Skip to main content
Log in

An Improved Diffusion Affine Projection Estimation Algorithm for Wireless Sensor Networks

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Affine projection algorithms have shown robustness against highly correlated input signals. To make the affine projection algorithm applicable for parameter estimation in wireless sensor networks, this work proposed a novel distributed affine projection algorithm by using the adapt-then-combine (ATC) scheme of the diffusion strategy. However, poorly performing nodes can potentially degrade to estimation performance. Thus, we develop an improved ATC diffusion affine projection algorithm (improved ATC-dAPA) with adaptive node selection to maintain the estimation accuracy. The mean and mean square deviation of the proposed algorithm are analyzed. The numerical simulation results illustrate that the proposed algorithm can achieve more accurate estimations than several related algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.S.E. Abadi, Z. Saffari, Distributed estimation over an adaptive diffusion network based on the family of affine projection algorithms, in 6th International Symposium on Telecommunications (IST), pp. 607–611. IEEE (2012)

  2. I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  3. R. Arablouei, K. Doğançay, S. Werner, Y.-F. Huang, Adaptive distributed estimation based on recursive least-squares and partial diffusion. IEEE Trans. Signal Process. 62(14), 3510–3522 (2014)

    Article  MathSciNet  Google Scholar 

  4. J. Benesty, P. Duhamel, Y. Grenier, A multichannel affine projection algorithm with applications to multichannel acoustic echo cancellation. IEEE Signal Process. Lett. 3(2), 35–37 (1996)

    Article  Google Scholar 

  5. F.S. Cattivelli, A.H. Sayed, Diffusion lms strategies for distributed estimation. IEEE Trans. Signal Process. 58(3), 1035–1048 (2010)

    Article  MathSciNet  Google Scholar 

  6. F. Chen, X. Shao, Broken-motifs diffusion lms algorithm for reducing communication load. Signal Process. 133, 213–218 (2017)

    Article  Google Scholar 

  7. F. Chen, T. Shi, S. Duan, L. Wang, J. Wu, Diffusion least logarithmic absolute difference algorithm for distributed estimation. Signal Process. 142, 423–430 (2018)

    Article  Google Scholar 

  8. J. Chen, A.H. Sayed, Diffusion adaptation strategies for distributed optimization and learning over networks. IEEE Trans. Signal Process. 60(8), 4289–4305 (2012)

    Article  MathSciNet  Google Scholar 

  9. S. Chouvardas, K. Slavakis, S. Theodoridis, Adaptive robust distributed learning in diffusion sensor networks. IEEE Trans. Signal Process. 59(10), 4692–4707 (2011)

    Article  MathSciNet  Google Scholar 

  10. M. Ferrer, A. Gonzalez, M. de Diego, G. Pinero, Distributed affine projection algorithm over acoustically coupled sensor networks. IEEE Trans. Signal Process. 65(24), 6423–6434 (2017)

    Article  MathSciNet  Google Scholar 

  11. S.L. Gay, S. Tavathia, The fast affine projection algorithm, in 1995 International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 3023–3026. IEEE (1995)

  12. N.V. George, G. Panda, A particle-swarm-optimization-based decentralized nonlinear active noise control system. IEEE Trans. Instrum. Meas. 61(12), 3378–3386 (2012)

    Article  Google Scholar 

  13. D.B. Haddad, W.A. Martins, M.d.V. Da Costa, L.W. Biscainho, L.O. Nunes, B. Lee, Robust acoustic self-localization of mobile devices. IEEE Trans. Mob. Comput. 15(4):982–995 (2015)

  14. N. Harris, A. Cranny, M. Rivers, K. Smettem, E.G. Barrett-Lennard, Application of distributed wireless chloride sensors to environmental monitoring: initial results. IEEE Trans. Instrum. Meas. 65(4), 736–743 (2016)

    Article  Google Scholar 

  15. A. Jadbabaie, J. Lin, A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, in Proceedings of the 41st IEEE Conference on Decision and Control, 2002, vol. 3, pp. 2953–2958. IEEE (2002)

  16. C. Li, P. Liu, C. Zou, F. Sun, J.M. Cioffi, L. Yang, Spectral-efficient cellular communications with coexistent one-and two-hop transmissions. IEEE Trans Veh Technol 65(8), 6765–6772 (2015)

    Article  Google Scholar 

  17. C. Li, H.J. Yang, F. Sun, J.M. Cioffi, L. Yang, Multiuser overhearing for cooperative two-way multiantenna relays. IEEE Trans Veh Technol 65(5), 3796–3802 (2015)

    Article  Google Scholar 

  18. L. Li, J.A. Chambers, C.G. Lopes, A.H. Sayed, Distributed estimation over an adaptive incremental network based on the affine projection algorithm. IEEE Trans Signal Process 58(1), 151–164 (2009)

    Article  MathSciNet  Google Scholar 

  19. Y. Liu, C. Li, W.K. Tang, Z. Zhang, Distributed estimation over complex networks. Inf Sci 197, 91–104 (2012)

    Article  Google Scholar 

  20. Y. Liu, C. Li, Z. Zhang, Diffusion sparse least-mean squares over networks. IEEE Trans Signal Process 60(8), 4480–4485 (2012)

    Article  MathSciNet  Google Scholar 

  21. C.G. Lopes, A.H. Sayed, Incremental adaptive strategies over distributed networks. IEEE Trans Signal Process 55(8), 4064–4077 (2007)

    Article  MathSciNet  Google Scholar 

  22. C.G. Lopes, A.H. Sayed, Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans Signal Process 56(7), 3122–3136 (2008)

    Article  MathSciNet  Google Scholar 

  23. J. Ni, J. Chen, X. Chen, Diffusion sign-error lms algorithm: formulation and stochastic behavior analysis. Signal Process 128, 142–149 (2016)

    Article  Google Scholar 

  24. R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  25. P. Park, C.H. Lee, J.W. Ko, Mean-square deviation analysis of affine projection algorithm. IEEE Trans Signal Process 59(12), 5789–5799 (2011)

    Article  MathSciNet  Google Scholar 

  26. J.B. Predd, S.R. Kulkarni, H.V. Poor. Distributed learning in wireless sensor networks (2007)

  27. A. Safdarian, M. Fotuhi-Firuzabad, M. Lehtonen, A distributed algorithm for managing residential demand response in smart grids. IEEE Trans Ind Inform 10(4), 2385–2393 (2014)

    Article  Google Scholar 

  28. A.H. Sayed, Fundamentals of Adaptive Filtering (Wiley, New York, 2003)

    Google Scholar 

  29. A.H. Sayed, Adaptive Filters (Wiley, New York, 2011)

    Google Scholar 

  30. A.H. Sayed, C.G. Lopes, Distributed recursive least-squares strategies over adaptive networks, in 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, pp. 233–237 (2006)

  31. I.D. Schizas, G. Mateos, G.B. Giannakis, Distributed LMS for consensus-based in-network adaptive processing. IEEE Trans Signal Process 57(6), 2365–2382 (2009)

    Article  MathSciNet  Google Scholar 

  32. G. Soatti, M. Nicoli, S. Savazzi, U. Spagnolini, Consensus-based algorithms for distributed network-state estimation and localization. IEEE Trans Signal Inf Process Netw 3(2), 430–444 (2017)

    Article  MathSciNet  Google Scholar 

  33. S.P. Talebi, S. Kanna, D.P. Mandic, A distributed quaternion kalman filter with applications to smart grid and target tracking. IEEE Trans Signal Inf Process Netw 2(4), 477–488 (2016)

    MathSciNet  Google Scholar 

  34. M. Tanaka, S. Makino, J. Kojima, A block exact fast affine projection algorithm. IEEE Trans Speech Audio Process 7(1), 79–86 (1999)

    Article  Google Scholar 

  35. F. Wen, Diffusion least-mean p-power algorithms for distributed estimation in alpha-stable noise environments. Electron Lett 49(21), 1355–1356 (2013)

    Article  Google Scholar 

  36. Y. Xia, D.P. Mandic, Augmented performance bounds on strictly linear and widely linear estimators with complex data. IEEE Trans Signal Process 66(2), 507–514 (2017)

    Article  MathSciNet  Google Scholar 

  37. L. Xiao, S. Boyd, Fast linear iterations for distributed averaging. Syst Control Lett 53(1), 65–78 (2004)

    Article  MathSciNet  Google Scholar 

  38. X. Zhao, A.H. Sayed, Performance limits for distributed estimation over LMS adaptive networks. IEEE Trans Signal Process 60(10), 5107–5124 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Key R&D Program of China (Nos. 2018YFB1306600, 2018YFB1306604), National Natural Science Foundation of China (Grant No. 61875168) and Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2017jcyjAX0265).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Chen, F., Duan, S. et al. An Improved Diffusion Affine Projection Estimation Algorithm for Wireless Sensor Networks. Circuits Syst Signal Process 39, 3173–3188 (2020). https://doi.org/10.1007/s00034-019-01317-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01317-5

Keywords

Navigation