Skip to main content
Log in

High-Performance Electronically Tunable Analog Filter Using a Single EX-CCCII

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, an electronically tunable mixed-mode analog filter is proposed, which employs only a single active element, namely Extra X Current Controlled Conveyor (EX-CCCII), two capacitors and a single resistor. The proposed circuit uses minimum components, so it is easy to integrate on chip. The circuit provides all four mode operations, namely current mode, voltage mode, transadmittance mode (TAM) and transimpedance mode without changing the circuit configuration. The circuit can provide all the five filter functions: low pass, high pass, band pass, band reject, and all pass by selecting appropriate input signals except the TAM. The parameters of the proposed circuit, i.e. angular frequency (ωo) and the quality factor (Q) are independent, while ωo is electronically tunable. The frequency range is 2.29 MHz to 22.9 MHz with a bias current variation from 1 to 100 µA. The effects of non-idealities and parasitics of the active element on the circuit performances are discussed. The results are verified through PSPICE simulation using a 0.18 µm CMOS technology with the supply voltages of ± 0.5 V. The power consumption is 13.5 µW at 1 µA, and 1.35 mW at 100 µA. The experimental setup further validates the theory and simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. M.T. Abuelma’atti, A novel mixed-mode current-controlled current-conveyor-based filter. Act. Passive Electron. Compon. 26(3), 185–191 (2003)

    Article  Google Scholar 

  2. M.T. Abuelma’atti, A. Bentrcia, A novel mixed-mode CCII-based filter. Act. Passive Electron. Compon. 27(4), 197–205 (2004)

    Article  Google Scholar 

  3. N. Afzal, D. Singh, Reconfigurable mixed mode universal filter. Act. Passive Electron. Compon. 2014, 769198 (2014)

    Article  Google Scholar 

  4. D. Agrawal, S. Maheshwari, Current mode filters with reduced complexity using a single EX-CCCII. AEU Int. J. Electron. Commun. 80, 86–93 (2017)

    Article  Google Scholar 

  5. E. Altuntaş, A. Toker, Realization of voltage and current mode KHN biquads using CCCIIs. AEU Int. J. Electron. Commun. 56(1), 45–49 (2002)

    Article  Google Scholar 

  6. T.S. Arora, R.K. Sharma, An all-mode KHN equivalent biquad using third generation current conveyor and all grounded passive elements. Proc. Natl. Acad. Sci. India Sect. A 87(1), 97–108 (2017)

    Article  Google Scholar 

  7. D.R. Bhaskar, A. Raj, P. Kumar, Mixed-mode universal biquad filter using OTAs. J. Circ. Syst. Comput. 29(10), 2050162 (2019)

    Article  Google Scholar 

  8. C.M. Chang, C.N. Lee, C.L. Hou, J.W. Horng, C.K. Tu, High-order DDCC-based general mixed-mode universal filter. IEE Proc. Circ. Dev. Syst. 153(5), 511–516 (2006)

    Article  Google Scholar 

  9. B. Chaturvedi, J. Mohan, A. Kumar, A new versatile universal biquad configuration for emerging signal processing applications. J. Circ. Syst. Comput. 27(12), 1850196 (2018)

    Article  Google Scholar 

  10. H.P. Chen, Y.Z. Liao, W.T. Lee, Tunable mixed-mode OTA-C universal filter. Analog Integr. Circ. Signal Process. 58(2), 135–141 (2009)

    Article  Google Scholar 

  11. A.A. El-Adawy, A.M. Soliman, H.O. Elwan, A novel fully differential current conveyor and applications for analog VLSI. IEEE Trans. Circ. Syst. II Analog Digit. Signal Process. 47(4), 306–313 (2000)

    Article  Google Scholar 

  12. T. Ettaghzouti, N. Hassen, K. Besbes, SIMO type mixed mode biquadratic filter using second generation current conveyor circuits, in 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), Hammamet, Tunisia (2016). pp. 539–543

  13. M. Faseehuddin, J. Sampe, S. Shireen, S.H.M. Ali, A novel mix-mode universal filter employing a single active element and minimum number of passive components. Informacije MIDEM 47(4), 211–222 (2017)

    Google Scholar 

  14. F. Kaçar, A. Kuntman, H. Kuntman, Mixed-mode biquad filter employing single active element, in IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS), Cusco, Peru (2013). pp. 1–4

  15. M. Koksal, S.E. Oner, M. Sagbas, A new second-order multi-mode multi-function filter using a single CDBA, in 2009 European Conference on Circuit Theory and Design, Antalya, Turkey (2009). pp. 699–702

  16. M. Kumngern, F. Khateb, P. Phasukkit, S. Tungjitkusolmun, S. Junnapiya, ECCCII-based current-mode universal filter with orthogonal control of ωo and Q. Radioengineering 23(2), 687–696 (2014)

    Google Scholar 

  17. C.N. Lee, C.M. Chang, Single FDCCII-based mixed-mode biquad filter with eight outputs. AEU Int. J. Electron. Commun. 63(9), 736–742 (2009)

    Article  Google Scholar 

  18. C.N. Lee, Multiple-mode OTA-C universal biquad filters. Circ. Syst. Signal Process. 29(2), 263–274 (2010)

    Article  Google Scholar 

  19. C.N. Lee, Fully cascadable mixed-mode universal filter biquad using DDCCs and grounded passive components. J. Circ. Syst. Comput. 20(04), 607–620 (2011)

    Article  Google Scholar 

  20. C.N. Lee, Independently tunable mixed-mode universal biquad filter with versatile input/output functions. AEU Int. J. Electron. Commun. 70(8), 1006–1019 (2016)

    Article  Google Scholar 

  21. S. Maheshwari, I.A. Khan, High performance versatile translinear-C universal filter. J. Act. Passive Electron. Dev. 1, 41–51 (2005)

    Google Scholar 

  22. S. Maheshwari, S.V. Singh, D.S. Chauhan, Electronically tunable low-voltage mixed-mode universal biquad filter. IET Circ. Dev. Syst. 5(3), 149–158 (2011)

    Article  Google Scholar 

  23. S. Maheshwari, Tuning approach for first-order filters and new current-mode circuit example. IET Circ. Dev. Syst. 12(4), 478–485 (2018)

    Article  Google Scholar 

  24. S.A. Mahmoud, A.M. Soliman, A new CMOS programmable balanced output transconductor and application to a mixed mode universal filter suitable for VLSI. Analog Integr. Circ. Signal Process. 19(3), 241–254 (1999)

    Article  Google Scholar 

  25. S. Minaei, M.A. Ibrahim, A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading. Int. J. Circ. Theory Appl. 37(7), 793–810 (2009)

    Article  Google Scholar 

  26. N. Pandey, S.K. Paul, Mixed mode universal filter. J. Circ. Syst. Comput. 22(1), 1250064 (2013)

    Article  Google Scholar 

  27. M. Parvizi, A. Taghizadeh, H. Mahmoodian, Z.D. Kozehkanani, A low-power mixed-mode SIMO universal Gm–C filter. J. Circ. Syst. Comput. 26(10), 1750164 (2017)

    Article  Google Scholar 

  28. M. Parvizi, Design of a new low power MISO multi-mode universal biquad OTA-C filter. Int. J. Electron. 106(3), 440–454 (2019)

    Article  Google Scholar 

  29. P. Prommee, T. Pattanatadapong, Realization of tunable pole-Q current-mode OTA-C universal filter. Circ. Syst. Signal Process. 29(5), 913–924 (2010)

    Article  Google Scholar 

  30. P. Prommee, M. Somdunyakanok, CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter. AEU Int. J. Electron. Commun. 65(1), 1–8 (2011)

    Article  Google Scholar 

  31. P. Prommee, High-performance current-controlled CDCCC and its applications. Indian J. Pure Appl. Phys. (IJPAP) 52(10), 708–716 (2014)

    Google Scholar 

  32. R. Raut, M.N. Swamy, Modern Analog Filter Analysis and Design: A Practical Approach (Wiley, Hoboken, 2010)

    Book  Google Scholar 

  33. M. Sagbas, K. Fidanboylu, Electronically tunable current-mode second-order universal filter using minimum elements. Electron. Lett. 40(1), 2–4 (2004)

    Article  Google Scholar 

  34. D. Singh, N. Afzal, Fully digitally programmable generalized mixed mode universal filter configuration. Circ. Syst. Signal Process. 35(5), 1457–1480 (2016)

    Article  Google Scholar 

  35. S.V. Singh, S. Maheshwari, D.S. Chauhan, Novel electronically tunable mixed-mode biquad filter. In Electronics and Signal Processing, Lecture Notes in Electrical Engineering (LNEE), vol. 97, (Springer, Berlin/Heidelberg, Germany, 2011). pp. 735–742

  36. S.V. Singh, D.S. Chauhan, A new electronically tunable universal mixed-mode biquad filter. J. Eng. Res. 4(2), 44–64 (2016)

    Article  Google Scholar 

  37. V.K. Singh, A.K. Singh, D.R. Bhaskar, R. Senani, Novel mixed-mode universal biquad configuration. IEICE Electron. Express 2(22), 548–553 (2005)

    Article  Google Scholar 

  38. M. Siripruchyanun, W. Jaikla, Three-input single-output electronically controllable dual-mode universal biquad filter using DO-CCCIIs. Act. Passive Electron. Compon. 2007, 36849 (2007)

    Article  Google Scholar 

  39. T. Tsukutani, N. Yabuki, A DVCC-based mixed-mode biquadratic circuit. J. Electr. Eng. 6, 52–56 (2018)

    Google Scholar 

  40. T. Tsukutani, Y. Kinugasa, N. Yabuki, A mixed-mode biquad employing OTAs and grounded capacitors. J. Electr. Eng. 6, 151–155 (2018)

    Google Scholar 

  41. L. Zhijun, Mixed-mode universal filter using MCCCII. AEU Int. J. Electron. Commun. 63(12), 1072–1075 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Electronics & Information Technology (MeitY) Government of India under the “Visvesvaraya Ph.D. scheme” with Awardee number “VISPHD-MEITY-877”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Agrawal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For VM operation, the in-depth analysis of Eq. (3) of the proposed circuit is considered. In this case, all input currents are removed.

$$ I_{X1} = \frac{{V_{\text{OUT}} - V_{{{\text{IN}}3}} }}{{R_{X1} }} $$
(25)

Applying the KCL at X2 terminal, we get the expression as shown below

$$ V_{\text{OUT}} - V_{{{\text{IN}}3}} = \left( {V' - V_{{{\text{IN}}2}} } \right)sC_{2} R_{X1} $$
(26)

Therefore,

$$ V' = - \left( {\frac{{V_{\text{OUT}} - V_{{{\text{IN}}3}} }}{{sC_{2} R_{X1} }}} \right) + V_{{{\text{IN}}2}} $$
(27)
$$ I_{X2} = \frac{{V_{\text{OUT}} - V'}}{{R_{X2} }} $$
(28)

Using Eqs. (2728), the expression becomes:

$$ I_{X2} = \frac{1}{{R_{X2} }}\left( {V_{\text{OUT}} + \frac{{V_{\text{OUT}} - V_{{{\text{IN}}3}} }}{{sC_{2} R_{X1} }} - V_{{{\text{IN}}2}} } \right) $$
(29)

Applying the KCL at Y terminal, with the use of Eq. (29)

$$ \left( {V_{\text{OUT}} + \frac{{V_{\text{OUT}} - V_{{{\text{IN}}3}} }}{{sC_{2} R_{X1} }} - V_{{{\text{IN}}2}} } \right) = \left( {V_{{{\text{IN}}1}} - V_{\text{OUT}} } \right)sC_{1} R_{X2} $$
(30)
$$ \left( {V_{\text{OUT}} + \frac{{V_{\text{OUT}} }}{{sC_{2} R_{X1} }} + V_{\text{OUT}} sC_{1} R_{X2} } \right) = V_{{{\text{IN}}1}} sC_{1} R_{X2} + \frac{{V_{{{\text{IN}}3}} }}{{sC_{2} R_{X1} }} + V_{{{\text{IN}}2}} $$
(31)
$$ V_{\text{OUT}} = \frac{{s^{2} C_{1} C_{2} R_{X1} R_{X2} V_{{{\text{IN}}1}} + sC_{2} R_{X1} V_{{{\text{IN}}2}} + V_{{{\text{IN}}3}} }}{{C_{1} C_{2} R_{X1} R_{X2} + sC_{2} R_{X1} + 1}} $$
(32)

For CM operation, the in-depth analysis of Eq. (4) of the proposed circuit is considered. In this case, all input voltages are connected to ground.

$$ I_{X1} = \frac{{V_{\text{OUT}} }}{{R_{X1} }} $$
(33)
$$ I_{X2} = \frac{{V_{\text{OUT}} - V'}}{{R_{X2} }} $$
(34)

Applying the KCL at X2 terminal

$$ I_{{{\text{IN}}2}} = \frac{{V_{\text{OUT}} }}{{R_{X1} }} + V'sC_{2} $$
(35)
$$ V' = \frac{{I_{{{\text{IN}}2}} R_{X1} - V_{\text{OUT}} }}{{sC_{2} R_{X1} }} $$
(36)

Applying the KCL at Y terminal

$$ I_{{{\text{IN}}1}} = \frac{{V_{\text{OUT}} - V'}}{{R_{X2} }} + V_{\text{OUT}} sC_{1} $$
(37)
$$ I_{{{\text{IN}}1}} = \frac{{V_{\text{OUT}} }}{{R_{X2} }} + V_{\text{OUT}} sC_{1} - \left( {\frac{{I_{{{\text{IN}}2}} R_{X1} - V_{\text{OUT}} }}{{sC_{2} R_{X1} R_{X2} }}} \right) $$
(38)
$$ V_{\text{OUT}} = \frac{{I_{{{\text{IN}}1}} \left( {sC_{2} R_{X1} R_{X2} } \right) + R_{X1} I_{{{\text{IN}}2}} }}{{s^{2} C_{1} C_{2} R_{X1} R_{X2} + sC_{2} R_{X1} + 1}} $$
(39)
$$ I_{\text{OUT}} = I_{{{\text{IN}}3}} + I_{X1} $$
(40)

Thus,

$$ I_{\text{OUT}} = I_{{{\text{IN}}3}} + \frac{{I_{{{\text{IN}}1}} \left( {sC_{2} R_{X2} } \right) + I_{{{\text{IN}}2}} }}{{s^{2} C_{1} C_{2} R_{X1} R_{X2} + sC_{2} R_{X1} + 1}} $$
(41)
$$ I_{\text{OUT}} = \frac{{\left( {s^{2} C_{1} C_{2} R_{X1} R_{X2} + sC_{2} R_{X1} + 1} \right)I_{{{\text{IN}}3}} + sC_{2} R_{X2} I_{{{\text{IN}}1}} + I_{{{\text{IN}}2}} }}{{s^{2} C_{1} C_{2} R_{X1} R_{X2} + sC_{2} R_{X1} + 1}} $$
(42)

Now, the simulation results of proposed circuit for VM operation are compared with the theoretical results in Fig. 21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, D., Maheshwari, S. High-Performance Electronically Tunable Analog Filter Using a Single EX-CCCII. Circuits Syst Signal Process 40, 1127–1151 (2021). https://doi.org/10.1007/s00034-020-01530-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01530-7

Keywords

Navigation