Skip to main content
Log in

Stochastic Incremental Input-to-State Stability of Nonlinear Switched Systems with Brownian Motions

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, (reverse) mode-dependent average dwell time (MDADT) method combined with multiple incremental Lyapunov functions is utilized to investigate the stochastic incremental input-to-state stability (SIISS) of stochastic switched systems. The sufficient conditions in terms of the (reverse) MDADT scheme are extracted to ensure SIISS, while it is shown that the SIISS can still be achieved even if all subsystems are not stochastically incrementally input-to-state stable. In particular, an incremental supply rate is introduced to obtain sufficient conditions to ensure SIISS for stochastic feedback interconnected switched systems. Specifically, when the stochastic switched systems are composed of some SIISS and non-SIISS subsystems, the (reverse) MDADT method is employed to establish a relationship between these two kinds of subsystems to ensure SIISS for the stochastic switched systems. Two examples are presented to demonstrate the effectiveness of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Angeli, Further results on incremental input-to-state stability. IEEE Trans. Autom. Control 54(6), 1386–1391 (2009)

    MathSciNet  MATH  Google Scholar 

  2. C. Briat, Stability analysis and stabilization of stochastic linear impulsive switched and sampled-data systems under dwell-time constraints. Automatica 74, 279–287 (2016)

    MathSciNet  MATH  Google Scholar 

  3. W. Chen, W. Zheng, Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays. Automatica 45(6), 1481–1488 (2009)

    MathSciNet  MATH  Google Scholar 

  4. H. Chen, P. Shi, C. Lim, Stability analysis for neutral stochastic delay systems with Markovian switching. Syst. Control Lett. 110, 38–48 (2017)

    MathSciNet  MATH  Google Scholar 

  5. P. Cheng, S. He, J. Cheng, X. Luan, F. Liu, Asynchronous output feedback control for a class of conic-type nonlinear hidden Markov jump systems within a finite-time interval. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2980312

    Article  Google Scholar 

  6. S. Dashkovskiy, A. Mironchenko, Input-to-state stability of nonlinear impulsive systems. SIAM J. Control Optim. 51(3), 1962–1987 (2013)

    MathSciNet  MATH  Google Scholar 

  7. W. Feng, J. Tian, P. Zhao, Stability analysis of switched stochastic systems. Automatica 47(1), 148–157 (2011)

    MathSciNet  MATH  Google Scholar 

  8. A.S.R. Ferreira, M. Arcak, E.D. Sontag, Stability certification of large scale stochastic systems using dissipativity. Automatica 48(11), 2956–2964 (2012)

    MathSciNet  MATH  Google Scholar 

  9. W.H. Haddad, T. Rajpurohit, X. Jin, Energy-based feedback control for stochastic port-controlled Hamiltonian systems. Automatica 97, 134–142 (2018)

    MathSciNet  MATH  Google Scholar 

  10. P. Jagtap, M. Zamani, Backstepping design for incremental stability of stochastic Hamiltonian systems with jumps. IEEE Trans. Autom. Control 63(1), 255–261 (2018)

    MathSciNet  MATH  Google Scholar 

  11. M. Li, F. Deng, Moment exponential input-to-state stability of non-linear switched stochastic systems with Lévy noise. IET Control Theory Appl. 12(9), 1208–1215 (2018)

    MathSciNet  Google Scholar 

  12. X. Li, P. Li, Q. Wang, Input/output-to-state stability of impulsive switched systems. Syst. Control Lett. 116, 1–7 (2018)

    MathSciNet  MATH  Google Scholar 

  13. H. Liang, X. Guo, Y. Pan, T. Huang, Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2982618

    Article  Google Scholar 

  14. M.A. Müller, D. Liberzon, Input/output-to-state stability and state-norm estimators for switched nonlinear systems. Automatica 48, 2029–2039 (2012)

    MathSciNet  MATH  Google Scholar 

  15. C.D. Persis, R.D. Santis, A.S. Morse, Switched nonlinear systems with state-dependent dwell-time. Syst. Control Lett. 50(4), 291–302 (2003)

    MathSciNet  MATH  Google Scholar 

  16. A. Patel, B. Kosko, Stochastic resonance in continuous and spiking neuron models with levy noise. IEEE Trans. Neural. Netw. 19(12), 1993–2008 (2008)

    Google Scholar 

  17. Y. Pan, P. Du, H. Xue, H.K. Lam, Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2999746

    Article  Google Scholar 

  18. W. Ren, J. Xiong, Stability and stabilization of switched stochastic systems under asynchronous switching. Syst. Control Lett. 97, 184–192 (2016)

    MathSciNet  MATH  Google Scholar 

  19. W. Ren, J. Xiong, Stability analysis of impulsive stochastic nonlinear systems. IEEE Trans. Autom. Control 62(9), 4791–4797 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Y. Ren, W. Wang, Y. Wang, Incremental \(H_\infty \) control for switched nonlinear systems. Appl. Math. Comput. 331, 251–263 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Y. Ren, W. Wang, Y. Wang, M. Shen, Incremental \(H_{\infty }\) performance for a class of stochastic switched nonlinear systems. J. Frank. Inst. 355(15), 7134–7157 (2018)

    MathSciNet  MATH  Google Scholar 

  22. W. Ren, J. Xiong, Vector Lyapunov function based input-to-state stability of stochastic impulsive switched time-delay systems. IEEE Trans. Autom. Control 64(2), 654–669 (2019)

    MathSciNet  MATH  Google Scholar 

  23. C. Ren, S. He, Finite-time stabilization for positive Markovian jumping neural networks. Appl. Math. Comput. 365, 124631 (2020)

    MathSciNet  MATH  Google Scholar 

  24. E.D. Sontag, Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)

    MathSciNet  MATH  Google Scholar 

  25. E.D. Sontag, On the input-to-state stability property. Eur. J. Control 1(1), 24–36 (1995)

    MATH  Google Scholar 

  26. E.D. Sontag, On characterizations of the input-to-state stability property. Syst. Control Lett. 24(5), 351–359 (1995)

    MathSciNet  MATH  Google Scholar 

  27. M. Shen, C. Fei, W. Fei, X. Mao, Boundedness and stability of highly nonlinear hybrid neutral stochastic systems with multiple delays. Sci. China Inf. Sci. 62(10), 202205 (2019)

    MathSciNet  Google Scholar 

  28. J. Tsinias, Stochastic input-to-state stability and applications to global feedback stabilization. Int. J. Control 71(5), 907–930 (1998)

    MathSciNet  MATH  Google Scholar 

  29. A.R. Teel, J.P. Hespanha, A. Subbaraman, Equivalent characterizations of input-to-state stability for stochastic discrete-time systems. IEEE Trans. Autom. Control 59(2), 516–522 (2014)

    MathSciNet  MATH  Google Scholar 

  30. L. Vu, D. Chatterjee, D. Liberzon, Input-to-state stability of switched systems and switching adaptive control. Automatica 43, 639–646 (2007)

    MathSciNet  MATH  Google Scholar 

  31. X. Wu, Y. Tang, W. Zhang, Stability analysis of stochastic delayed systems with an application to multi-agent systems. IEEE Trans. Autom. Control 63(12), 4143–4149 (2016)

    Google Scholar 

  32. X. Wu, Y. Tang, W. Zhang, Input-to-state stability of impulsive stochastic delayed systems under linear assumptions. Automatica 66, 195–204 (2016)

    MathSciNet  MATH  Google Scholar 

  33. X. Wu, Y. Tang, J. Cao, Input-to-state stability of time-varying switched systems with time-delays. IEEE Trans. Autom. Control 64(6), 2537–2544 (2019)

    MathSciNet  MATH  Google Scholar 

  34. P. Wang, X. Wang, H. Su, Stability analysis for complex-valued stochastic delayed networks with Markovian switching and impulsive effects. Commun. Nonlinear Sci. Numer. Simul. 73, 35–51 (2019)

    MathSciNet  MATH  Google Scholar 

  35. W. Wang, H. Liang, Y. Pan, T. Li, Prescribed performance adaptive fuzzy containment control for nonlinear multiagent systems using disturbance observer. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2969499

    Article  Google Scholar 

  36. W. Xie, C. Wen, Z. Li, Input-to-state stabilization of switched nonlinear systems. IEEE Trans. Autom. Control 46(7), 1111–1116 (2001)

    MathSciNet  MATH  Google Scholar 

  37. G. Yang, D. Liberzon, Input-to-state stability for switched systems with unstable subsystems: a hybrid Lyapunov construction, in Proceedings of the 53rd IEEE Conference on Decision and Control. Los Angeles, California, USA, pp. 6240–6245 (2014)

  38. G. Yang, D. Liberzon, A Lyapunov-based small-gain theorem for interconnected switched systems. Syst. Control Lett. 78, 47–54 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Y. Yin, X. Zhao, X. Zheng, New stability and stabilization conditions of switched systems with mode-dependent average dwell time. Circuits Syst. Signal Process 36(1), 82–98 (2016)

    MathSciNet  MATH  Google Scholar 

  40. L. Zhang, P. Shi, Stability \(l_2\)-gain and asynchronous \(H_\infty \) control of discrete-time switched systems with average dwell time. IEEE Trans. Autom. Control 54(9), 2193–2200 (2009)

    MathSciNet  Google Scholar 

  41. L. Zhang, H. Gao, Asynchronously switched control of switched linear systems with average dwell time. Automatica 46(5), 953–958 (2010)

    MathSciNet  MATH  Google Scholar 

  42. X. Zhao, L. Zhang, P. Shi, M. Liu, Stability and stabilization of switched linear systems with mode-dependent average dwell time. IEEE Trans. Autom. Control 57(7), 1809–1815 (2012)

    MathSciNet  MATH  Google Scholar 

  43. P. Zhao, W. Feng, Y. Kang, Stochastic input-to-state stability of switched stochastic nonlinear systems. Automatica 48(10), 2569–2576 (2012)

    MathSciNet  MATH  Google Scholar 

  44. X. Zhao, Y. Yin, B. Niu, X. Zheng, Stabilization for a class of switched nonlinear systems with novel average dwell time switching by T–S fuzzy modeling. IEEE Trans. Cybern. 46(8), 1952–1957 (2016)

    Google Scholar 

  45. X. Zhao, P. Shi, Y. Yin, S.K. Nguang, New results on stability of slowly switched systems: a multiple discontinuous Lyapunov function approach. IEEE Trans. Autom. Control 62(7), 3502–3509 (2017)

    MathSciNet  MATH  Google Scholar 

  46. T. Zhang, J. Li, W. Xu, X. Li, Stability and \(L_2\)-gain analysis for impulsive switched systems. Commun. Nonlinear Sci. Numer. Simul. 78, 1048–1054 (2019)

    Google Scholar 

  47. Z. Zhu, Y. Pan, Q. Zhou, C. Lu, Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2973950

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by National Natural Science Foundation of China (Grant No. 61603188), Talents Introduction Project of Hebei Agricultural University (Grant No. YJ2020036) and Fundamental and Frontier Research Project of Chongqing (Grant No. cstc2018jcyjAX0144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability

The authors declare that the manuscript has no associated data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Wang, W., Zhou, W. et al. Stochastic Incremental Input-to-State Stability of Nonlinear Switched Systems with Brownian Motions. Circuits Syst Signal Process 40, 2242–2266 (2021). https://doi.org/10.1007/s00034-020-01574-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01574-9

Keywords

Navigation