Skip to main content
Log in

An Ultra-Low-Voltage VCO-Based ΔΣ Modulator Using Self-compensated Current Reference for Variation Tolerance

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces a voltage-controlled-oscillator-based (VCO-based) first-order delta-sigma (ΔΣ) modulator that uses a novel current reference to improve the robustness of the modulator at ultra-low operating voltages. The proposed current reference harnesses the difference in transistor characteristics between weak inversion and moderate inversion to generate residue voltage, which is a function of process and temperature variations. The current generated by the proposed reference is used to bias a fully differential VCO integrator and a feedback current digital-to-analog conversion in the delta-sigma modulator for variation tolerance. Test chips designed and fabricated in 65-nm CMOS technology operate successfully at 0.3 V and achieve SNDR of 56.1 dB across 10 kHz bandwidth while consuming only 510 nW of power. This corresponds to a state-of-the-art figure of merit of 49 fJ/conv.-step. Measurement results for the proposed current reference and the modulator also demonstrate 3 × and 20 × improvement in process and temperature variation tolerance, respectively, while operating at such low voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Bandyopadhyay, P.P. Mercier, A.C. Lysaght, K.M. Stankovic, A.P. Chandrakasan, A 1.1 nW energy harvesting system with 544 pW quiescent power for next-generation implants, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 396–397 (2014)

  2. D. Blaauw, D. Sylvester, L. Yoonmyung, L. InHee Yoonmyung, B. Suyoung, L. Inhee, et al., From digital processors to analog building blocks: enabling new applications through ultra-low voltage design, in IEEE Subthreshold Microelectronics Conference, pp. 1–1 (2012)

  3. E.M. Camacho-Galeano, C. Galup-Montoro, M.C. Schneider, A 2-nW 1.1-V self-biased current reference in CMOS technology. IEEE Trans. Circuits Syst. II Express Briefs 52, 61–65 (2005)

    Article  Google Scholar 

  4. M. Choi, I. Lee, T. Jang, D. Blaauw, D. Sylvester, A 23 pW, 780 ppm/°C resistor-less current reference using subthreshold MOSFETs, in IEEE European Solid-State Circuits Conference, pp. 119–122 (2014)

  5. S. Clerc, F. Abouzeid, F. Argoud, A. Kumar, R. Kumar, P. Roche, A 240 mV 1 MHz, 340 mV 10 MHz, 40 nm CMOS, 252 bits frame decoder using ultra-low voltage circuit design platform, in IEEE International Conference on Electronics, Circuits, and Systems, pp. 117–120 (2011)

  6. Y. Das, Y. Gao, T.T.H. Kim, A 76% efficiency boost converter with 220 mV self-startup and 2 nW quiescent power for high resistance thermo-electric energy harvesting, in IEEE European Solid-State Circuits Conference, pp. 237–240 (2015)

  7. J. Hamilton, Y. Shouli, T.R. Viswanathan, An uncalibrated 2 MHz, 6 mW, 63.5 dB SNDR discrete-time input VCO-based ΔΣ ADC, in IEEE Custom Integrated Circuits Conference, pp. 1–4 (2012)

  8. K. Kadirvel, Y. Ramadass, U. Lyles, J. Carpenter, V. Ivanov, V. McNeil, et al., A 330 nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 106–108 (2012)

  9. J. Kim, T.-K. Jang, Y.-G. Yoon, S.H. Cho, Analysis and design of voltage-controlled oscillator based analog-to-digital converter. IEEE Trans. Circuits Syst. I Regular Pap. 57, 18–30 (2010)

    Article  MathSciNet  Google Scholar 

  10. T.H. Kim, J. Keane, H. Eom, C.H. Kim, Utilizing reverse short-channel effect for optimal subthreshold circuit design. IEEE Trans. Very Large Scale Integr. Syst. 15, 821–829 (2007)

    Article  Google Scholar 

  11. J. Lee, S. Cho, A 1.4-µW 24.9-ppm/°C current reference with process-insensitive temperature compensation in 0.18-µm CMOS. IEEE J. Solid State Circuits 47, 2527–2533 (2012)

    Article  Google Scholar 

  12. K. Lee, Y. Yoon, N. Sun, A scaling-friendly low-power small-area ΣΔ ADC with VCO-based integrator and intrinsic mismatch shaping capability. IEEE J. Emerg. Sel. Top. Circuits Syst. 5, 561–573 (2015)

    Article  Google Scholar 

  13. S. Li, A. Mukherjee, N. Sun, A 174.3-dB FoM VCO-based CT ΔΣ modulator with a fully-digital phase extended quantizer and tri-level resistor DAC in 130-nm CMOS. IEEE J. Solid State Circuits 52, 1940–1952 (2017)

    Article  Google Scholar 

  14. J.Y. Lin, C.C. Hsieh, A 0.3 V 10-bit SAR ADC with first 2-bit guess in 90-nm CMOS. IEEE Trans. Circuits Syst. I Regular Pap. 64, 562–572 (2017)

    Article  Google Scholar 

  15. Y. Long, P. Harpe, M. Osawa, Y. Harada, K. Tamiya, C. Van Hoof, et al., A 680 nA fully integrated implantable ECG-acquisition IC with analog feature extraction, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 418–419 (2014)

  16. N. Lotze, Y. Manoli, Ultra-sub-threshold operation of always-on digital circuits for IoT applications by use of Schmitt trigger gates. IEEE Trans. Circuits Syst. I Regular Pap. 64, 2920–2933 (2017)

    Article  MathSciNet  Google Scholar 

  17. S. Mathew, S. Satpathy, V. Suresh, R.K. Krishnamurthy, Energy efficient and ultra low voltage security circuits for nanoscale CMOS technologies, in IEEE Custom Integrated Circuits Conference, pp. 1–4 (2017)

  18. J.L.A.D. Melo, F. Querido, N. Paulino, J. Goes, A 0.4-V 410-nW opamp-less continuous-time ΔΣ modulator for biomedical applications, in IEEE International Symposium on Circuits and Systems, pp. 1340–1343 (2014)

  19. F. Michel, M.S.J. Steyaert, A 250 mV 7.5 μW 61 dB SNDR SC ΔΣ modulator using near-threshold-voltage-biased inverter amplifiers in 130 nm CMOS. IEEE J. Solid State Circuits 47, 709–721 (2012)

    Article  Google Scholar 

  20. N. Narasimman, T.T. Kim, A 0.3 V, 49 fJ/conv.-step VCO-based delta sigma modulator with self-compensated current reference for variation tolerance, in IEEE European Solid-State Circuits Conference, pp. 237–240 (2016)

  21. V. Nguyen, F. Schembari, R.B. Staszewski, A 0.2-V 30-MS/s 11b-ENOB open-loop VCO-based ADC in 28-nm CMOS. IEEE Solid State Circuits Lett. 1, 190–193 (2018)

    Article  Google Scholar 

  22. S. Orguc, H.S. Khurana, H.S. Lee, A.P., Chandrakasan: 0.3 V ultra-low power sensor interface for EMG, in IEEE European Solid-State Circuits Conference, pp. 219–222 (2017)

  23. M. Park, M.H. Perrott, A 78 dB SNDR 87 mW 20 MHz bandwidth continuous-time ADC with VCO-based integrator and quantizer implemented in 0.13 m CMOS. IEEE J. Solid State Circuits 44, 3344–3358 (2009)

    Article  Google Scholar 

  24. R.D. Prabha, M.G.A. Rincan, 0.18 μm light-harvesting battery-assisted charger-supply CMOS system. IEEE Trans. Power Electron. 31, 2950–2958 (2016)

    Article  Google Scholar 

  25. Z. Qiao, X. Zhou, Q. Li, A 250 mV 77 dB DR 10 kHz BW SC ΔΣ modulator exploiting subthreshold OTAs, in IEEE European Solid-State Circuits Conference, pp. 419–422 (2104)

  26. B. Ray, S. Mahapatra, Modeling of channel potential and subthreshold slope of symmetric double-gate transistor. IEEE Trans. Electron Dev. 56, 260–266 (2009)

    Article  Google Scholar 

  27. R. Sachin, K. Reddy, B. Young, P.K. Hanumolu, A 4.1 mW, 12-bit ENOB, 5 MHz BW, VCO-based ADC with on-chip deterministic digital background calibration in 90 nm CMOS, in Symposium on VLSI Circuits, pp. C68–C69 (2103)

  28. P. Sankar, S. Pavan, Analysis of integrator nonlinearity in a class of continuous-time delta-sigma modulators. IEEE Trans. Circuits Syst. II Express Briefs 54, 1125–1129 (2007)

    Article  Google Scholar 

  29. G. Serrano, P. Hasler, A precision low-TC Wide-range CMOS current reference. IEEE J. Solid State Circuits 43, 558–565 (2008)

    Article  Google Scholar 

  30. G. Taylor, I. Galton, A mostly-digital variable-rate continuous-time delta-sigma modulator ADC. IEEE J. Solid State Circuits 45, 2634–2646 (2010)

    Article  Google Scholar 

  31. B. Wang, T.Q. Nguyen, A.T. Do, J. Zhou, M. Je, T.T.H. Kim, Design of an ultra-low voltage 9T SRAM with equalized bitline leakage and CAM-assisted energy efficiency improvement. IEEE Trans. Circuits Syst. I Regular Pap. 62, 441–448 (2015)

    Article  Google Scholar 

  32. B. Wang, J. Zhou, K.H. Chang, M. Je, T.T. Kim, A 0.18 V charge-pumped DFF with 50.8% energy-delay reduction for near-/sub-threshold circuits, in IEEE Asian Solid-State Circuits Conference, pp. 121–124 (2013)

  33. H. Wang, P.P. Mercier, A 34-pW 04-V 4693 ppm/°C five-transistor current reference generator. IEEE Solid State Circuits Lett. 1, 122–125 (2018)

    Article  Google Scholar 

  34. U. Wismar, D. Wisland, P. Andreani, A 0.2 V 0.44 μW 20 kHz analog to digital ΣΔ modulator with 57 fJ/conversion FoM, in IEEE European Solid-State Circuits Conference, pp. 187–190 (2006)

  35. U. Wismar, D. Wisland, P. Andreani, A 0.2 V, 7.5 μW, 20 kHz ΣΔ modulator with 69 dB SNR in 90 nm CMOS, in IEEE European Solid-State Circuits Conference, pp. 206–209 (2007)

  36. C. Ying-Da, W. Chan-Hsiang, L. Tsung-Hsien, W. Chorng-Kuang, A 379 nW 58.5 dB SNDR VCO-based ΔΣ modulator for bio-potential monitoring, in Symposium on VLSI Circuits, pp. C66–C67 (2013)

  37. J. Yoo, Y. Long, D. El-Damak, M. Bin Altaf, A. Shoeb, H.-J. Yoo, An 8-channel scalable EEG acquisition SoC with fully integrated patient-specific seizure classification and recording processor, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 292–294 (2012)

  38. L. Yu-Te, Y. Huanfen, B. Parviz, B. Otis, 3 μW wirelessly powered CMOS glucose sensor for an active contact lens, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 38–40 (2011)

Download references

Funding

The research of the project was supported by Ministry of Education, Singapore, under Grant AcRF TIER 1- 2018-T1-002-105 (RG 174/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Tae-Hyoung Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narasimman, N., Kim, T.TH. An Ultra-Low-Voltage VCO-Based ΔΣ Modulator Using Self-compensated Current Reference for Variation Tolerance. Circuits Syst Signal Process 40, 1089–1110 (2021). https://doi.org/10.1007/s00034-020-01523-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01523-6

Keywords

Navigation