Skip to main content
Log in

A Statistical Approach of Analog Circuit Fault Detection Utilizing Kolmogorov–Smirnov Test Method

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This work presents a testing technique based on ‘Kolmogorov–Smirnov’ (K–S) test for detection of parametric faults in analog circuits. The proposed method is a time-domain signal processing technique that compares the statistical similarity in terms of ‘Empirical Cumulative Distribution Function’ (ECDF) of the outputs of the circuit when the input of the circuit is a random analog signal. ‘Multivariate Adaptive Regression Splines’ (MARS) technique is used to map the tolerances of functional metrics to the components of the circuit under test (CUT). Two benchmark circuits, i.e., second-order Sallen–Key band-pass filter and weakly nonlinear cascade amplifier are tested to validate the proposed fault detection technique. The proposed statistical approach with the use of random analog signal as input excitation results reduction of complexity for designing input test signal and increases fault coverage in the analog circuit testing. The proposed method is testified experimentally for Sallen–Key band-pass filter. The experimental results are in good agreement with the simulated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.J. Bain, M. Engelhardt, Introduction to Probability and Mathematical Statistics (Duxbury Press, Belmont, 1995)

    Google Scholar 

  2. A. Chatterjee, N. Nagi, Design for testability and built-in self-test of mixed-signal circuits: a tutorial. in 10th International Conference on VLSI Design (IEEE 1997), pp 388–392

  3. CRAN. URL https://cran.r-project.org

  4. Y. Cui, J. Shi, Z. Wang, Analog circuits fault diagnosis using multi-valued fisher’s fuzzy decision tree (mffdt). Int. J. Circuit Theory Appl. 44(1), 240–260 (2016)

    Article  Google Scholar 

  5. H. Dai, T.M. Souders, Time-domain testing strategies and fault diagnosis for analog systems. IEEE Trans. Instrum. Meas. 39(1), 157–162 (1990)

    Article  Google Scholar 

  6. H. Eissa, R.F. Salem, A. Arafa, S. Hany, A. El-Mously, M. Dessouky, D. Nairn, M. Anis, Parametric dfm solution for analog circuits: electrical-driven hotspot detection, analysis, and correction flow. IEEE Trans. Very Large Scale Integr. Syst. 21(5), 807–820 (2013)

    Article  Google Scholar 

  7. J.H. Friedman, Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)

    MathSciNet  MATH  Google Scholar 

  8. K. Ghosh, B. Ray, Design of a new high order ota-c filter structure and its specification based testing. in 18th International Symposium on VLSI Design and Test (IEEE 2014), pp 1–6

  9. K. Ghosh, A. Roy, S. Mondal, B. Ray, Parametric deviation based analog test and diagnosis system. J. Circuits Syst. Comput. 20(07), 1323–1340 (2011)

    Article  Google Scholar 

  10. T. Gonzales, S. Sahni, W. Franta, An effcient approximate algorithm for the kolmogorov-smirnov and lilliefors tests. J. Stat. Comput. Simul. 6(3–4), 257–263 (1978)

    Article  Google Scholar 

  11. Z. Guo, J. Savir, Coefficient-based test of parametric faults in analog circuits. IEEE Trans. Instrum. Meas. 55(1), 150–157 (2006)

    Article  Google Scholar 

  12. S.D. Huynh, S. Kim, M. Soma, J. Zhang, Automatic analog test signal generation using multifrequency analysis. IEEE Trans. Circuits Syst II Analog Digital Signal Process 46(5), 565–576 (1999)

    Article  Google Scholar 

  13. P. Kalpana, K. Gunavathi, Wavelet based fault detection in analog vlsi circuits using neural networks. Appl. Soft Comput. 8(4), 1592–1598 (2008)

    Article  Google Scholar 

  14. A. Kavithamani, V. Manikandan, N. Devarajan, Analog circuit fault detection using location of poles. J. Electron. Test. 27(5), 673 (2011)

    Article  Google Scholar 

  15. A. Kavithamani, V. Manikandan, N. Devarajan, Soft fault classification of analog circuits using network parameters and neural networks. J. Electron. Test. 29(2), 237–240 (2013)

    Article  Google Scholar 

  16. S. Krishnan, H.G. Kerkhoff, Exploiting multiple mahalanobis distance metrics to screen outliers from analog product manufacturing test responses. IEEE Des. Test 30(3), 18–24 (2013)

    Article  Google Scholar 

  17. X. Li, Y. Xie, Analog circuits fault detection using cross-entropy approach. J. Electron. Test. 29(1), 115–120 (2013)

    Article  Google Scholar 

  18. C.Y. Pan, K.T. Cheng, Pseudorandom testing for mixed-signal circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16(10), 1173–1185 (1997)

    Article  Google Scholar 

  19. M. J. Panik, Advanced Satistics from an Elementary Point of View (Academic Press, Cambridge, 2005)

    MATH  Google Scholar 

  20. J. Park, H. Shin, J.A. Abraham, Pseudorandom test of nonlinear analog and mixed-signal circuits based on a volterra series model. J. Electron. Test. 27(3), 321 (2011)

    Article  Google Scholar 

  21. H. Shin, G. S. Yu, J. A. Abraham, LFSR-based bist for analog circuits using slope detection. in 14th Great Lakes Symposium on VLSI (ACM 2004), pp 316–321

  22. S. Sindia, V. Singh, V. D. Agrawal, Polynomial coefficient based dc testing of non-linear analog circuits. in 19th Great Lakes Symposium on VLSI (ACM, 2009) pp 69–74

  23. S. Sindia, V. D. Agrawal, V. Singh, Test and diagnosis of analog circuits using moment generating functions. in Asian Test Symposium (IEEE 2011), pp 371–376

  24. S.J. Spinks, C.D. Chalk, I.M. Bell, M. Zwolinski, Generation and verification of tests for analog circuits subject to process parameter deviations. J. Electron. Test. 20(1), 11–23 (2004)

    Article  Google Scholar 

  25. S. Srimani, M.K. Parai, K. Ghosh, H. Rahaman, Parametric fault detection of analog circuits based on Bhattacharyya measure. Analog Integr. Circ. Sig. Process 93(3), 477–488 (2017)

    Article  Google Scholar 

  26. P.N. Variyam, S. Cherubal, A. Chatterjee, Prediction of analog performance parameters using fast transient testing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(3), 49–361 (2002)

    Article  Google Scholar 

  27. W. Zhang, A.T. Goh, Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geosci. Front. 7(1), 45–52 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Special Manpower Development Program for Chips to System Design (SMDP-C2SD) of Ministry of Electronics & Information Technology, Government of India. S. Srimani thankfully acknowledges Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technology, Government of India for his fellowship for pursuing Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasturi Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srimani, S., Parai, M., Ghosh, K. et al. A Statistical Approach of Analog Circuit Fault Detection Utilizing Kolmogorov–Smirnov Test Method. Circuits Syst Signal Process 40, 2091–2113 (2021). https://doi.org/10.1007/s00034-020-01572-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01572-x

Keywords

Navigation