Skip to main content
Log in

Diffusion Fractional Tap-length Algorithm with Adaptive Error Width and Step-size

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Estimation in a cooperative and distributed manner in wireless sensor networks (WSNs) has considered much attention in recent years. When this distributed estimation is performed adaptively, the concept of adaptive networks will develop. In such networks, proper selection of the unknown parameter length is an issue in itself. A deficient filter length results in an additional steady-state error while selecting a large length will impose a more computational load on the nodes, which is critical in sensor networks due to the lack of energy resources. This motivates the use of variable tap-length adaptive filters in the context of the adaptive networks. This has been achieved in adaptive networks using the distributed fractional tap-length (FT) algorithm. This algorithm requires proper selection of the length adaptation parameters, such as error width and length adaptation step-size. This paper proposes an automatic method for selecting these parameters. In the proposed method, these parameters are adapted based on the estimated gradient vector. The proposed method is fully distributed and presented in a diffusion strategy. Simulation results show that the proposed algorithm has both the advantage of fast length convergence and an unbiased steady-state tap-length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.S.E. Abadi, Z. Saffari, Distributed estimation over an adaptive diffusion network based on the family of affine projection algorithms. In: 6th International Symposium on Telecommunications (IST), pp. 607–611 (2012)

  2. R. Abdolee, B. Champagne, Centralized adaptation for parameter estimation over wireless sensor networks. IEEE Commun. Lett. 19(9), 1624–1627 (2015)

    Article  Google Scholar 

  3. S.N. Adnani, M.A. Tinati, G. Azarnia, T.Y. Rezaii, Energy-efficient data reconstruction algorithm for spatially- and temporally correlated data in wireless sensor networks. IET Signal Process. 12(8), 1053–1062 (2018)

    Article  Google Scholar 

  4. M.T. Akhtar, S. Ahmed, A robust normalized variable tap-length normalized fractional lms algorithm. In: 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4. IEEE (2016)

  5. F. Albu, The constrained stability least mean square algorithm for active noise control. In: 2018 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 1–5. IEEE (2018)

  6. F. Albu, C. Paleologu, S. Ciochina, New variable step size affine projection algorithms. In: 2012 9th International Conference on Communications (COMM), pp. 63–66. IEEE (2012)

  7. S.A. Alghunaim, E. Ryu, K. Yuan, A.H. Sayed, Decentralized proximal gradient algorithms with linear convergence rates. IEEE Transactions on Automatic Control pp. 1–1 (2020)

  8. S.A. Alghunaim, K. Yuan, A.H. Sayed, A proximal diffusion strategy for multi-agent optimization with sparse affine constraints. IEEE Transactions on Automatic Control pp. 1–1 (2019)

  9. G. Azarnia, M.A. Tinati, Steady-state analysis of the deficient length incremental lms adaptive networks. Circuits, Syst. Signal Process. 34(9), 2893–2910 (2015)

    Article  MathSciNet  Google Scholar 

  10. G. Azarnia, M.A. Tinati, Steady-state analysis of the deficient length incremental lms adaptive networks with noisy links. AEU-Int. J. Electron. Commun. 69(1), 153–162 (2015)

    Article  Google Scholar 

  11. G. Azarnia, M.A. Tinati, T.Y. Rezaii, Cooperative and distributed algorithm for compressed sensing recovery in wsns. IET Signal Process. 12(3), 346–357 (2018)

    Article  Google Scholar 

  12. G. Azarnia, M.A. Tinati, T.Y. Rezaii, Generic cooperative and distributed algorithm for recovery of signals with the same sparsity profile in wireless sensor networks: a non-convex approach. J. Supercomput. 75(5), 2315–2340 (2019)

    Article  Google Scholar 

  13. G. Azarnia, M.A. Tinati, A.A. Sharifi, H. Shiri, Incremental and diffusion compressive sensing strategies over distributed networks. Digital Signal Processing 101, 102732 (2020). https://doi.org/10.1016/j.dsp.2020.102732. http://www.sciencedirect.com/science/article/pii/S1051200420300774

  14. X. Cao, K.J.R. Liu, Decentralized sparse multitask rls over networks. IEEE Trans. Signal Process. 65(23), 6217–6232 (2017)

    Article  MathSciNet  Google Scholar 

  15. F.S. Cattivelli, C.G. Lopes, A.H. Sayed, Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 56(5), 1865–1877 (2008)

    Article  MathSciNet  Google Scholar 

  16. S. Chen, Y. Liu, Robust distributed parameter estimation of nonlinear systems with missing data over networks. IEEE Trans. Aerospace Electron. Syst. 56(3), 2228–2244 (2020)

    Article  Google Scholar 

  17. M. Ferrer, M. de Diego, G. Piñero, A. Gonzalez, Active noise control over adaptive distributed networks. Signal Proces. 107, 82–95 (2015)

    Article  Google Scholar 

  18. Y. Han, M. Wang, M. Liu, An improved variable tap-length algorithm with adaptive parameters. Digital Signal Process. 74, 111–118 (2018)

    Article  MathSciNet  Google Scholar 

  19. A. Kar, T. Padhi, B. Majhi, M.N.S. Swamy, Analysing the impact of system dimension on the performance of a variable-tap-length adaptive algorithm. Appl. Acoustics 150, 207–215 (2019)

    Article  Google Scholar 

  20. C. Li, S. Huang, Y. Liu, Z. Zhang, Distributed jointly sparse multitask learning over networks. IEEE Trans. Cybernet. 48(1), 151–164 (2018)

    Article  Google Scholar 

  21. L. Li, J. Feng, J. He, J.A. Chambers, A distributed variable tap-length algorithm within diffusion adaptive networks. AASRI Procedia 5, 77 – 84 (2013). https://doi.org/10.1016/j.aasri.2013.10.061. http://www.sciencedirect.com/science/article/pii/S2212671613000620. 2013 AASRI Conference on Parallel and Distributed Computing and Systems

  22. L. Li, Y. Zhang, J.A. Chambers, Variable length adaptive filtering within incremental learning algorithms for distributed networks. In: 2008 42nd Asilomar Conference on Signals, Systems and Computers, pp. 225–229 (2008)

  23. N. Li, Y. Zhang, Y. Zhao, Y. Hao, An improved variable tap-length LMS algorithm. Signal Process. 89(5), 908–912 (2009)

    Article  Google Scholar 

  24. Z. Li, W. Shi, M. Yan, A decentralized proximal-gradient method with network independent step-sizes and separated convergence rates. IEEE Trans. Signal Process. 67(17), 4494–4506 (2019)

    Article  MathSciNet  Google Scholar 

  25. Z. Liu, Variable tap-length linear equaliser with variable tap-length adaptation step-size. Electron. Lett. 50(8), 587–589 (2014)

    Article  Google Scholar 

  26. C.G. Lopes, A.H. Sayed, Diffusion least-mean squares over adaptive networks: Formulation and performance analysis. IEEE Trans. Signal Process. 56(7), 3122–3136 (2008)

    Article  MathSciNet  Google Scholar 

  27. K. Mayyas, H.A. AbuSeba, A new variable length nlms adaptive algorithm. Digital Signal Process. 34, 82–91 (2014)

    Article  Google Scholar 

  28. C. Paleologu, J. Benesty, S. Ciochina, A variable step-size affine projection algorithm designed for acoustic echo cancellation. IEEE Trans. Audio, Speech, and Language Process. 16(8), 1466–1478 (2008)

    Article  Google Scholar 

  29. S.H. Pauline, D. Samiappan, R. Kumar, A. Anand, A. Kar, Variable tap-length non-parametric variable step-size NLMS adaptive filtering algorithm for acoustic echo cancellation. Appl. Acoustics 159, 107074 (2020)

    Article  Google Scholar 

  30. A. Rastegarnia, Reduced-communication diffusion rls for distributed estimation over multi-agent networks. IEEE Trans. Circuits Syst. II: Exp. Briefs 67(1), 177–181 (2020)

    Article  Google Scholar 

  31. F. Riera-Palou, J.M. Noras, D.G.M. Cruickshank, Linear equalisers, with dynamic and automatic length selection. Electron. Lett. 37(25), 1553–1554 (2001)

    Article  Google Scholar 

  32. M.O.B. Saeed, A. Zerguine, An incremental variable step-size LMS algorithm for adaptive networks. IEEE Transactions on Circuits and Systems II: Express Briefs pp. 1–1 (2019)

  33. K. Shravan Kumar, N.V. George, Polynomial sparse adaptive estimation in distributed networks. IEEE Transactions on Circuits and Systems II: Express Briefs 65(3), 401–405 (2018)

    Article  Google Scholar 

  34. N. Takahashi, I. Yamada, A.H. Sayed, Diffusion least-mean squares with adaptive combiners: Formulation and performance analysis. IEEE Trans. Signal Proces. 58(9), 4795–4810 (2010)

    Article  MathSciNet  Google Scholar 

  35. Y. Wei, Z. Yan, Variable tap-length lms algorithm with adaptive step size. Circuits, Syst. Signal Process. 36(7), 2815–2827 (2017)

    Article  Google Scholar 

  36. S. Xu, R.C. de Lamare, H.V. Poor, Distributed estimation over sensor networks based on distributed conjugate gradient strategies. IET Signal Process. 10(3), 291–301 (2016)

    Article  Google Scholar 

  37. G. Yu, C.F.N. Cowan, An lms style variable tap-length algorithm for structure adaptation. IEEE Trans. Signal Process. 53(7), 2400–2407 (2005)

    Article  MathSciNet  Google Scholar 

  38. G. Yuantao, T. Kun, C. Huijuan, Lms algorithm with gradient descent filter length. IEEE Signal Process. Lett. 11(3), 305–307 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghanbar Azarnia.

Ethics declarations

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarnia, G. Diffusion Fractional Tap-length Algorithm with Adaptive Error Width and Step-size . Circuits Syst Signal Process 41, 321–345 (2022). https://doi.org/10.1007/s00034-021-01778-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01778-7

Keywords

Navigation