Skip to main content
Log in

A Robust Method to Reliable Cardiac QRS Complex Detection Based on Shannon Energy and Teager Energy Operator

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The QRS complex is considered to be one of the main factors in diagnosing heart diseases; thus, its detection on the electrocardiogram signals has become the target of various types of research. The primary aim of this study is to design and develop a novel technique for QRS complex detection under various ECG signal morphologies and different QRS waveforms. In this study, we report an algorithm for detecting the QRS complex using the Shannon energy (SE) and Teager energy operator (TEO) to obtain valid QRS on ECG signals. In this scheme, the first stage includes SE and band-pass filter for QRS complex localization. Next, the novel process of R-peak detection based on TEO to create a smoothed detection mask is considered. Finally, the proposed method’s performance and validity are tested on the Massachusetts Institute of Technology–Beth Israel Hospital arrhythmia database. To this end, a highly accurate, quick, and simple mathematical operation is provided based on SE and TEO, with baseline threshold and minimum lag. The efficiency of the undertaken method for detecting the QRS complex compared to recent state-of-the-art methods shows an accuracy of 99.829%. Also, the proposed approach is designed with three quick and straightforward stages by low computational time complexity for setting up and applying reliable cardiac QRS detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available in [28].

References

  1. A. Amirou, D. Ould-Abdeslam, Z. Zidelmal, M. Aidene, J. Merckle, Using S-transform and Shannon energy for electrical disturbances detection, in IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society, 29 Oct.–1 Nov. 2014 (2014), pp. 2452–2457

  2. M.M. Benosman, F. Bereksi-Reguig, E.G. Salerud, Strong real-time QRS complex detection. J. Mech. Med. Biol. 17(08), 1750111 (2017). https://doi.org/10.1142/s0219519417501111

    Article  Google Scholar 

  3. H. Beyramienanlou, N. Lotfivand, Shannon’s energy based algorithm in ECG signal processing. Comput. Math. Methods Med. 2017, 8081361 (2017). https://doi.org/10.1155/2017/8081361

    Article  Google Scholar 

  4. H. Beyramienanlou, N. Lotfivand, An efficient Teager energy operator-based automated QRS complex detection. J. Healthc. Eng. 2018, 8360475 (2018). https://doi.org/10.1155/2018/8360475

    Article  Google Scholar 

  5. B. Biswal, ECG signal analysis using modified S-transform. Healthc. Technol. Lett. 4(2), 68–72 (2017). https://doi.org/10.1049/htl.2016.0078

    Article  Google Scholar 

  6. C.J. Deepu, Y. Lian, A joint QRS detection and data compression scheme for wearable sensors. IEEE Trans. Biomed. Eng. 62(1), 165–175 (2015). https://doi.org/10.1109/TBME.2014.2342879

    Article  Google Scholar 

  7. L. El Bouny, M. Khalil, A. Adib, A wavelet denoising and Teager energy operator-based method for automatic QRS complex detection in ECG signal. Circuits Syst. Signal Process. (2020). https://doi.org/10.1007/s00034-020-01397-8

    Article  Google Scholar 

  8. A. Felinger, Data analysis and signal processing in chromatography (Elsevier, Amsterdam, 1998)

    Google Scholar 

  9. A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), E215–E220 (2000). https://doi.org/10.1161/01.cir.101.23.e215

    Article  Google Scholar 

  10. S. Hamdi, A.B. Abdallah, M.H. Bedoui, A robust QRS complex detection using regular grammar and deterministic automata. Biomed. Signal Process. Control 40, 263–274 (2018). https://doi.org/10.1016/j.bspc.2017.09.032

    Article  Google Scholar 

  11. R.S. Holambe, M.S. Deshpande, Nonlinear measurement and modeling using Teager energy operator, in Advances in Non-Linear Modeling for Speech Processing. Springer Briefs in Electrical and Computer Engineering (Springer, Berlin, Germany, 2012), pp. 45–59. https://doi.org/10.1007/978-1-4614-1505-3_4

    Chapter  Google Scholar 

  12. C. Kamath, A new approach to detect congestive heart failure using sequential spectrum of electrocardiogram signals. Med. Eng. Phys. 34(10), 1503–1509 (2012). https://doi.org/10.1016/j.medengphy.2012.03.001

    Article  Google Scholar 

  13. A. Kaur, S. Kumar, A. Agarwal, R. Agarwal, An efficient R-peak detection using Riesz fractional-order digital differentiator. Circuits Syst. Signal Process. 39(4), 1965–1987 (2020). https://doi.org/10.1007/s00034-019-01238-3

    Article  Google Scholar 

  14. X. Lu, M. Pan, Y. Yu, QRS detection based on improved adaptive threshold. J. Healthc. Eng. 2018, 5694595 (2018). https://doi.org/10.1155/2018/5694595

    Article  Google Scholar 

  15. G. Luo, Z. Yang, The application of ECG cancellation in diaphragmatic electromyographic by using stationary wavelet transform. Biomed. Eng. Lett. 8(3), 259–266 (2018). https://doi.org/10.1007/s13534-018-0064-5

    Article  Google Scholar 

  16. M.S. Manikandan, K.P. Soman, A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed. Signal Process. Control 7(2), 118–128 (2012). https://doi.org/10.1016/j.bspc.2011.03.004

    Article  Google Scholar 

  17. J.P. Martinez, R. Almeida, S. Olmos, A.P. Rocha, P. Laguna, A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans. Biomed. Eng. 51(4), 570–581 (2004). https://doi.org/10.1109/TBME.2003.821031

    Article  Google Scholar 

  18. J. Mateo, A.M. Torres, M.A. García, J.L. Santos, Noise removal in electroencephalogram signals using an artificial neural network based on the simultaneous perturbation method. Neural Comput. Appl. 27(7), 1941–1957 (2016). https://doi.org/10.1007/s00521-015-1988-7

    Article  Google Scholar 

  19. G.B. Moody, MIT-BIH Arrhythmia Database Directory (1997). https://www.physionet.org/physiobank/database/html/mitdbdir/records.htm . Accessed 22 July 2020

  20. C. Nayak, S.K. Saha, R. Kar, D. Mandal, Optimal SSA-based wideband digital differentiator design for cardiac QRS complex detection application. Int. J. Numer. Model. Electron. Netw. Dev. Fields 32(2), e2524 (2019). https://doi.org/10.1002/jnm.2524

    Article  Google Scholar 

  21. C. Nayak, S.K. Saha, R. Kar, D. Mandal, An efficient QRS complex detection using optimally designed digital differentiator. Circuits Syst. Signal Process. 38(2), 716–749 (2019). https://doi.org/10.1007/s00034-018-0880-y

    Article  Google Scholar 

  22. N. Ortigosa, C. Fernández, A. Galbis, Ó. Cano, Classification of persistent and long-standing persistent atrial fibrillation by means of surface electrocardiograms. Biomed. Eng. 61(1), 19 (2016). https://doi.org/10.1515/bmt-2014-0154

    Article  Google Scholar 

  23. J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME-32(3), 230–236 (1985). https://doi.org/10.1109/tbme.1985.325532

    Article  Google Scholar 

  24. D. Pandit, L. Zhang, C. Liu, S. Chattopadhyay, N. Aslam, C.P. Lim, A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm. Comput. Methods Programs Biomed. 144, 61–75 (2017). https://doi.org/10.1016/j.cmpb.2017.02.028

    Article  Google Scholar 

  25. D. Panigrahy, P.K. Sahu, Extended Kalman smoother with differential evolution technique for denoising of ECG signal. Australas. Phys. Eng. Sci. Med. 39(3), 783–795 (2016). https://doi.org/10.1007/s13246-016-0468-4

    Article  Google Scholar 

  26. J.-S. Park, S.-W. Lee, U. Park, R peak detection method using wavelet transform and modified Shannon energy envelope. J. Healthc. Eng. 2017, 4901017 (2017). https://doi.org/10.1155/2017/4901017

    Article  Google Scholar 

  27. Z. Peng, G. Wang, H. Jiang, S. Meng, Research and improvement of ECG compression algorithm based on EZW. Comput. Methods Programs Biomed. 145, 157–166 (2017). https://doi.org/10.1016/j.cmpb.2017.04.015

    Article  Google Scholar 

  28. physionet.org: MIT-BIH Arrhythmia Database (2005). https://physionet.org/content/mitdb/1.0.0/. Accessed 22 July 2020

  29. Q. Qin, J. Li, Y. Yue, C. Liu, An adaptive and time-efficient ECG R-peak detection algorithm. J. Healthc. Eng. 2017, 5980541 (2017). https://doi.org/10.1155/2017/5980541

    Article  Google Scholar 

  30. M. Rakshit, D. Panigrahy, P.K. Sahu, An improved method for R-peak detection by using Shannon energy envelope, Sādhanā. Acad. Proc. Eng. Sci. 41(5), 469–477 (2016). https://doi.org/10.1007/s12046-016-0485-8

    Article  MATH  Google Scholar 

  31. S. Rekik, N. Ellouze, Enhanced and optimal algorithm for QRS detection. IRBM 38(1), 56–61 (2017). https://doi.org/10.1016/j.irbm.2016.11.004

    Article  Google Scholar 

  32. B.T. Ricardo Ferro, A. Ramírez Aguilera, R.R.F. de la Vara Prieto, Automated detection of the onset and systolic peak in the pulse wave using Hilbert transform. Biomed. Signal Process. Control 20, 78–84 (2015). https://doi.org/10.1016/j.bspc.2015.04.009

    Article  Google Scholar 

  33. P. Sabherwal, M. Agrawal, L. Singh, Automatic detection of the R peaks in single-lead ECG signal. Circuits Syst. Signal Process. 36(11), 4637–4652 (2017). https://doi.org/10.1007/s00034-017-0537-2

    Article  Google Scholar 

  34. T. Sharma, K.K. Sharma, QRS complex detection in ECG signals using locally adaptive weighted total variation denoising. Comput. Biol. Med. 87, 187–199 (2017). https://doi.org/10.1016/j.compbiomed.2017.05.027

    Article  Google Scholar 

  35. T. Sharma, K.K. Sharma, A new method for QRS detection in ECG signals using QRS-preserving filtering techniques. Biomed. Eng. 63(2), 207 (2018). https://doi.org/10.1515/bmt-2016-0072

    Article  Google Scholar 

  36. L.D. Sharma, R.K. Sunkaria, A robust QRS detection using novel pre-processing techniques and kurtosis based enhanced efficiency. Measurement 87, 194–204 (2016). https://doi.org/10.1016/j.measurement.2016.03.015

    Article  Google Scholar 

  37. A. Sharma, S. Patidar, A. Upadhyay, U. Rajendra Acharya, Accurate tunable-Q wavelet transform based method for QRS complex detection. Comput. Electr. Eng. 75, 101–111 (2019). https://doi.org/10.1016/j.compeleceng.2019.01.025

    Article  Google Scholar 

  38. R.L. Verrier, B.D. Nearing, Ambulatory ECG monitoring of T-wave alternans for arrhythmia risk assessment. J. Electrocardiol. 36(Suppl), 193–197 (2003). https://doi.org/10.1016/j.jelectrocard.2003.09.058

    Article  Google Scholar 

  39. Ö. Yakut, E.D. Bolat, An improved QRS complex detection method having low computational load. Biomed. Signal Process. Control 42, 230–241 (2018). https://doi.org/10.1016/j.bspc.2018.02.004

    Article  Google Scholar 

  40. Q. Zhang, D. Zhou, X. Zeng, HeartID: a multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications. IEEE Access 5, 11805–11816 (2017). https://doi.org/10.1109/ACCESS.2017.2707460

    Article  Google Scholar 

Download references

Acknowledgements

The author wants to extend his deepest gratitude to acknowledge the valuable comments of Editor-in-Chief and reviewers. The author would also like to thank dear Tanya Sehrgosha for her contribution to the manuscript’s language revision.

Funding

The author received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Beyramienanlou.

Ethics declarations

Conflicts of interest

The author declares that he has no conflict of interest.

Human and Animals Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyramienanlou, H. A Robust Method to Reliable Cardiac QRS Complex Detection Based on Shannon Energy and Teager Energy Operator. Circuits Syst Signal Process 40, 980–992 (2021). https://doi.org/10.1007/s00034-020-01510-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01510-x

Keywords

Navigation