Skip to main content
Log in

Parameter Estimation of Wiener Systems Based on the Particle Swarm Iteration and Gradient Search Principle

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The Wiener nonlinear system is composed of a linear dynamic subsystem in series with a static nonlinear subsystem. This type of system is widely found in the petroleum, chemistry, thermal and other process industries. It is of great significance to obtain the parameter estimates of the Wiener systems. This paper studies the identification problem of the Wiener time delay nonlinear system. Based on the gradient search principle, a stochastic gradient identification algorithm and a gradient-based iterative identification algorithm are derived. Furthermore, a linearly decreasing weight particle swarm iterative identification algorithm is also proposed for the discussed Wiener time delay systems. Finally, a numerical example and two application cases are given for validating the feasibility of the three identification methods. The results demonstrate that the three algorithms can identify the unknown parameters of the Wiener model effectively. Moreover, the linearly decreasing weight particle swarm iterative identification algorithm behaves much better than the stochastic gradient and the gradient-based iterative algorithms in accuracy and convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Alfi, M.M. Fateh, Intelligent identification and control using improved fuzzy particle swarm optimization. Expert Syst. Appl. 38(10), 12312–12317 (2011)

    Google Scholar 

  2. Z. Alkhoury, M. Petreczky, G. Mercère, Identifiability of affine linear parameter-varying models. Automatica 80, 62–74 (2017)

    MathSciNet  MATH  Google Scholar 

  3. S. Alonso, M. De la Sen, R. Nistal, A. Ibeas, Discretization and control of an SEIR epidemic model under equilibrium Wiener noise disturbances. AIP Conf. Proc. 1905(1), 030007 (2017)

    Google Scholar 

  4. H. Ase, T. Katayama, A subspace-based identification of Wiener–Hammerstein benchmark model. Control Eng. Pract. 44, 126–137 (2015)

    Google Scholar 

  5. M. Benítez, A. Bermúdez, J.F. Rodríguez-Calo, Adjoint method for parameter identification problems in models of stirred tank chemical reactors. Chem. Eng. Res. Des. 123, 214–229 (2017)

    Google Scholar 

  6. M.R. Bonyadi, Z. Michalewicz, Particle swarm optimization for single objective continuous space problems: a review. Evol. Comput. 25(1), 1–54 (2017)

    Google Scholar 

  7. G. Bottegal, R. Castro-Garcia, J.A.K. Suykens, A two-experiment approach to Wiener system identification. Automatica 93, 282–289 (2018)

    MathSciNet  MATH  Google Scholar 

  8. G.A. Bustos, A. Ferramosca, J.L. Godoy, A.H. González, Application of model predictive control suitable for closed-loop re-identification to a polymerization reactor. J. Process Control 44, 1–13 (2016)

    Google Scholar 

  9. N.I. Chaudhary, M.A.Z. Raja, Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms. Nonlinear Dyn. 79(2), 1385–1397 (2015)

    MathSciNet  MATH  Google Scholar 

  10. J. Chen, J. Li, Y.J. Liu, Gradient iterative algorithm for dual-rate nonlinear systems based on a novel particle filter. J. Frankl. Inst. 354(11), 4425–4437 (2017)

    MathSciNet  MATH  Google Scholar 

  11. M. De la Sen, S. Alonso-Quesada, A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules. Appl. Math. Comput. 270, 953–976 (2015)

    MathSciNet  MATH  Google Scholar 

  12. F. Ding, X.M. Liu, M.M. Liu, The recursive least squares identification algorithm for a class of Wiener nonlinear systems. J. Frankl. Inst. 353(7), 1518–1526 (2016)

    MathSciNet  MATH  Google Scholar 

  13. F. Ding, X.H. Wang, Q.J. Chen, Y.S. Xiao, Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition. Circuits Syst. Signal Process. 35(9), 3323–3338 (2016)

    MathSciNet  MATH  Google Scholar 

  14. F. Ghani, R. Waser, T.S. O’Donovan, P. Schuetz, M. Zaglio, J. Wortischek, Non-linear system identification of a latent heat thermal energy storage system. Appl. Therm. Eng. 134, 585–593 (2018)

    Google Scholar 

  15. Y. Ghoul, K.I. Taarit, M. Ksouri, Identification of continuous-time systems with multiple unknown time delays using an output error method from sampled data. Circuits Syst. Signal Process. 37(3), 1044–1061 (2018)

    MathSciNet  MATH  Google Scholar 

  16. G.C. Goodwin, K.S. Sin, Adaptive Filtering Prediction and Control (Prentice-Hall Information, Upper Saddle River, 1984)

    MATH  Google Scholar 

  17. A. Gotmare, R. Patidar, N.V. George, Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model. Expert Syst. Appl. 42(5), 2538–2546 (2015)

    Google Scholar 

  18. H. Kargar, J. Zarei, R. Razavi-Far, Robust fault detection filter design for nonlinear networked control systems with time-varying delays and packet dropout. Circuits Syst. Signal Process. 38(1), 63–84 (2019)

    Article  MathSciNet  Google Scholar 

  19. V.A. Kazakov, A method of measuring current–voltage characteristics based on the Hammerstein–Chebyshev model. Meas. Tech. 47(5), 494–499 (2004)

    Article  Google Scholar 

  20. M. Kazemi, M.M. Arefi, A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems. ISA Trans. 67, 382–388 (2017)

    Google Scholar 

  21. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of the Fourth IEEE International Conference on Neural Networks (Australia, IV, Perth, 1995), pp. 1942–1948

  22. J.H. Li, X. Li, Particle swarm optimization iterative identification algorithm and gradient iterative identification algorithm for Wiener systems with colored noise. Complexity 2018, 1–8 (2018)

    MATH  Google Scholar 

  23. J.S. Lu, W.D. Xie, H.B. Zhou, Combined fitness function based particle swarm optimization algorithm for system identification. Comput. Ind. Eng. 95, 122–134 (2016)

    Google Scholar 

  24. H. Modares, A. Alfi, M.N. Sistani, Parameter estimation of bilinear systems based on an adaptive particle swarm optimization. Eng. Appl. Artif. Intel. 23(7), 1105–1111 (2010)

    Google Scholar 

  25. M.J. Moghaddam, H. Mojallali, M. Teshnehlab, Recursive identification of multiple-input single-output fractional-order Hammerstein model with time delay. Appl. Soft Comput. 70, 486–500 (2018)

    MATH  Google Scholar 

  26. G. Mzyk, P. Wachel, Kernel-based identification of Wiener–Hammerstein system. Automatica 83, 275–281 (2017)

    MathSciNet  MATH  Google Scholar 

  27. A. Naitali, F. Giri, Wiener-Hammerstein system identification-an evolutionary approach. Int. J. Syst. Sci. 47(1), 45–61 (2016)

    MathSciNet  MATH  Google Scholar 

  28. K.S. Narendra, A.M. Annaswamy, Persistent excitation in adaptive systems. Int. J. Control 45(1), 127–160 (1987)

    MathSciNet  MATH  Google Scholar 

  29. A. Nickabadi, M.M. Ebadzadeh, R. Safabakhsh, A novel particle swarm optimization algorithm with adaptive inertia weight. Appl. Soft Comput. 11(4), 3658–3670 (2011)

    Google Scholar 

  30. P.S. Pal, R. Kar, D. Mandal, S.P. Ghoshal, Parametric identification with performance assessment of Wiener systems using brain storm optimization algorithm. Circuits Syst. Signal Process. 36(8), 3143–3181 (2017)

    MATH  Google Scholar 

  31. K. Tiels, J. Schoukens, Wiener system identification with generalized orthonormal basis functions. Automatica 50(12), 3147–3154 (2014)

    MathSciNet  MATH  Google Scholar 

  32. A. Wills, T.B. Schön, L. Ljung, B. Ninness, Identification of Hammerstein–Wiener models. Automatica 49(1), 70–81 (2013)

    MathSciNet  MATH  Google Scholar 

  33. W.L. Xiong, X.Q. Yang, L. Ke, B.G. Xu, EM algorithm-based identification of a class of nonlinear Wiener systems with missing output data. Nonlinear Dyn. 80(1–2), 329–339 (2015)

    MathSciNet  MATH  Google Scholar 

  34. G. Xu, G.S. Yu, Reprint of: on convergence analysis of particle swarm optimization algorithm. J. Comput. Appl. Math. 340, 709–717 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Y.Z. Yu, X.Y. Ren, F.S. Du, J.J. Shi, Application of improved PSO algorithm in hydraulic pressing system identification. J. Iron Steel Res. Int. 19(9), 29–35 (2012)

    Google Scholar 

  36. J.H. Zhang, P.Q. Xia, An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models. J. Sound Vib. 389, 153–167 (2017)

    Google Scholar 

  37. Y.X. Zheng, Y. Liao, Parameter identification of nonlinear dynamic systems using an improved particle swarm optimization. Optik 127(19), 7865–7874 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61973176, 61973178), the Jiangsu Natural Science Foundation (BK20181457), the Natural science foundation for colleges and universities in Jiangsu Province (18KJB120007) and the Six Talent Peak Projects in Jiangsu Province (XYDXX-038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zong, T., Gu, J. et al. Parameter Estimation of Wiener Systems Based on the Particle Swarm Iteration and Gradient Search Principle. Circuits Syst Signal Process 39, 3470–3495 (2020). https://doi.org/10.1007/s00034-019-01329-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01329-1

Keywords

Navigation