Skip to main content
Log in

A 300 nW 10 kHz Relaxation Oscillator with 105 ppm/\(^{\circ }\)C Temperature Coefficient

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

An on-chip nanopower RC relaxation oscillator is developed in a 180-nm standard CMOS process, consuming 300 nW while running at 10 kHz. Employing a frequency compensation scheme that reduces the frequency drift introduced by comparator offset and delay, the proposed oscillator achieves a significant low temperature coefficient. Furthermore, a supply regulation structure is used to reduce the frequency sensitivity to supply voltage variations. Post-simulation results show that the frequency variation against temperature is 105 ppm/\(^{\circ }\)C in the temperature range from 0 to 85 \(^{\circ }\)C, and the line sensitivity is 2.19%/V with the supply voltage changing from 1.05 to 1.45 V. At offset frequencies of 100 Hz and 1 kHz, the simulated phase noises are −50 and −71 dBc/Hz, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. C.F. Chan, K.P. Pun, K.N. Leung, J. Guo, L.K.L. Leung, C.S. Choy, A low-power continuously-calibrated clock recovery circuit for uhf rfid epc class-1 generation-2 transponders. IEEE J. Solid State Circuits 45(3), 587–599 (2010)

    Article  Google Scholar 

  2. Y.A. Chang, T. Adiono, A. Hamidah, S.I. Liu, An on-chip relaxation oscillator with comparator delay compensation. IEEE VLSI Syst. 27(4), 969–973 (2019)

    Article  Google Scholar 

  3. J. Choi, J. Kim, Y. Lee, J.H. Chun, 1.2 mhz relaxation oscillator with 1.68 ppm/\(^\circ \)c temperature coefficient using resistive self-bias current. Electron. Lett. 55(8), 442–444 (2019)

    Article  Google Scholar 

  4. Griffith, D., Røine, P.T., Murdock, J., Smith, R.: 17.8 a 190nw 33khz rc oscillator with \(\pm 0.21\%\) temperature stability and 4ppm long-term stability. In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 300–301 (2014)

  5. Hai-Feng, X.U., Chun-Kai, W., Bing-Xian, S.: A cmos oscillator used in rfid. Microelectronics & Computer (2008)

  6. M.R. Haider, S.K. Islam, M.R. Mahfouz, A low-voltage low-power injection-locked oscillator for wearable health monitoring systems. Analog Integr. Circuits Signal Process. 66(2), 145–154 (2011)

    Article  Google Scholar 

  7. P. Han, Z. Zhang, N. Mei, Low-power passive/active uhf rfid tag transceiver with frequency locked on-chip oscillator. J. Circuits Syst. Comput. 29, 14 (2020)

    Article  Google Scholar 

  8. Huang, Y.L.: A new design method for rfid rf front end oscillator. Telecommunication Engineering (2012)

  9. Kalburgi, S., Gupta, D., Holi, S., Shetty, R., Iyer, N.C.: Ultra low power low frequency on-chip oscillator for elapsed time counter. In: 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID) (2019)

  10. Koo, J., Moon, K.S., Kim, B., Park, H.J., Sim, J.Y.: 5.5 a quadrature relaxation oscillator with a process-induced frequency-error compensation loop. In: 2017 IEEE International Solid- State Circuits Conference - (ISSCC) (2017)

  11. Lee, J., George, A., Je, M.: A 1.4v 10.5mhz swing-boosted differential relaxation oscillator with 162.1dbc/hz fom and 9.86psrms period jitter in \(0.18\mu \) m cmos. In: IEEE International Solid-state Circuits Conference, vol. 59, pp. 106–108 (2016)

  12. N. Liu, R. Agarwala, A. Dissanayake, D..S.. Truesdell, S. Kamineni, B.H. Calhoun, A 2.5 ppm/\(^{\circ }\)c 1.05-mhz relaxation oscillator with dynamic frequency-error compensation and fast start-up time. IEEE Journal of Solid-State Circuits 54(7), 1952–1959 (2019)

  13. S.Y. Lu, Y.T. Liao, A low-power, differential relaxation oscillator with the self-threshold-tracking and swing-boosting techniques in 0.18- \(\mu \) m cmos. IEEE Journal of Solid-State Circuits 54(2), 392–402 (2019)

  14. Y. Lu, J. Zhu, Y. Zhang, W. Sun, K. Yu, J. Chen, A high linearity current-controlled cmos relaxation oscillator with frequency self-calibration technique. Analog Integr. Circuits Signal Process. 92(1), 29–37 (2017)

    Article  Google Scholar 

  15. Miguel, J.A., Rivas, D., Lechuga, Y., Allende, M.A., Martinez, M.: Oscillation-based approach applied to a low-power analog front-end for an implantable cardiac device (2015)

  16. Mikulić, J., Schatzberger, G., Barić, A.: A 1-mhz relaxation oscillator core employing a self-compensating chopped comparator pair. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4 (2018)

  17. Min, S.H., Sattorov, M., So, J.K., Kwon, O., Park, G.S.: Gw-ns millimeter-wave relativistic backward wave oscillator (rbwo) for biomedical applications. In: 2nd Int. THz-Bio Workshop (2011)

  18. A. Paidimarri, D. Griffith, A. Wang, G. Burra, A.P. Chandrakasan, An rc oscillator with comparator offset cancellation. IEEE J. Solid State Circuits 51(8), 1866–1877 (2016)

    Article  Google Scholar 

  19. Paidimarri, A., Griffith, D., Wang, A., Chandrakasan, A.P., Burra, G.: A 120nw 18.5khz rc oscillator with comparator offset cancellation for \(\pm 0.25\%\) temperature stability. In: Solid-state Circuits Conference Digest of Technical Papers, pp. 184–185 (2013)

  20. Sajotra, D., Dhariwal, S., Mishra, R.S., Gupta, R., Lamba, V.K.: Design and simulation of low power voltage controlled oscillator for biomedical applications. In: 2018 International Conference on Intelligent Circuits and Systems (ICICS), pp. 138–142 (2018)

  21. Saxl, G., Hechenblaickner, M., Ferdik, M., Ussmueller, T.: 55 nm ultra-low-power local oscillator for epcglobal gen2v2 standardized passive uhf rfid tags. In: 2018 IEEE/MTT-S International Microwave Symposium - IMS 2018, pp. 942–945 (2018)

  22. Serdijn, W.A.: Wearable and implantable medical devices: electronics for better treatment and care. In: Conference on Design of Circuits and Integrated Systems (DCIS) (2009)

  23. E. Tlelo-Cuautle, P.R. Castañeda-Aviña, R. Trejo-Guerra, V.H. Carbajal-Gômez, Design of a wide-band voltage-controlled ring oscillator implemented in 180 nm cmos technology. Electronics 8(10), 1156 (2019)

    Article  Google Scholar 

  24. Tokairin, T., Nose, K., Takeda, K., Noguchi, K., Maeda, T., Kawai, K., Mizuno, M.: A 280nw, 100khz, 1-cycle start-up time, on-chip cmos relaxation oscillator employing a feedforward period control scheme. In: 2012 Symposium on VLSI Circuits (VLSIC), pp. 16–17 (2012)

  25. Y. Tokunaga, S. Sakiyama, A. Matsumoto, S. Dosho, An on-chip cmos relaxation oscillator with voltage averaging feedback. IEEE J. Solid State Circuits 45(6), 1150–1158 (2010)

    Article  Google Scholar 

  26. Y.K. Tsai, L.H. Lu, A 51.3-mhz 21.8-ppm/\(^{\circ }\)c cmos relaxation oscillator with temperature compensation. IEEE Transactions on Circuits and Systems II: Express Briefs 64(5), 490–494 (2017)

  27. Tsubaki, K., Hirose, T., Kuroki, N., Numa, M.: A 32.55-khz, 472-nw, 120ppm/\(^\circ \)c, fully on-chip, variation tolerant cmos relaxation oscillator for a real-time clock application. In: 2013 Proceedings of the ESSCIRC (ESSCIRC), pp. 315–318 (2013)

  28. Tsubaki, K., Hirose, T., Osaki, Y., Shiga, S., Numa, M.: A 6.66-khz, 940-nw, 56ppm/\(^\circ \)c, fully on-chip pvt variation tolerant cmos relaxation oscillator. In: 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012), pp. 97–100 (2012)

  29. Wang, H., Mercier, P.P.: A 51 pw reference-free capacitive-discharging oscillator architecture operating at 2.8 hz. In: 2015 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4 (2015)

  30. Wang, J., Goh, W.L.: A 13.5-mhz relaxation oscillator with \(\pm 0.5\%\) temperature stability for rfid application. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2431–2434 (2016)

  31. J. Wang, W.L. Goh, X. Liu, J. Zhou, A 12.77-mhz 31 ppm/\(^{\circ }\)c on-chip rc relaxation oscillator with digital compensation technique. IEEE Transactions on Circuits and Systems I: Regular Papers 63(11), 1816–1824 (2016)

  32. Wang, Y., Rong, L., Xie, L., Liu, J., Wen, G.: A 255nw 138khz rc oscillator for ultra-low power applications. In: 2016 IEEE MTT-S International Wireless Symposium (IWS), pp. 1–4 (2016)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant No. 61704022 and 61871073, and by Science and Technology Project of Henan Province under Grant No.192102210086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Cb., Wang, Y., Guo, Bq. et al. A 300 nW 10 kHz Relaxation Oscillator with 105 ppm/\(^{\circ }\)C Temperature Coefficient. Circuits Syst Signal Process 40, 5264–5279 (2021). https://doi.org/10.1007/s00034-021-01739-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01739-0

Keywords

Navigation