Skip to main content
Log in

On the Performance of Kalman Filter for Markov Jump Linear Systems with Mode Mismatch

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Markov jump linear system (MJLS) is a class of hybrid systems where the continuous states evolve linearly and the discrete state transitions are modeled via a Markov chain. It has been shown that the optimal estimator for MJLS is a mode-based Kalman filter when the discrete mode is given. However, in practical applications, there are situations where the mode information is inaccurate and mode mismatches result in a biased estimate from the mode-based Kalman filter. This paper, for the first time, studies the impact of time correlated mode mismatch errors on MJLS state estimation using a mode-based Kalman filter. Unlike prior efforts that (1) assume mode mismatches are independent and identically distributed and (2) are limited to bi-modal systems, this paper is built on a general MJLS setup with a Markovian model for mode mismatch errors. The main contribution of this work lies in deriving the statistics of the bias term from a mode-based Kalman filter estimation with the aforementioned system setup. The sufficient conditions based on the probabilities of mode mismatch errors for the bias to be statistically convergent are derived. Since time correlated mode mismatch errors can effectively capture communication link impairments in a cyber-physical system, this new fundamental result provides guidance on the design of estimation strategies for MJLS and sheds light on their resilience in the presence of mode mismatch errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.S. Adam Czornik, On the discrete time-varying jlqg problem. Int. J. Appl. Math. Comput. Sci. 12(2), 203–207 (2002)

    MathSciNet  MATH  Google Scholar 

  2. B.R. Barmish, C.V. Hollot, Counter-example to a recent result on the stability of interval matrices by s. bialas. Int. J. Control 39(5), 1103–1104 (1984). https://doi.org/10.1080/00207178408933235

    Article  MATH  Google Scholar 

  3. BiaŁass, A necessary and sufficient condition for the stability of interval matrices. Int. J. Control 37(4), 717–722 (1983). https://doi.org/10.1080/00207178308933004

  4. P. Bliman, A convex approach to robust stability for linear systems with uncertain scalar parameters. SIAM J. Control Optim. 42(6), 2016–2042 (2004). https://doi.org/10.1137/S0363012901398691

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Chesi, A. Garulli, A. Tesi, A. Vicino, Robust stability of polytopic systems via polynomially parameter-dependent lyapunov functions. In: 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), vol 5, pp. 4670–4675 (2003). https://doi.org/10.1109/CDC.2003.1272307

  6. H.J. Chizeck, Y. Ji, Optimal quadratic control of jump linear systems with Gaussian noise in discrete-time. In: Proceedings of the 27th IEEE Conference on Decision and Control, pp 1989–1993, vol. 3 (1988). https://doi.org/10.1109/CDC.1988.194681

  7. M. Coombes, C. Liu, W.H. Chen, Situation awareness for uav operating in terminal areas using bearing-only observations and circuit flight rules. In: 2016 American Control Conference (ACC), pp. 479–485 (2016). https://doi.org/10.1109/ACC.2016.7524960

  8. O.L.V. Costa, M.D. Fragoso, R.P. Marques, Discrete-Time Markov Jump Linear Systems (Springer, Berlin, 2006)

    MATH  Google Scholar 

  9. M. de Oliveira, J. Geromel, L. Hsu, Lmi characterization of structural and robust stability: the discrete-time case. Linear Algebra Appl. 296(1), 27–38 (1999). https://doi.org/10.1016/S0024-3795(99)00086-5

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Deshmukh, B. Natarajan, A. Pahwa, State estimation over a lossy network in spatially distributed cyber-physical systems. IEEE Trans. Signal Process. 62(15), 3911–3923 (2014). https://doi.org/10.1109/TSP.2014.2330810

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Elsner, T. Szulc, Convex combinations of matrices–nonsingularity and schur stability, in Numerical Analysis and Its Applications (Springer, Berlin, 1997), pp. 170–175

  12. L. Elsner, T. Szulc, Convex sets of schur stable and stable matrices. Linear Multilinear Algebra 48(1), 1–19 (2000). https://doi.org/10.1080/03081080008818656

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Fang, K.A. Loparo, Stochastic stability of jump linear systems. IEEE Trans. Autom. Control 47(7), 1204–1208 (2002)

    Article  MathSciNet  Google Scholar 

  14. W. Glover, J. Lygeros, A stochastic hybrid model for air traffic control simulation, in Hybrid Systems: Computation and Control, ed. by R. Alur, G.J. Pappas (Springer, Heidelberg, 2004), pp. 372–386

    Chapter  Google Scholar 

  15. L. Grman, D. RosinovA, V. Vesely, A.K. KovA, Robust stability conditions for polytopic systems. Int. J. Syst. Sci. 36(15), 961–973 (2005). https://doi.org/10.1080/00207720500389592

    Article  MathSciNet  MATH  Google Scholar 

  16. P.D. Hanlon, P.S. Maybeck, Characterization of kalman filter residuals in the presence of mismodeling. IEEE Trans. Aerosp. Electron. Syst. 36(1), 114–131 (2000). https://doi.org/10.1109/7.826316

    Article  Google Scholar 

  17. D. Henrion, D. Arzelier, D. Peaucelle, J. Lasserre, On parameter-dependent lyapunov functions for robust stability of linear systems. In: 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), vol. 1, pp. 887–892 (2004). https://doi.org/10.1109/CDC.2004.1428797

  18. J.P. Hespanha, Stochastic hybrid systems: application to communication networks, in Hybrid Systems: Computation and Control, ed. by R. Alur, G.J. Pappas (Springer, Heidelberg, 2004), pp. 387–401

    Chapter  Google Scholar 

  19. Y. Huang, M. Esmalifalak, Y. Cheng, H. Li, K.A. Campbell, Z. Han, Adaptive quickest estimation algorithm for smart grid network topology error. IEEE Syst. J. 8(2), 430–440 (2014). https://doi.org/10.1109/JSYST.2013.2260678

    Article  Google Scholar 

  20. I. Hwang, H. Balakrishnan, C. Tomlin, Performance analysis of hybrid estimation algorithms. In: 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), vol. 5, pp. 5353–5359 (2003). https://doi.org/10.1109/CDC.2003.1272488

  21. I. Hwang, C.E. Seah, S. Lee, A study on stability of the interacting multiple model algorithm. IEEE Trans. Autom. Control 62(2), 901–906 (2017). https://doi.org/10.1109/TAC.2016.2558156

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Lin, P.J. Antsaklis, Stability and persistent disturbance attenuation properties for a class of networked control systems: switched system approach. Int. J. Control 78(18), 1447–1458 (2005). https://doi.org/10.1080/00207170500329182

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Morozan, Optimal stationary control for dynamic systems with markov perturbations. Stoch. Anal. Appl. 1(3), 299–325 (1983). https://doi.org/10.1080/07362998308809016

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Nourian, A.S. Leong, S. Dey, D.E. Quevedo, An optimal transmission strategy for kalman filtering over packet dropping links with imperfect acknowledgements. IEEE Trans. Control Netw. Syst. 1(3), 259–271 (2014). https://doi.org/10.1109/TCNS.2014.2337975

    Article  MathSciNet  MATH  Google Scholar 

  25. R.C. Oliveira, P.L. Peres, Stability of polytopes of matrices via affine parameter-dependent lyapunov functions: asymptotically exact lmi conditions. Linear Algebra Appl. 405, 209–228 (2005). https://doi.org/10.1016/j.laa.2005.03.019

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Prandini, J. Hu, Application of reachability analysis for stochastic hybrid systems to aircraft conflict prediction. IEEE Trans. Autom. Control 54(4), 913–917 (2009). https://doi.org/10.1109/TAC.2008.2011011

    Article  MathSciNet  MATH  Google Scholar 

  27. D.C. Ramos, P.L. Peres, A less conservative lmi condition for the robust stability of discrete-time uncertain systems. Syst. Control Lett. 43(5), 371–378 (2001). https://doi.org/10.1016/S0167-6911(01)00120-7

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Rasheduzzaman, T. Paul, J.W. Kimball, Markov jump linear system analysis of microgrid stability. In: 2014 American Control Conference, pp. 5062–5066 (2014). https://doi.org/10.1109/ACC.2014.6859040

  29. L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, S.S. Sastry, Foundations of control and estimation over lossy networks. Proc. IEEE 95(1), 163–187 (2007). https://doi.org/10.1109/JPROC.2006.887306

    Article  Google Scholar 

  30. C.E. Seah, I. Hwang, State estimation for stochastic linear hybrid systems with continuous-state-dependent transitions: an imm approach. IEEE Trans. Aerosp. Electron. Syst. 45(1), 376–392 (2009). https://doi.org/10.1109/TAES.2009.4805286

    Article  Google Scholar 

  31. C.E. Seah, I. Hwang, Algorithm for performance analysis of the imm algorithm. IEEE Trans. Aerosp. Electron. Syst. 47(2), 1114–1124 (2011). https://doi.org/10.1109/TAES.2011.5751246

    Article  Google Scholar 

  32. M.E. Sezer, D.D. Siljak, On stability of interval matrices. IEEE Trans. Autom. Control 39(2), 368–371 (1994). https://doi.org/10.1109/9.272336

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Shorten, F. Wirth, O. Mason, K. Wulff, C. King, Stability criteria for switched and hybrid systems. SIAM Rev. 49(4), 545–592 (2007). https://doi.org/10.1137/05063516X

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Soh, Schur stability of convex combination of matrices. Linear Algebra Appl. 128, 159–168 (1990). https://doi.org/10.1016/0024-3795(90)90290-S

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Střelec, K. Macek, A. Abate, Modeling and simulation of a microgrid as a stochastic hybrid system. In: 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), pp. 1–9 (2012). https://doi.org/10.1109/ISGTEurope.2012.6465655

  36. J. Tugnait, Adaptive estimation and identification for discrete systems with markov jump parameters. IEEE Trans. Autom. Control 27(5), 1054–1065 (1982). https://doi.org/10.1109/TAC.1982.1103061

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Wang, A.N. Michel, D. Liu, Necessary and sufficient conditions for the hurwitz and schur stability of interval matrices. IEEE Trans. Autom. Control 39(6), 1251–1255 (1994). https://doi.org/10.1109/9.293189

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Welch, G. Bishop, An introduction to the Kalman filter. Tech. reports, Chapel Hill, NC, USA (1995)

  39. X.I.N. Lx, Necessary and sufficient conditions for stability of a class of interval matrices. Int. J. Control 45(1), 211–214 (1987). https://doi.org/10.1080/00207178708933721

    Article  MathSciNet  Google Scholar 

  40. W. Zhang, B. Natarajan, Impact of time correlated mode mismatch on markov jump linear system state estimation. IEEE Control Syst. Lett. 2(3), 489–494 (2018). https://doi.org/10.1109/LCSYS.2018.2841937

    Article  MathSciNet  Google Scholar 

  41. W. Zhang, B. Natarajan, Quantifying the bias dynamics in a mode-based Kalman filter for stochastic hybrid systems. In: 2018 Annual American Control Conference (ACC), pp. 5849–5856 (2018). https://doi.org/10.23919/ACC.2018.8431697

  42. W. Zhang, B. Natarajan, Bias analysis in Kalman filter with correlated mode mismatch errors. Signal Process. 154, 232–237 (2019). https://doi.org/10.1016/j.sigpro.2018.09.008

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenji Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Natarajan, B. On the Performance of Kalman Filter for Markov Jump Linear Systems with Mode Mismatch. Circuits Syst Signal Process 40, 1720–1742 (2021). https://doi.org/10.1007/s00034-020-01545-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01545-0

Keywords

Navigation