Skip to main content
Log in

Concurrent Tri-band CMOS Power Amplifier Linearized by 3D Improved Memory Polynomial Digital Predistorter

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents the design and post-layout results of a 5G power amplifier (PA) in 130 nm CMOS technology. The circuit incorporates a pre-amplification stage that uses a current reuse technique followed by a power stage. The PA operates in the 2–5 GHz range, with a power gain of 16–20.9 dB, output saturation power of 19.1–21.7 dBm, an output compression point of 15.8–20.4 dBm and maximum power-added efficiency of 9.28–22.4%. A three-dimensional improved memory polynomial (3DIMP) and a three-dimensional harmonic improved memory polynomial (3DHIMP) are introduced to the behavioral modeling and digital baseband predistortion of the designed PA for the cases without and with multiplicity among carriers, respectively. Moreover, an ascendant factor algorithm is presented for selecting the truncation factors. Simulation results adopting IEEE 802.11n at channel 1, LTE at channel 2 and IEEE 802.11ac at channel 3 show that the proposed 3DIMP and 3DHIMP, in comparison with previous three-dimensional multi-band (3DMB) and three-dimensional harmonic memory polynomial (3DHMP) having the same amount of parameters, can improve the normalized mean square error by up to 8.3 dB and 16.6 dB, respectively, when applied to the PA inverse behavioral modeling. Additional reductions in error vector magnitude up to 0.39 p.p. and 1.23 p.p. are also achieved when the 3DIMP and 3DHIMP are responsible for the PA linearization instead of previous 3DMB and 3DHMP, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Abdelhafiz, A. Kwan, O. Hammi, F.M. Ghannouchi, Digital predistortion of LTE-A power amplifiers using compressed-sampling-based unstructured pruning of Volterra series. IEEE Trans. Microw. Theory Tech. 62, 2583–2593 (2014). https://doi.org/10.1109/TMTT.2014.2360845

    Article  Google Scholar 

  2. A.R. Belabad, S.A. Motamedi, S. Sharifian, A novel generalized parallel two-box structure for behavior modeling and digital predistortion of RF power amplifiers at LTE applications. Circuits Syst. Signal Process. 37, 2714–2735 (2018). https://doi.org/10.1007/s00034-017-0700-9

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, R.T. Sukhavasi, C. Patel, S. Geirhofer, Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun. Mag. 52, 82–89 (2014). https://doi.org/10.1109/MCOM.2014.6736747

    Article  Google Scholar 

  4. T.C. Carusone, D.A. Johns, K.W. Martin, Analog Integrated Circuits Design (Wiley, Danvers, 2007)

    Google Scholar 

  5. J. Chen, S.R. Helmi, R. Azadegan, F. Aryanfar, S. Mohammadi, A broadband stacked power amplifier in 45-nm CMOS SOI technology. IEEE J. Solid State Circuits 48, 2775–2784 (2013). https://doi.org/10.1109/JSSC.2013.2276135

    Article  Google Scholar 

  6. C.S. Cripps, RF Power Amplifiers for Wireless Communications (Artech House, Norwood, 2006)

    Google Scholar 

  7. C. Eun, E.J. Powers, A new Volterra predistorter based on the indirect learning architecture. IEEE Trans. Signal Process. 45, 223–227 (1997). https://doi.org/10.1109/78.552219

    Article  Google Scholar 

  8. E. Harir, E. Socher, 0.5W X-band SiGe PA with integrated double-tuned transformers, in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) (2013), p 1–3. https://doi.org/10.1109/MWSYM.2013.6697396

  9. M.T. Hsu, K.L. Wu, W.C. Chiu, Systematic approaches of UWB low-power CMOS LNA with body biased technique. Wirel. Eng. Technol. (2015). https://doi.org/10.4236/wet.2015.63007

    Article  Google Scholar 

  10. IEEE Std 802.11n-2009, Standard for Information Technology: Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput

  11. P. Jaraut, M. Rawat, F.M. Ghannouchi, Harmonically related concurrent tri-band behavioral modeling and digital predistortion. IEEE Trans. Circuits Syst. II Express Br. 66, 1073–1077 (2019). https://doi.org/10.1109/TCSII.2018.2873251

    Article  Google Scholar 

  12. I. Ju, J.D. Cressler, A highly efficient X-band inverse class-F SiGe HBT cascode power amplifier with harmonic-tuned wilkinson power combiner. IEEE Trans. Circuits Syst. II Express Br. 65, 1609–1613 (2018). https://doi.org/10.1109/TCSII.2017.27590275

    Article  Google Scholar 

  13. P.B. Kenington, High Linearity RF Amplifier Design (Artech House, Norwood, 2000)

    Google Scholar 

  14. A.K. Kwan, M.F. Younes, O. Hammi, M. Helaoui, N. Boulejfen, F.M. Ghannouchi, Selective intermodulation compensation in a multi-stage digital predistorter for nonlinear multi-band power amplifiers. IEEE J. Emerg. Select. Top. Circuits Syst. (2017). https://doi.org/10.1109/JETCAS.2017.2777409

    Article  Google Scholar 

  15. B.M. Lee, R.J.P. Figueiredo, Adaptive predistorters for linearization of high-power amplifiers in OFDM wireless communications. Circuits Syst. Signal Process. 25, 59–80 (2006). https://doi.org/10.1007/s00034-004-0901-x

    Article  MATH  Google Scholar 

  16. J. Lindstrand, M. Törmänen, H. Sjöland, A decade frequency range CMOS power amplifier for sub-6-GHz cellular terminals. IEEE Microw. Wirel. Compon. Lett. (2020). https://doi.org/10.1109/LMWC.2019.2955602

    Article  Google Scholar 

  17. A. Maeder, A. Ali, A. Bedekar, A.F. Cattoni, D. Chandramouli, S. Chandrashekar, L. Du, M. Hesse, C. Sartori, S. Turtinen, A scalable and flexible radio access network architecture for fifth generation mobile networks. IEEE Commun. Mag. 54, 16–23 (2016). https://doi.org/10.1109/MCOM.2016.1600140CM

    Article  Google Scholar 

  18. V. Mathews, G. Sicuranza, Polynomial Signal Processing (Wiley, New York, 2000)

    Google Scholar 

  19. M.S. Muha, C.J. Clark, A.A. Moulthrop, C.P. Silva, Validation of power amplifier nonlinear block models, in 1999 IEEE MTT-S International Microwave Symposium Digest, Vol. 2 (1999), p 759–762. https://doi.org/10.1109/MWSYM.1999.779870

  20. S.A.Z. Murad, R.K. Pokharel, R. Sapawi, H. Kanaya, K. Yoshida, High efficiency, good linearity, and excellent phase linearity of 3.1–4.8 GHz CMOS UWB PA with a current-reused technique. IEEE Trans. Consum. Electron. 56, 1241–1246 (2010). https://doi.org/10.1109/TCE.2010.5606253

    Article  Google Scholar 

  21. H. Rashtian, S. Mirabbasi, T. Taris, Y. Deval, J.B. Begueret, A 4-stage 60-GHz low-noise amplifier in 65-nm CMOS with body biasing to control gain, linearity, and input matching. Analog Integr. Circuits Signal Process. (2012). https://doi.org/10.1007/s10470-012-9889-5

    Article  Google Scholar 

  22. D. Raychaudhuri, N.B. Mandayam, Frontiers of wireless and mobile communications. Proc. IEEE 100, 824–840 (2012). https://doi.org/10.1109/JPROC.2011.2182095

    Article  Google Scholar 

  23. J.W.M. Rogers, C. Plett, Radio Frequency Integrated Circuit Design (Artech House, Norwood, 2010)

    Google Scholar 

  24. L. Schuartz, E.L. Santos, B. Leite, A.A. Mariano, E.G. Lima, Reduced-complexity polynomials with memory applied to the linearization of power amplifiers with real-time discrete gain control. Circuits Syst. Signal Process. (2019). https://doi.org/10.1007/s00034-019-01049-6

    Article  Google Scholar 

  25. A. Shokair, A. Beydoun, D.G. Pham, C. Jabbour, P. Desgreys, Wide band digital predistortion using iterative feedback decomposition. Analog Integr. Circuits Signal Process. (2019). https://doi.org/10.1007/s10470-018-1347-6

    Article  Google Scholar 

  26. G. Su, L. Sun, J. Wen, H. Wang, Z. Yu, N. Zhang, An estimable stability method applied to power amplifier design, in 2011 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS) (2011). https://doi.org/10.1109/EDAPS.2011.6213733

  27. A.S. Tehrani, H. Cao, S. Afsardoost, T. Eriksson, M. Isaksson, C. Fager, A comparative analysis of the complexity/accuracy trade off in power amplifier behavioral models. IEEE Trans. Microw. Theory Technol. (2010). https://doi.org/10.1109/TMTT.2010.2047920

    Article  Google Scholar 

  28. The Institute of Electrical and Electronics Engineers (IEEE), IEEE 5G and Beyond Technology Roadmap White Paper. https://5g.ieee.org/images/files/pdf/ieee-5g-roadmap-white-paper.pdf (2017). Accessed 2019

  29. X. Wu, L. Jin, J. Zhu, X. Cai, 2D piecewise digital predistortion for dual-band power amplifiers based on self-organizing map. Circuits Syst. Signal Process. (2019). https://doi.org/10.1007/s00034-019-01298-5

    Article  Google Scholar 

  30. M. Younes, A. Kwan, M. Rawat, F.M. Ghannouchi, Three-Dimensional digital predistorter for concurrent tri-band power amplifier linearization, in IEEE MTT-S International Microwave Symposium Digest (MTT) (2013). https://doi.org/10.1109/MWSYM.2013.6697635

  31. X. Yu, H. Jiang, Digital predistortion using adaptive basis functions. IEEE Trans. Circuits Syst. I Regul. Pap. 60, 3317–3327 (2013). https://doi.org/10.1109/TCSI.2013.2265958

    Article  Google Scholar 

  32. C. Yu, Q. Lu, H. Yin, J. Cai, J. Chen, X. Zhu, W. Hong, Linear-decomposition digital predistortion of power amplifiers for 5g ultrabroadband applications. IEEE Trans. Microw. Theory Technol. (2020). https://doi.org/10.1109/TMTT.2020.2975637

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and by National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Schuartz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuartz, L., Silva, R.G., Hara, A.T. et al. Concurrent Tri-band CMOS Power Amplifier Linearized by 3D Improved Memory Polynomial Digital Predistorter. Circuits Syst Signal Process 40, 2176–2208 (2021). https://doi.org/10.1007/s00034-020-01581-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01581-w

Keywords

Navigation