Skip to main content
Log in

Relaxed Stabilization Conditions for Interconnected Nonlinear Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper deals with the conservatism reduction of stability and stabilization conditions for nonlinear continuous-time interconnected systems. Based on Takagi–Sugeno modeling, the interconnected system is described by a convex combination of interconnected linear systems. Line integral fuzzy Lyapunov functions are considered to develop stability and stabilizability criteria for the considered class of interconnected nonlinear systems. All analysis and design conditions are formulated in LMI terms. The effect of the coupling due to interconnection terms is also investigated and taken into account to obtain less conservative conditions. Examples are given to illustrate the merit of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data generated during the current study are available from the corresponding author on reasonable request.

References

  1. L. Bakule, Decentralized control: an overview. Ann. Rev. Control 32, 87–98 (2008)

    Article  Google Scholar 

  2. A. Benzaouia, L. El Younsi, A. El Hajjaji, Stabilization of interconnected TS fuzzy systems using LMIs. IEEE Conference on Fuzzy Systems, pp. 1154–1158 (2016)

  3. A. Benzaouia, L. El Younsi, A. El Hajjaji, Stability and stabilization analysis for T–S interconnected fuzzy systems using LMIs. Circuits, Systems, and Signal Processing, pp. 1–22 (2019)

  4. W. Chang, W.J. Wang, Fuzzy control synthesis for large-scale systems with weighted interconnections. IET Control Theory Appl. 7(9), 1206–1218 (2013)

    Article  MathSciNet  Google Scholar 

  5. W. Chang, W.J. Wang, \( H_ {\infty } \) fuzzy control synthesis for a Large-Scale system with a reduced number of LMIs. IEEE Trans. Fuzzy Syst. 23(4), 1197–1210 (2014)

    Article  Google Scholar 

  6. F. Delmotte, T.M. Guerra, M. Ksantini, Continuous Takagi–Sugeno’s models: reduction of the number of LMI conditions in various fuzzy control design technics. IEEE Trans. Fuzzy Syst. 15(3), 426–438 (2007)

    Article  Google Scholar 

  7. A. El Hajjaji, L. El Younsi, A. Benzaouia, Stability analysis for Takagi–Sugeno interconnected fuzzy systems using LMIs. 5th IEEE International Conference on Systems and Control (ICSC), pp. 423–426 (2016)

  8. G. Guo, Y. Wang, D. Hill, Nonlinear decentralized control of large scale power systems. Automatica 36, 1275–1289 (2000)

    Article  MathSciNet  Google Scholar 

  9. F.H. Hsiao, C.W. Chen, Y.W. Liang, S.D. Xu, W.L. Chiang, TS fuzzy controllers for nonlinear interconnected systems with multiple time delays. IEEE Trans. Circuits Syst. I 52(9), 1883–1893 (2005)

    Article  Google Scholar 

  10. M. Jamshidi, Large-Scale System: Modeling and Control (Elsevier, New York, 1983)

    MATH  Google Scholar 

  11. H.J. Kim, J.B. Park, Y.H. Joo, Decentralized \(H_{\infty }\) fuzzy filter for nonlinear large-scale sampled-data systems with uncertain interconnections. Fuzzy Sets Syst. 344(1), 145–162 (2018)

    Article  MathSciNet  Google Scholar 

  12. H.J. Kim, J.B. Park, Y. Joo, Decentralized \(H_{\infty }\) sampled-data fuzzy filter for nonlinear interconnected oscillating systems with uncertain interconnections. IEEE Trans. Fuzzy Syst 28, 487–498 (2019)

    Article  Google Scholar 

  13. G.B. Koo, J.B. Park, Y.H. Joo, Decentralized fuzzy observer-based output-feedback control for nonlinear large-scale systems: an LMI approach. IEEE Trans. Fuzzy Syst. 22(2), 406–419 (2014)

    Article  Google Scholar 

  14. G. Koo, J.B. Park, Y.H. Joo, Decentralised sampled-data control for large-scale systems with nonlinear interconnections. Int. J. Control 89(10), 1951–1961 (2016)

    Article  MathSciNet  Google Scholar 

  15. W.W. Lin, W.J. Wang, S.H. Yang, A novel stabilization criterion for large-scale T–S fuzzy systems. IEEE Trans. Syst. Man Cybern. B Cybern. 37(4), 1074–1079 (2007)

    Article  Google Scholar 

  16. L.A. Mozelli, R.M. Palhares, G.S.C. Avellar, A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems. Inf. Sci. 179, 1149–1162 (2009)

    Article  MathSciNet  Google Scholar 

  17. I.R. Petersen, A stabilization algorithm for a class of uncertain linear systems. Syst. Control Lett. 8, 351–357 (1987)

    Article  MathSciNet  Google Scholar 

  18. B.J. Rhee, S. Won, A new fuzzy Lyapunov function approach for a Takagi–Sugeno fuzzy control system design. Fuzzy Set. Syst. 157(9), 1211–1228 (2006)

    Article  MathSciNet  Google Scholar 

  19. S.S. Stanković, D.D. Šiljak, Robust stabilization of nonlinear interconnected systems by decentralized dynamic output feedback. Syst. Control Lett. 58, 271–275 (2009)

    Article  MathSciNet  Google Scholar 

  20. S. Stankovic, D. Stipanovic, D. Siljak, Decentralized dynamic output feedback for robust stabilization of a class of nonlinear interconnected systems. Automatica 43(5), 861–867 (2007)

    Article  MathSciNet  Google Scholar 

  21. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  Google Scholar 

  22. K. Tanaka, T. Hori, H.O. Wang, A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Systems 11(4), 582–589 (2003)

    Article  Google Scholar 

  23. S. Tiko, F. Mesquine, A. El Hajjaji, Stability and stabilizability of TS-based interconnected nonlinear systems. 21st IFAC World Congress, Berlin, Germany, July 12–17 (2020)

  24. C.S. Tseng, A novel approach to \(H_ {\infty }\) decentralized fuzzy-observer-based fuzzy control design for nonlinear interconnected systems. IEEE Trans. Fuzzy Syst. 16(5), 1337–1350 (2008)

    Article  Google Scholar 

  25. C.-S. Tseng, B.-S. Chen, \(H_ {\infty }\) decentralized fuzzy model reference tracking control design for nonlinear interconnected systems. IEEE Trans. Fuzzy Syst. 9(6), 795–809 (2001)

    Article  Google Scholar 

  26. R.J. Wang, Nonlinear decentralized state feedback controller for uncertain fuzzy time-delay interconnected systems. Fuzzy Sets Syst. 151(1), 191–204 (2005)

    Article  MathSciNet  Google Scholar 

  27. J. Yang, W. Yang, S. Tong, Decentralized control of switched nonlinear large-scale systems with actuator dead zone. Neurocomputing 200(5), 80–87 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad Mesquine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Corollary 1

Appendix: Proof of Corollary 1

Consider the LILF V(t). By adding its time derivative with null product (9), one obtains:

$$\begin{aligned} {\dot{V}}(t) =&\sum _{i=1}^{J} \big \lbrace {\dot{x}}_{i}^{T} P_{i}(\mu _{i}) x_{i}+x_{i}^{T} P_{i}(\mu _{i}) {\dot{x}}_{i} \\&+ 2\big (x_{i}^{T} M_{1i}+{\dot{x}}_{i}^{T} M_{2i}\big )\times \big (-{\dot{x}}_{i}+A_{i}(\mu _{i}) x_{i}+h_{i}(x)\big ) \big \rbrace \\ =&\sum _{i=1}^{J} \big \lbrace {\dot{x}}_{i}^{T} P_{i}(\mu _{i}) x_{i}+x_{i}^{T} P_{i}(\mu _{i}) {\dot{x}}_{i}-x_{i}^{T} M_{1i} {\dot{x}}_{i}-{\dot{x}}_{i}^{T} M_{1i}^{T} x_{i}\\&-{\dot{x}}_{i}^{T} Sym(M_{2i}){\dot{x}}_{i} +x_{i}^{T} Sym(M_{1i} A_{i}(\mu _{i})) x_{i} +{\dot{x}}_{i}^{T} M_{2i} A_{i}(\mu _{i}) x_{i} \\&+x_{i}^{T} (A_{i}(\mu _{i}))^{T} M_{2i}^{T} {\dot{x}}_{i}+x_{i}^{T} M_{1i}h_{i}(x)+{\dot{x}}_{i}^{T} M_{2i}^{T}h_{i}(x) \big \rbrace . \end{aligned}$$

Using (18), (19), one obtains:

$$\begin{aligned} {\dot{V}}(t) \le&\sum _{i=1}^{J} \big \lbrace {\dot{x}}_{i}^{T} P_{i}(\mu _{i}) x_{i}+x_{i}^{T} P_{i}(\mu _{i}) {\dot{x}}_{i}-x_{i}^{T} M_{1i} {\dot{x}}_{i}-{\dot{x}}_{i}^{T} M_{1i}^{T} x_{i} \nonumber \\&-{\dot{x}}_{i}^{T} Sym(M_{2i}){\dot{x}}_{i} +x_{i}^{T} Sym(M_{1i} A_{i}(\mu _{i})) x_{i}+{\dot{x}}_{i}^{T} M_{2i} A_{i}(\mu _{i}) x_{i} \nonumber \\&+x_{i}^{T} (A_{i}(\mu _{i}))^{T} M_{2i}^{T} {\dot{x}}_{i} + x_{i}^{T} M_{1i} M_{1i}^{T} x_{i}+ {\dot{x}}_{i}^{T} M_{2i} M_{2i}^{T} {\dot{x}}_{i} \nonumber \\&+2 \sum _{j=1}^{J} J \alpha _{j}^{2} x_{i}^{T} H_{ji}^{T} H_{ji} x_{i} \big \rbrace \nonumber \\ =&\sum _{i=1}^{J} \sum _{l=1}^{r_{i}} \mu _{i}^{l} \xi _{i}^{T} \varTheta _{i}^{l} \xi _{i}, \end{aligned}$$
(29)

where

$$\begin{aligned} \xi _{i} =&\begin{bmatrix} x_{i} \\ {\dot{x}}_{i} \end{bmatrix}, \nonumber \\ \varTheta _{i}^{l} =&\begin{bmatrix} Sym(M_{1i} A_{i}^{l}) +2 \sum \limits _{j=1}^{J} J \alpha _{j}^{2} H_{ji}^{T} H_{ji}+M_{1i} M_{1i}^{T} &{} * \\ P_{i}^{l}- M_{1i}^{T}+M_{2i} A_{i}^{l} &{} -Sym(M_{2i})+M_{2i} M_{2i}^{T} \end{bmatrix}. \end{aligned}$$

From (29), \({\dot{V}} < 0\) implies the asymptotic stability of the CFLSS (5) if the stability conditions of \(P_{i}^{l} > 0\) and \(\varTheta _{i}^{l} < 0\) are satisfied. By applying the Schur complement to \(\varTheta _{i}^{l} < 0\), one has (11).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiko, S., Mesquine, F. & El Hajjaji, A. Relaxed Stabilization Conditions for Interconnected Nonlinear Systems. Circuits Syst Signal Process 40, 2808–2823 (2021). https://doi.org/10.1007/s00034-020-01609-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01609-1

Keywords

Navigation