Skip to main content
Log in

Underdetermined Blind Source Separation Based on Source Number Estimation and Improved Sparse Component Analysis

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The signal acquisition process is limited by the installation position and number of sensors in particular types of equipment. Moreover, the observed signals are often compounded by all sources. In order to solve these problems, an underdetermined blind source separation (UBSS) approach with source number estimation and improved sparse component analysis (SCA) is studied. Firstly, the angular probability distribution of scatter as one of measures is obtained in time-frequency (TF) domain based on the sparsity of observations. Meanwhile, the energy sum of each frequency bin as another measure is calculated to eliminate the influence of poor sparsity or non-sparsity. Source number estimation can be obtained by selecting a small peak value between the above two measures. Then, the frequency bins corresponding to these peaks of the energy sum are clustered into two categories, whose first row in cluster center matrix is regarded as the corresponding column of estimated mixing matrix. Finally, the combinatorial algorithm of L1-norm is used to realize the estimation of source signals. Simulation results demonstrate that the proposed method can effectively separate the simulated vibration signals and is more accurate than traditional clustering and hyperplane space methods. Additionally, the natural frequency and damping ratio of modal response can be accurately identified in the test of measured cantilever beam hammering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. A. Aissa-El-Bey, K. Abed-Meraim, Y. Grenier, Blind separation of underdetermined convolutive mixtures using their time-frequency representation. IEEE-ACM Trans. Audio Speech Lang. 15(5), 1540–1550 (2007)

    Article  MATH  Google Scholar 

  2. S. Araki, S. Hiroshi, M.S. Ryo, Under-determined blind sparse source separation for arbitrarily arranged multiple sensors. Signal Process. 87(8), 1833–1847 (2007)

    Article  MATH  Google Scholar 

  3. S. Arberet, R. Gribonval, F. Bimbot, A robust method to count and locate audio sources in a multichannel underdetermined mixture. IEEE Trans. Signal Process. 58(1), 121–133 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Berthomier, Instantaneous frequency and energy distribution of a signal. Signal Process. 5(1), 31–45 (1983)

    Article  Google Scholar 

  5. C. Blandin, A. Ozerov, E. Vincent, Multi-source TDOA estimation in reverberant audio using angular spectra and clustering. Signal Process. 92(8), 1950–1960 (2012)

    Article  Google Scholar 

  6. W. Cheng, S. Lee, Z. Zhang, Z. He, Independent component analysis based source number estimation and its comparison for mechanical systems. J. Sound Vib. 331(23), 5153–5167 (2012)

    Article  Google Scholar 

  7. W. Cheng, Z. Zhang, H. Cao, Z. He, G. Zhu, A comparative study of information-based source number estimation methods and experimental validations on mechanical systems. Sensors 14(5), 7625–7646 (2014)

    Article  Google Scholar 

  8. P. Comon, C. Jutten, Handbook of blind source separation. 367-420. Elsevier Ltd. United States (2010)

  9. D. Donoho, For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(7), 797–829 (2006)

    Article  MATH  Google Scholar 

  10. D. Donoho, H. Kakavand, J. Mammen, The simplest solution to an underdetermined system of linear equations. Commun. Pure Appl. Math. 59(6), 797–829 (2007)

    Article  Google Scholar 

  11. E. Ehsan, M. Bahador, S. Nasser, K. Hassan, M. Fahimeh, S. Saeid, A novel underdetermined source recovery algorithm based on k-Sparse component analysis. Circuits Syst. Signal Process. 38(7), 1–23 (2018)

    Google Scholar 

  12. C. Fevotte, C. Doncarli, Two contributions to blind source separation using time-frequency distributions. IEEE Signal Process. Lett. 11(3), 386–389 (2004)

    Article  Google Scholar 

  13. W. Fu, J. Chen, B. Yang, Source recovery of underdetermined blind source separation based on SCMP algorithm. IET Signal Process. 11(7), 877–883 (2017)

    Article  Google Scholar 

  14. X. Fu, W.K. Ma, K. Huang, N.D. Sidiropoulos, Blind separation of quasi-stationary sources: Exploiting convex geometry in covariance domain. IEEE Trans. Signal Process. 63(9), 2306–2320 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Fu, J. Wei, N. Liu, J. Chen, Algorithm for source recovery in underdetermined blind source separation based on plane pursuit. J. Syst. Eng. Electron. 29(2), 223–228 (2018)

    Article  Google Scholar 

  16. P. Georgiev, F. Theis, A. Cichocki, Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Netw. Learn. Syst. 16(4), 992–996 (2005)

    Article  Google Scholar 

  17. N. Gillis, S.A. Vavasis, Fast and robust recursive algorithms for separable nonnegative matrix factorization. IEEE Trans. Pattern Anal. Mach. Intell. 36(4), 689–714 (2014)

    Article  Google Scholar 

  18. R.C. Guido, A tutorial on signal energy and its applications. Neurocomputing 179, 264–282 (2016)

    Article  Google Scholar 

  19. J. He, Y. Chen, Q.H. Zhang, G.X. Sun, Q. Hu, Blind source separation method for bearing vibration signals. IEEE Access. 6, 658–664 (2018)

    Article  Google Scholar 

  20. A. Karim, Y. Xiang, J.H. Manton, Y. Hua, Blind source-separation using second-order cyclostationary statistics. IEEE Trans. Signal Process. 49(4), 694–701 (2001)

    Article  Google Scholar 

  21. Y. Li, S. Amari, A. Cichocki, W.C.H. Daniel, S. Xie, Underdetermined blind source separation based on sparse representation. IEEE Trans. Signal Process. 54(2), 423–437 (2006)

    Article  MATH  Google Scholar 

  22. Y. Li, W. Nie, F. Ye, Y. Lin, A mixing matrix estimation algorithm for underdetermined blind source separation. Circuits Syst. Signal Process. 35(9), 3367–3379 (2016)

    Article  MathSciNet  Google Scholar 

  23. G. Li, G. Tang, G. Luo, H. Wang, Underdetermined blind separation of bearing faults in hyperplane space with variational mode decomposition. Mech. Syst. Signal Proc. 120, 83–97 (2019)

    Article  Google Scholar 

  24. A. Mur, R. Dormido, N. Duro, D. Mercader, An unsupervised method to determine the optimal number of independent components. Expert Syst. Appl. 75, 56–62 (2017)

    Article  Google Scholar 

  25. F.M. Naini, G.H. Mohimani, M. Babaie-Zadeh, C. Jutten, Estimating the mixing matrix in Sparse Component Analysis (SCA) based on partial k-dimensional subspace clustering. Neurocomputing 71(10–12), 2330–2343 (2008)

    Article  Google Scholar 

  26. F. Nie, C. Wang, X. Li, K-Multiple-Means: A multiple-means clustering method with specified K clusters. the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’19), Anchorage, AK, USA, August 4-8 (2019)

  27. D. Pavlidi, A. Griffin, M. Puigt, A. Mouchtaris, Real-time multiple sound source localization and counting using a circular microphone array. IEEE-ACM Trans. Audio Speech Lang. 21(10), 2193–2206 (2013)

    Article  Google Scholar 

  28. D. Peng, Y. Xiang, Underdetermined blind source separation based on relaxed sparsity condition of sources. IEEE Trans. Signal Process. 57(2), 809–814 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Peng, Y. Xiang, Underdetermined blind separation of non-sparse sources using spatial time-frequency distributions. Digit. Signal Prog. 20(2), 581–596 (2010)

    Article  Google Scholar 

  30. V.G. Reju, S.N. Koh, Y. Soon, An algorithm for mixing matrix estimation in instantaneous blind source separation. Signal Process. 89(9), 1762–1773 (2009)

    Article  MATH  Google Scholar 

  31. A. Sadhu, B. Hazra, S. Narasimhan, M.D. Pandey, Decentralized modal identification using sparse blind source separation. Smart Mater. Struct. 20(12), 1–15 (2011)

    Article  Google Scholar 

  32. Q. Su, Y. Shen, Y. Wei, C. Deng, Underdetermined blind source separation by a novel time-frequency method. AEU-Int. J. Electron. Commun. 77, 43–49 (2017)

    Article  Google Scholar 

  33. I. Takigawa, M. Kudo, J. Toyama, Performance analysis of minimum L1-Norm solutions for underdetermined source separation. IEEE Trans. Signal Process. 52(3), 582–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. Xie, K. Xie, S.L. Xie, Underdetermined blind source separation for heart sound using higher-order statistics and sparse representation. IEEE Access. 7, 87606–87616 (2019)

    Article  Google Scholar 

  35. S. Xie, L. Yang, J.M. Yang, G. Zhou, X. Yong, Time-frequency approach to underdetermined blind source separation. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 306–316 (2012)

    Article  Google Scholar 

  36. J. Yang, Y. Guo, Z. Yang, S.L. Xie, Under-determined convolutive blind source separation combining density-based clustering and sparse reconstruction in time-frequency domain. IEEE Trans. Circuits Syst. I-Regul. Pap. 66(8), 3015–3027 (2019)

    Article  MathSciNet  Google Scholar 

  37. Y. Yang, S. Nagarajaiah, Output-only modal identification with limited sensors using sparse component analysis. J. Sound Vib. 332(19), 4741–4765 (2013)

    Article  Google Scholar 

  38. D.C. Yang, C. Rehtanz, Y. Li, W. Tang, A novel method for analyzing dominant oscillation mode based on improved EMD and signal energy algorithm. Sci. China-Technol. Sci. 54(9), 2493–2500 (2011)

    Article  Google Scholar 

  39. Z.Y. Yang, B.H. Tan, G.X. Zhou, J.L. Zhang, Source number estimation and separation algorithms of underdetermined blind separation. Sci. China-Inf. Sci. 51(10), 1623–1632 (2008)

    Article  MATH  Google Scholar 

  40. Z. Yang, Y, Xiang, S, Xie, S, Ding, Y, Rong, Nonnegative blind source separation by sparse component analysis based on determinant measure. IEEE Trans. Neural Netw. Learn. Syst. 23(10), 1601–1610 (2012)

    Article  Google Scholar 

  41. Z. Yi, N. Pan, Y. Guo, Mechanical compound faults extraction based on improved frequency domain blind deconvolution algorithm. Mech. Syst. Signal Proc. 113, 180–188 (2018)

    Article  Google Scholar 

  42. K. Yu, K. Yang, Y. Bai, Estimation of modal parameters using the sparse component analysis based underdetermined blind source separation. Mech. Syst. Signal Proc. 45(2), 302–316 (2014)

    Article  Google Scholar 

  43. H. Zhang, G. Hua, Y. Lei, Y. Cai, G. Bi, Underdetermined blind separation of overlapped speech mixtures in time-frequency domain with estimated number of sources. Speech Commun. 89, 1–16 (2017)

    Article  Google Scholar 

  44. L. Zhen, D. Peng, Y. Zhang, X. Yong, P. Chen, Underdetermined blind source separation using sparse coding. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 3102–3108 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant NO. 61671095, 61371164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoze Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Zhang, T. Underdetermined Blind Source Separation Based on Source Number Estimation and Improved Sparse Component Analysis. Circuits Syst Signal Process 40, 3417–3436 (2021). https://doi.org/10.1007/s00034-020-01629-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01629-x

Keywords

Navigation