Skip to main content
Log in

Mixed Noise Removal by Bilateral Weighted Sparse Representation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Image denoising is a fundamental but difficult task in image processing. Recovering a clean version from an image corrupted by mixed Gaussian and impulse noise is still challenging. The weighted sparse representation (WSR) method has been applied to deal with mixed noise and has achieved good performance. However, the WSR model presents an obvious disadvantage due to oversmoothing of the texture regions. In this paper, the novel bilateral weighted sparse representation model is presented for mixed noise removal. By introducing an image gradient-based weight, an adaptive sparse ratio is provided for each image patch to protect additional image details. In addition, a weighted method noise regularization term is proposed to utilize the global image information submerged in the method noise, which can improve the visual effect of recovered noise-free images. Both the subjective and objective performance are evaluated, and the experimental results show that the proposed method outperforms existing mixed noise removal algorithms, especially in terms of the visual performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Anwar, F. Porikli, C.P. Huynh, Category-specific object image denoising. IEEE Trans. Image Process. 26(11), 5506–5518 (2017)

    Article  MathSciNet  Google Scholar 

  2. M. Aharon, M. Elad, A. Bruckstein, K-SVD an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Image Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  3. A. Buades, B. Coll, J. Morel, A non-local algorithm for image denoising, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 60–65 (2005)

  4. C.L.P. Chen, L.L. Liu, L. Chen, Y.Y. Tang, Y. Zhou, Weighted couple sparse representation with classified regularization for impulse noise removal. IEEE Trans. Image Process. 24(11), 4014–4026 (2015)

    Article  MathSciNet  Google Scholar 

  5. K. Dabov, A. Foi, K. Egiazarian, Video denoising by sparse 3D transform-domain collaborative filtering, in 2007 15th European Signal Processing Conference, pp. 145–149 (2007)

  6. Y.Q. Dong, S.F. Xu, A new directional weighted median filter for removal of random-valued impulse noise. IEEE Signal Process. Lett. 14(3), 193–196 (2007)

    Article  Google Scholar 

  7. Y.Q. Dong, R.H. Chan, S.F. Xu, A detection statistic for random-valued impulse noise. IEEE Trans. Image Process. 16(4), 1112–1120 (2007)

    Article  MathSciNet  Google Scholar 

  8. I. Djurovi, Combination of the adaptive Kuwahara and BM3D filters for filtering mixed Gaussian and impulsive noise. SIViP 11(4), 753–760 (2016)

    Article  Google Scholar 

  9. W. Dong, X. Li, L. Zhang, G. Shi, Sparsity-based image denoising via dictionary learning and structural clustering. CVPR 2011, 457–464 (2011)

    Google Scholar 

  10. W. Dong, L. Zhang, G. Shi, X. Li, Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2013)

    Article  MathSciNet  Google Scholar 

  11. W. Dong, L. Zhang, G. Shi, X. Wu, Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)

    Article  MathSciNet  Google Scholar 

  12. M. Elad, M. Aharon, Image denoising via learned dictionaries and sparse representation, in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 895–900 (2006)

  13. H.J. Hu, B. Li, Q. Liu, Removing mixture of Gaussian and impulse noise by patch-based weighted means. J. Sci. Comput. 67(1), 103–129 (2016)

    Article  MathSciNet  Google Scholar 

  14. T. Huang, W. Dong, X. Xie, G. Shi, X. Bai, Mixed noise removal via Laplacian scale mixture modeling and nonlocal low-rank approximation. IEEE Trans. Image Process. 26(7), 3171–3171 (2017)

    Article  MathSciNet  Google Scholar 

  15. K.H. Jin, J.C. Ye, Sparse and low-rank decomposition of a Hankel structured matrix for impulse noise removal. IEEE Trans. Image Process. 27(3), 1448–1461 (2018)

    Article  MathSciNet  Google Scholar 

  16. J. Jiang, J. Yang, Y. Cui, L. Luo, Mixed noise removal by weighted low rank model. Neurocomputing. 151, 817–826 (2015)

    Article  Google Scholar 

  17. J.L. Jiang, L. Zhang, Y. Jian, Mixed noise removal by weighted encoding with sparse nonlocal regularization. IEEE Trans. Image Process. 23(6), 2651–2662 (2014)

    Article  MathSciNet  Google Scholar 

  18. M. Lebrun, An analysis and implementation of the BM3D image denoising method. Image Processing On Line. 2, 175–213 (2012)

    Article  Google Scholar 

  19. Y. Li, J. Zhang, M. Wang, Improved bm3d denoising method. IET Image Proc. 11(12), 1197–1204 (2017)

    Article  Google Scholar 

  20. L. Liu, C.P. Chen, Y. Zhou, X. You, A new weighted mean filter with a two-phase detector for removing impulse noise. Inf. Sci. 315, 1–16 (2015)

    Article  MathSciNet  Google Scholar 

  21. J. Liu, X.C. Tai, H.Y. Huang, Z.D. Huan, A weighted dictionary learning model for denoising images corrupted by mixed noise. IEEE Trans. Image Process. 22(3), 1108–1120 (2013)

    Article  MathSciNet  Google Scholar 

  22. L.L. Liu, C.L.P. Chen, X. You, Y.Y. Tang, Y. Zhang, S. Li, Mixed noise removal via robust constrained sparse representation. IEEE Trans. Circuits Syst. Video Technol. 28(9), 2177–2189 (2017)

    Article  Google Scholar 

  23. L.L. Liu, L. Chen, C.L.P. Chen, Y.Y. Tang, Weighted joint sparse representation for removing mixed noise in image. IEEE Trans. Cybern. 47(3), 600–611 (2017)

    Article  Google Scholar 

  24. I.K. Lee, S.H. Kwon, Design of sigmoid activation functions for fuzzy cognitive maps via Lyapunov stability analysis. IEICE Trans. Inf. Syst. 93(10), 2883–2886 (2010)

    Article  Google Scholar 

  25. H. Li, G. Tang, X. Liu, Z. Cui, F. Liu, An enhanced image denoising method using method noise, in 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1–6 (2017)

  26. J. Mairal, F. R. Bach, J. Ponce, G. Sapiro, A. Zisserman, Non-local sparse models for image restoration, in 2009 IEEE 12th International Conference on Computer Vision, pp. 54–62 (2009)

  27. S.G. Mallat, Z. Zhifeng, Matching pursuits with time–frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  Google Scholar 

  28. V. Papyan, Y. Romano, J. Sulam, M. Elad, Theoretical foundations of deep learning via sparse representations: a multilayer sparse model and its connection to convolutional neural networks. IEEE Signal Process. Mag. 35(4), 72–89 (2018)

    Article  Google Scholar 

  29. Y.C. Pati, R. Rezaiifar, P.S Krishnaprasad. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition, in Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp. 40–44 (1993)

  30. A. Roy, S. Joyeeta, S.S. Devi, Impulse noise removal using SVM classification based fuzzy filter from gray scale images. Signal Process. 128, 262–273 (2016)

    Article  Google Scholar 

  31. L. Shao, R. Yan, X. Li, From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms. IEEE Trans. Cybern. 44(7), 1001–1013 (2013)

    Article  Google Scholar 

  32. C.A. Santos, D.L. Martins, N.D. Mascarenhas, Ultrasound image despeckling using stochastic distance-based BM3D. IEEE Trans. Image Process. 26(6), 2632–2643 (2017)

    Article  MathSciNet  Google Scholar 

  33. C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in Proceedings of 6th International Conference on Computer Vision, pp. 839–846 (1998)

  34. T. Veerakumar, R. Jagannath, B. Subudhi, Impulse noise removal using adaptive radial basis function interpolation. Circuits Syst. Signal Process. 36(3), 1192–1223 (2017)

    Article  Google Scholar 

  35. T. Veerakumar, B.N. Subudhi, S. Esakkirajan, Empirical mode decomposition and adaptive bilateral filter approach for impulse noise removal. Expert Syst. Appl. 121, 18–27 (2019)

    Article  Google Scholar 

  36. T. Veerakumar, S. Esakkirajan, I. Vennila, High density impulse noise removal using modified switching bilateral filter. Int. J. Circuits Syst. Signal Process. 6(3), 189–196 (2012)

    Google Scholar 

  37. T.H. Vu, V. Monga, Fast low-rank shared dictionary learning for image classification. IEEE Trans. Image Process. 26(11), 5160–5175 (2017)

    Article  MathSciNet  Google Scholar 

  38. X. Wang, S. Shen, G. Shi, Iterative non-local means filter for salt and pepper noise removal. J. Vis. Commun. Image Represent. 38, 440–450 (2016)

    Article  Google Scholar 

  39. Z. Wang, D. Liu, J. Yang, W. Han, T. Huang, Deep networks for image super-resolution with sparse prior, in 2015 IEEE International Conference on Computer Vision (ICCV), pp. 370–378 (2015)

  40. B. Xiong, Z. Yin, A universal denoising framework with a new impulse detector and nonlocal means. IEEE Trans. Image Process. 21(4), 1663–1675 (2012)

    Article  MathSciNet  Google Scholar 

  41. Y. Xiao, T. Zeng, J. Yu, M.K. Ng, Restoration of images corrupted by mixed Gaussian-impulse noise via l1–l0 minimization. Pattern Recogn. 44(8), 1708–1720 (2011)

    Article  Google Scholar 

  42. C.Y. Yang, W.W. Wang, X.C. Feng, X. Liu, Weighted-l1-method-noise regularization for image deblurring. Signal Process. 157, 14–24 (2018)

    Article  Google Scholar 

  43. R. Zhang, X. Feng, L. Yang, L. Chang, C. Xu, Global sparse gradient guided variational retinex model for image enhancement. Signal Process. Image Commun. 58, 270–281 (2017)

    Article  Google Scholar 

  44. L. Zhang, L. Zhang, X.Q. Mou, D. Zhang, FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Major Project of Anhui Province of China under Grant 2019b05050001 and the National Natural Science Foundation of China under Grant 61805065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qibin Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, J., Lv, G., Xue, Z. et al. Mixed Noise Removal by Bilateral Weighted Sparse Representation. Circuits Syst Signal Process 40, 4490–4515 (2021). https://doi.org/10.1007/s00034-021-01677-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01677-x

Keywords

Navigation