Skip to main content
Log in

A Low-Noise Area-Efficient Current Feedback Instrumentation Amplifier

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The low-power current feedback instrumentation amplifier (CFIA) circuits using local feedback configuration are reported in the literature for biomedical applications. However, they have limitations such as low gain, higher area, and higher noise due to the need for higher source degeneration resistors (in tens to hundreds of kΩ), and higher minimum achievable bandwidth (in tens of kHz). In this paper, a low-power, low-noise CFIA using closed-loop configuration is proposed to overcome these limitations. It uses a folded cascode operational transconductance amplifier with a lower value of source degeneration resistor (in the order of few kΩ) in the input stage to reduce the noise without compromising the loop gain. As the bandwidth of the proposed CFIA is defined as unity-gain bandwidth of the CFIA’s loop gain, it can be reduced below 10 kHz without increasing area. The proposed CFIA is designed and implemented in a 0.35 µm CMOS process for a current of 9.6 µA with a supply voltage of 3 V, and its performance is evaluated through simulation. It has a gain of 34 dB, total input-referred noise of 3 µVrms, and a noise efficiency factor of 3.81. It achieves a bandwidth of 8.8 kHz using a load capacitor which is more than four times smaller than that of local CFIA. It provides an input signal swing of 16 mVpp at THD of 1% and the CMRR of 118 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.M. Carrillo, M.A. Domínguez, R. Pérez-Aloe, J.F. Duque-Carrillo, C.A. de la Cruz, CMOS low-voltage indirect current feedback instrumentation amplifiers with improved performance, in IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2019), pp. 262–265

  2. T.C. Carusone, D.A. Johns, K.W. Martin, Analog Integrated Circuit Design, 2nd edn. (Wiley, New York, 2011)

    Google Scholar 

  3. C.-H. Chang, L. Xu, M. Onabajo, Instrumentation amplifier and current injection circuit design for input impedance boosting in biopotential and bioimpedance measurements. Analog Integr. Circuits Signal Process. 88(2), 289–302 (2016)

    Article  Google Scholar 

  4. P.A. dal Fabbro, C.A. dos reis Filho, An integrated CMOS instrumentation amplifier with improved CMRR, in Proceedings of IEEE 15th Symposium on Integrated Circuits and Systems Design (2002), pp. 57–61

  5. D.M. Das, A. Srivastava, J. Ananthapadmanabhan, M. Ahmad, M.S. Baghini, A novel low-noise fully differential CMOS instrumentation amplifier with 1.88 noise efficiency factor for biomedical and sensor applications. Microelectron. J. 53, 35–44 (2016)

    Article  Google Scholar 

  6. J. Guo, J. Yuan, J. Huang, J.K.Y. Law, C.K. Yeung, M. Chan, 32.9 nV/rt Hz–60.6 dB THD dual-band micro-electrode array signal acquisition IC. IEEE J. Solid-State Circuits 47(5), 1209–1220 (2012)

    Article  Google Scholar 

  7. S. Ha, C. Kim, Y.M. Chi, A. Akinin, C. Maier, A. Ueno, G. Cauwenberghs, Integrated circuits and electrode interfaces for noninvasive physiological monitoring. IEEE Trans. Biomed. Eng. 61(5), 1522–1537 (2014)

    Article  Google Scholar 

  8. https://archive.physionet.org/cgi-bin/atm/ATM

  9. A. Joshi, H. Shrimali, S.K. Sharma, The capacitively coupled chopper stabilized amplifier with a DTPA based demodulator, in IEEE ISCAS (2018), pp. 1–5

  10. H. Kim, S. Kim, N.V. Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C.V. Hoof, R.F. Yazicioglu, A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Trans. Biomed. Circuits Syst. 8(2), 257–267 (2014)

    Article  Google Scholar 

  11. R. Martins, S. Selberherr, F.A. Vaz, A CMOS IC for portable EEG acquisition systems. IEEE Trans. Instrum. Meas. 47(5), 1191–1196 (1998)

    Article  Google Scholar 

  12. B. Razavi, Design of Analog CMOS Integrated Circuits, 1st edn. (McGraw-Hill, New York, 2001)

    Google Scholar 

  13. H. Rezaee-Dehsorkh, N. Ravanshad, R. Lotfi, K. Mafinezhad, A.M. Sodagar, Analysis and design of tunable amplifiers for implantable neural recording applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 1(4), 546–556 (2011)

    Article  Google Scholar 

  14. R. Sanjay, V.S. Rajan, B. Venkataramani, A low-power low-noise and high swing biopotential amplifier in 0.18 µm CMOS. Analog Integr. Circuits Signal Process. 96(3), 565–576 (2018)

    Article  Google Scholar 

  15. W.M.C. Sansen, Analog Design Essentials (Springer, Berlin, 2006)

    Google Scholar 

  16. A.S. Sedra, K.C. Smith, Microelectronic Circuits, 5th edn. (Oxford University Press, New York, 2004)

    Google Scholar 

  17. M.S.J. Steyaert, W.M.C. Sansen, C. Zhongyuan, A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J. Solid-State Circuits SC-22(6), 1163–1168 (1987)

    Article  Google Scholar 

  18. W. Wattanapanitch, M. Fee, R. Sarpeshkar, An energy-efficient micropower neural recording amplifier. IEEE Trans. Biomed. Circuits Syst. 1(2), 136–147 (2007)

    Article  Google Scholar 

  19. A. Worapishet, A. Demosthenous, X. Liu, A CMOS instrumentation amplifier with 90-dB CMRR at 2-MHz using capacitive neutralization: analysis, design considerations and implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 58(4), 699–710 (2011)

    Article  MathSciNet  Google Scholar 

  20. H. Wu, Y.-P. Xu, A low-voltage low-noise CMOS instrumentation amplifier for portable medical monitoring systems, in IEEE NEWCAS (2005), pp. 295–298

  21. J. Xu, S. Mitra, A. Matsumoto, S. Patki, C.V. Hoof, K. Makinwa, R.F. Yazicioglu, A wearable 8-channel active-electrode EEG/ETI acquisition system for body area networks. IEEE J. Solid-State Circuits 49(9), 2005–2016 (2014)

    Article  Google Scholar 

  22. J. Xu, P. Harpe, C.V. Hoof, An energy-efficient and reconfigurable sensor IC for bio-impedance spectroscopy and ECG recording. IEEE J. Emerg. Sel. Top. Circuits Syst. 8(3), 616–626 (2018)

    Article  Google Scholar 

  23. L. Yan, P. Harpe, V. Pamula, M. Osawa, Y. Harada, K. Tamiya, C.V. Hoof, R.F. Yazicioglu, A 680 nA ECG acquisition IC for leadless pacemaker applications. IEEE Trans. Biomed. Circuits Syst. 8(6), 779–786 (2014)

    Article  Google Scholar 

  24. R.F. Yazicioglu, P. Merken, R. Puers, C.V. Hoof, A 60 µW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J. Solid-State Circuits 42(5), 1100–1110 (2007)

    Article  Google Scholar 

  25. R.F. Yazicioglu, S. Kim, T. Torfs, H. Kim, C.V. Hoof, A 30 µW analog signal processor ASIC for portable biopotential signal monitoring. IEEE J. Solid-State Circuits 46(1), 209–223 (2011)

    Article  Google Scholar 

  26. X. Zou, X. Xu, L. Yao, Y. Lian, A 1-V 450-nW fully integrated programmable biomedical sensor interface chip. IEEE J. Solid-State Circuits 44(4), 1067–1077 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ministry of Electronics and Information technology, Government of India for the financial support provided through SMDP-C2SD Project No. 9(1) 2014-MDD for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sanjay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjay, R., Venkataramani, B., Kumaravel, S. et al. A Low-Noise Area-Efficient Current Feedback Instrumentation Amplifier. Circuits Syst Signal Process 40, 1496–1510 (2021). https://doi.org/10.1007/s00034-020-01527-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01527-2

Keywords

Navigation