Skip to main content
Log in

Adaptive Fuzzy Output-Feedback Tracking Control for Switched Nonstrict-Feedback Nonlinear Systems with Prescribed Performance

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this article, an adaptive fuzzy output-feedback tracking control scheme is proposed for a class of single-input and single-output uncertain switched nonlinear systems in nonstrict-feedback form with prescribed performance and arbitrary switching. By using the concept of prescribed performance, we mean that the tracking error converges to the predefined performance bounds. The unknown nonlinear functions are approximated by utilizing the fuzzy logic systems. For the systems under study, unavailable states are taken into account, which are estimated by constructing a fuzzy state observer. In order to overcome the difficulty arising from the nonstrict-feedback form, an effective adaptive parameter is introduced. By using the common Lyapunov function method and backstepping design approach, an adaptive control algorithm is presented for the considered system. The designed controller can guarantee that all the signals within closed-loop systems are semi-globally uniformly ultimately bounded. The effectiveness of the control strategy put forward in this paper is demonstrated by the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.P. Bechlioulis, G.A. Rovithakis, Robust adaptive control of feedback linearizable mimo nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    MathSciNet  MATH  Google Scholar 

  2. C.P. Bechlioulis, G.A. Rovithakis, Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45(2), 532–538 (2009)

    MathSciNet  MATH  Google Scholar 

  3. C.P. Bechlioulis, G.A. Rovithakis, Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems. IEEE Trans. Autom. Control 55(5), 1220–1226 (2010)

    MathSciNet  MATH  Google Scholar 

  4. C.P. Bechlioulis, G.A. Rovithakis, A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica 50(4), 1217–1226 (2014)

    MathSciNet  MATH  Google Scholar 

  5. J. Cai, R. Yu, B. Wang, C. Mei, L. Shen, Decentralized event-triggered control for interconnected systems with unknown disturbances. J. Frankl. Inst. 357(3), 1494–1515 (2020)

    MathSciNet  MATH  Google Scholar 

  6. X.-H. Chang, J.H. Park, P. Shi, Fuzzy resilient energy-to-peak filtering for continuous-time nonlinear systems. IEEE Trans. Fuzzy Syst. 25(6), 1576–1588 (2016)

    Google Scholar 

  7. Y. Chang, Y. Wang, F.E. Alsaadi, G. Zong, Adaptive fuzzy output-feedback tracking control for switched stochastic pure-feedback nonlinear systems. Int J Adapt Control. 33(10), 1567–1582 (2019)

    MathSciNet  MATH  Google Scholar 

  8. W. Chen, L. Jiao, J. Li, R. Li, Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans. Syst. Man Cybern. B (Cybern.) 40(3), 939–950 (2010)

    Google Scholar 

  9. N.H. El-Farra, P. Mhaskar, P.D. Christofides, Output feedback control of switched nonlinear systems using multiple lyapunov functions. Syst. Control Lett. 54(12), 1163–1182 (2005)

    MathSciNet  MATH  Google Scholar 

  10. S.S. Ge, C.C. Hang, T. Zhang, Adaptive neural network control of nonlinear systems by state and output feedback. IEEE Trans. Syst. Man Cybern. B Cybern. 29(6), 818–828 (1999)

    Google Scholar 

  11. Z.-H. Guan, D.J. Hill, X. Shen, On hybrid impulsive and switching systems and application to nonlinear control. IEEE Trans. Autom. Control 50(7), 1058–1062 (2005)

    MathSciNet  MATH  Google Scholar 

  12. S.I. Han, J.M. Lee, Fuzzy echo state neural networks and funnel dynamic surface control for prescribed performance of a nonlinear dynamic system. IEEE Trans. Ind. Electron. 61(2), 1099–1112 (2014)

    Google Scholar 

  13. H.A. Hashim, S. El-Ferik, F.L. Lewis, Adaptive synchronisation of unknown nonlinear networked systems with prescribed performance. Int. J. Syst. Sci. 48(4), 885–898 (2017)

    MathSciNet  MATH  Google Scholar 

  14. A.K. Kostarigka, G.A. Rovithakis, Adaptive dynamic output feedback neural network control of uncertain mimo nonlinear systems with prescribed performance. IEEE Trans. Neural Netw. Learn. Syst. 23(1), 138–149 (2012)

    Google Scholar 

  15. Y. Li, S. Tong, Adaptive fuzzy output-feedback stabilization control for a class of switched nonstrict-feedback nonlinear systems. IEEE Trans. Cybern. 47(4), 1007–1016 (2017)

    Google Scholar 

  16. Y. Li, S. Tong, T. Li, Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation. Fuzzy Sets Syst. 248, 138–155 (2014)

    MathSciNet  MATH  Google Scholar 

  17. D. Liberzon, A.S. Morse, Basic problems in stability and design of switched systems. IEEE Control Syst. Mag. 19(5), 59–70 (1999)

    MATH  Google Scholar 

  18. L. Ma, X. Huo, X. Zhao, G. Zong, Adaptive fuzzy tracking control for a class of uncertain switched nonlinear systems with multiple constraints: a small-gain approach. Int J Fuzzy Syst. 21(8), 2609–2624 (2019)

    MathSciNet  Google Scholar 

  19. L. Ma, X. Huo, X. Zhao, Observed-based adaptive finite-time tracking control for a class of nonstrict-feedback nonlinear systems with input saturation. J. Franklin Institute (2019). https://doi.org/10.1016/j.jfranklin.2019.07.021

    Article  MATH  Google Scholar 

  20. L. Ma, X. Huo, X. Zhao, G.D. Zong, Observer-based adaptive neural tracking control for output-constrained switched MIMO nonstrict-feedback nonlinear systems with unknown dead zone. Nonlinear Dyn. 99(2), 1019–1036 (2020)

    Google Scholar 

  21. L. Ma, N. Xu, X. Zhao, G. Zong, X. Huo, Small-gain technique-based adaptive neural output-feedback fault-tolerant control of switched nonlinear systems with unmodeled dynamics. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2964822

    Article  Google Scholar 

  22. L. Ma, N. Xu, X. Zhao, X. Huo, Adaptive finite-time output-feedback control design for switched pure-feedback nonlinear systems with average dwell time. Nonlinear Anal. Hybrid Syst. 37, 100908 (2020)

    MathSciNet  Google Scholar 

  23. R. Ma, J. Zhao, Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings. Automatica 46(11), 1819–1823 (2010)

    MathSciNet  MATH  Google Scholar 

  24. D. Swaroop, J.K. Hedrick, P.P. Yip, J.C. Gerdes, Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000)

    MathSciNet  MATH  Google Scholar 

  25. K. Tanaka, T. Hori, Wang HO A multiple lyapunov function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Syst. 11(4), 582–589 (2003)

    Google Scholar 

  26. S. Tong, Y. Li, Observer-based fuzzy adaptive control for strict-feedback nonlinear systems. Fuzzy Sets Syst. 160(12), 1749–1764 (2009)

    MathSciNet  MATH  Google Scholar 

  27. S. Tong, Y. Li, Y. Li, Y. Liu, Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans. Syst. Man Cybern. B Cybern. 41(6), 1693–1704 (2011)

    Google Scholar 

  28. S. Tong, S. Sui, Y. Li, Observed-based adaptive fuzzy tracking control for switched nonlinear systems with dead-zone. IEEE Trans. Cybern. 45(12), 2816–2826 (2015)

    Google Scholar 

  29. S. Tong, Y. Li, S. Sui, Adaptive fuzzy tracking control design for siso uncertain nonstrict feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 24(6), 1441–1454 (2016)

    Google Scholar 

  30. C.K. Tse, Complex behavior of switching power converters. Proc. IEEE 90(5), 768–781 (2002)

    Google Scholar 

  31. D. Wang, J. Huang, Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005)

    Google Scholar 

  32. H. Wang, P.X. Liu, X. Zhao, X. Liu, Adaptive fuzzy finite-time control of nonlinear systems with actuator faults. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2902868

    Article  Google Scholar 

  33. H. Wang, K. Liu, X. Liu, B. Chen, C. Lin, Neural-based adaptive output-feedback control for a class of nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Cybern. 45(9), 1977–1987 (2014)

    Google Scholar 

  34. C. Wu, J. Liu, Y. Xiong, L. Wu, Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 3022–3033 (2017)

    MathSciNet  Google Scholar 

  35. J.-L. Wu, Stabilizing controllers design for switched nonlinear systems in strict-feedback form. Automatica 45(4), 1092–1096 (2009)

    MathSciNet  MATH  Google Scholar 

  36. L. Wu, R. Yang, P. Shi, X. Su, Stability analysis and stabilization of 2-D switched systems under arbitrary and restricted switchings. Automatica 59, 206–215 (2015)

    MathSciNet  MATH  Google Scholar 

  37. R. Yang, W.X. Zheng, \(H^{\infty }\) filtering for discrete-time 2-D switched systems: an extended average dwell time approach. Automatica 98, 302–313 (2018)

    MathSciNet  MATH  Google Scholar 

  38. R. Yang, L. Li, P. Shi, Dissipativity-based two-dimensional control and filtering for a class of switched systems. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2916417

    Article  Google Scholar 

  39. Y. Yang, C. Zhou, Adaptive fuzzy stabilization for strict-feedback canonical nonlinear systems via backstepping and small-gain approach. IEEE Trans. Fuzzy Syst. 13(1), 104–114 (2005)

    Google Scholar 

  40. Y. Yang, G. Feng, J. Ren, A combined backstepping and small-gain approach to robust adaptive fuzzy control for strict-feedback nonlinear systems. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 34(3), 406–420 (2004)

    Google Scholar 

  41. S.J. Yoo, Adaptive tracking control for uncertain switched nonlinear systems in nonstrict-feedback form. J. Frankl. Inst. 353(6), 1409–1422 (2016)

    MathSciNet  MATH  Google Scholar 

  42. S.J. Yoo, J.B. Park, Y.H. Choi, Adaptive dynamic surface control for stabilization of parametric strict-feedback nonlinear systems with unknown time delays. IEEE Trans. Autom. Control 52(12), 2360–2365 (2007)

    MathSciNet  MATH  Google Scholar 

  43. T. Zhang, S.S. Ge, C.C. Hang, Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica 36(12), 1835–1846 (2000)

    MathSciNet  MATH  Google Scholar 

  44. X. Zhao, X. Wang, L. Ma, G. Zong, Fuzzy-approximation-based asymptotic tracking control for a class of uncertain switched nonlinear systems. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2912138

    Article  Google Scholar 

  45. X. Zhao, L. Zhang, P. Shi, M. Liu, Stability and stabilization of switched linear systems with mode-dependent average dwell time. IEEE Trans. Autom. Control 57(7), 1809–1815 (2012)

    MathSciNet  MATH  Google Scholar 

  46. X. Zhao, P. Shi, X. Zheng, L. Zhang, Adaptive tracking control for switched stochastic nonlinear systems with unknown actuator dead-zone. Automatica 60, 193–200 (2015)

    MathSciNet  MATH  Google Scholar 

  47. X. Zhao, X. Zheng, B. Niu, L. Liu, Adaptive tracking control for a class of uncertain switched nonlinear systems. Automatica 52, 185–191 (2015)

    MathSciNet  MATH  Google Scholar 

  48. X. Zhao, Y. Yin, B. Niu, X. Zheng, Stabilization for a class of switched nonlinear systems with novel average dwell time switching by T-S fuzzy modeling. IEEE Trans. Cybern. 46(8), 1952–1957 (2016)

    Google Scholar 

  49. J. Zhou, C. Wen, Y. Zhang, Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 49(10), 1751–1759 (2004)

    MathSciNet  MATH  Google Scholar 

  50. Y. Zhu, W.X. Zheng, Multiple lyapunov functions analysis approach for discrete-time switched piecewise-affine systems under dwell-time constraints. IEEE Trans. Autom. Control (2019). https://doi.org/10.1109/TAC.2019.2938302

    Article  MATH  Google Scholar 

  51. Y. Zhu, W.X. Zheng, Observer-based control for cyber-physical systems with periodic dos attacks via a cyclic switching strategy. IEEE Trans. Autom. Control (2019). https://doi.org/10.1109/TAC.2019.2953210

    Article  MATH  Google Scholar 

  52. Y. Zhu, W.X. Zheng, D. Zhou, Quasi-synchronization of discrete-time Lur’e-type switched systems with parameter mismatches and relaxed PDT constraints. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2930945

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61573069, and the Education Committee Liaoning Province of China under Grant No. LJ2019002. This project was also funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under the Grant No. (KEP-22-135-38). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanqing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chang, Y., Alkhateeb, A.F. et al. Adaptive Fuzzy Output-Feedback Tracking Control for Switched Nonstrict-Feedback Nonlinear Systems with Prescribed Performance. Circuits Syst Signal Process 40, 88–113 (2021). https://doi.org/10.1007/s00034-020-01466-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01466-y

Keywords

Navigation