separated by the proposed method is much closer to the original wavefor-
m.

4.4 Video background subtraction

Video background subtraction is another important application of RPCA algorithms,
as video frames captured by a fixed camera can be regarded as the sum of low-
rank background and sparse foreground [16]. Two scenes escalator and hall from
Perception Test Images Sequences [19] are used as the test data in this experiment.
The video data of scene escalator which consists of 3417 frames of resolution 160×
130 is converted to an observed matrix of size 20800 × 3417, and the video data
of scene hall containing 3584 frames of resolution 192 × 144 is converted to an
observed matrix of size 27648× 3584.

The parameters of the proposed algorithm are set as λ = 0.2, β = 0.1 and
µ1 = 0.39. The parameters of noncvxRPCA are set as λ = 10−3 and µ1 = 0.5. Other
parameters of these two algorithms are the same as the settings of experiments in
the previous subsections. The parameters of LRSD-TNNSR, LRSD-TNN and IALM
algorithm are set as in the original papers.

The results of video background subtraction using different algorithms are given
in Figs. 4 and 5. It can be observed that all algorithms can decompose the video
frames into two distinct parts. In the results for the scene escalator as shown in
Fig. 4, the background reconstructed by the proposed algorithm has better quality
as compared with those from the baselines which still contain some contents from
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(a) (b)

Proposed

LRSD-TNNSR

noncvxRPCA

LRSD-TNN

IALM

Fig. 4 The results of background subtraction for scene escalator. The subfigures (a) and (b) are two sample
frames of the video. The subfigures below the samples are the low-rank background components and the
sparse foreground components of the corresponding samples, which are decomposed by the proposed
method, LRSD-TNNSR, noncvxRPCA, LRSD-TNN, and IALM, respectively.

the foreground, e.g. people on the escalator. For the results of scene hall, in the back-
ground components obtained by LRSD-TNNSR, noncvxRPCA and LRSD-TNN for
the frame (a), as shown in Fig. 5, there is a person with a suitcase near the recep-
tion desk, which does not exist in the original sample frame to be decomposed. This
probably results from the influence of other frames, e.g. sample frame (b), in the
video. The results obtained by IALM for the frame (a) of hall also have been affected
by other frames, and there contain some foreground in the background component
extracted from the frame (b). The proposed algorithm does not introduce any extra
contents that do not exist in the original frame and achieves the best performance in
general.
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(a) (b)

Proposed

LRSD-TNNSR

noncvxRPCA

LRSD-TNN

IALM

Fig. 5 The results of background subtraction for scene hall. The subfigures (a) and (b) are two sample
frames of the video. The subfigures below the samples are the low-rank background components and
the sparse foreground components of the corresponding samples, which are decomposed by the proposed
method, LRSD-TNNSR, noncvxRPCA, LRSD-TNN, and IALM, respectively.

5 Conclusion

We have proposed a novel formulation for the RPCA problem and the corresponding
optimization method. By exploiting the sparse property of the low-rank component, a
sparse regularizer represented as the form of `1-norm is introduced to the formulation.
Simultaneously, `γ-norm is applied to approximate to the rank function. To address
the proposed optimization problem, we have developed an optimization algorithm by
introducing dummy variables and updating variables alternatively. Experimental re-
sults on synthetic and real applications including face image shadow removal, singing
voice separation and video background subtraction have demonstrated the superiority
of the proposed method as compared with several baseline RPCA methods.
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