Skip to main content
Log in

System Simplification Using Pole Spectrum Analysis (PSA) with the Advantage of Dominant Pole Retention

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this article, authors proposed a useful technique for order reduction of large-scale linear dynamic time-invariant systems using the dominant pole retention, Pole Spectrum Analysis, and Pade approximations. The denominator dynamics of the simplified system is obtained by using PSA and pole dominance algorithm; numerator dynamics of the same is obtained by using Pade approximation. The approximation is based on the principle that the mean of the poles (pole centroid) and centroid-based system stiffness are same for both large-scale and simplified systems. For a stable higher-order system, the method promises the stability of the simplified system. To validate the proposed technique, some numerical illustrations have been considered from the literature with the comparisons of performance in terms of a quality check through performance index and response matching between original higher-order and simplified systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. F.J. Alexandro Jr., Stable partial Pade approximations for reduced- order transfer functions. IEEE Trans Automat. Contr. 29(2), 159–162 (1984)

    Article  Google Scholar 

  2. M. Aoki, Control of large dynamic system by aggregation. IEEE Trans. Autom. Control 13, 246–253 (1968)

    Article  Google Scholar 

  3. N. Ashoor, V. Singh, A note on lower order modeling. IEEE Trans Automat. Contr. 27(5), 1124–1126 (1982)

    Article  Google Scholar 

  4. T.C. Chen, C.Y. Chang, K.W. Han, Model reduction using stability-equation method and the Pade approximation method. J. Franklin Inst. 309(6), 473–490 (1980)

    Article  MathSciNet  Google Scholar 

  5. T.C. Chen, C.Y. Chang, K.W. Han, Reduction of transfer function by the stability-equation method. J. Franklin Inst. 308, 389–404 (1979)

    Article  MathSciNet  Google Scholar 

  6. T.C. Chen, C.Y. Chang, K.W. Han, Stable reduced-order Pade approximants using stability-equation method”. Electron. Lett. 16(9), 345–346 (1980)

    Article  Google Scholar 

  7. E.J. Davison, A method for simplifying linear dynamic systems. IEEE Trans. Autom. Control 11, 93–101 (1966)

    Article  Google Scholar 

  8. T.F. Edgar, Least square model reduction using step response. Int. J. Control 22, 261–270 (1975)

    Article  Google Scholar 

  9. L. Fortuna, G. Nunnari, A. Gallo, Model Order Reduction Techniques with Applications in Electrical Engineering (Springer, London, 1992)

    Book  Google Scholar 

  10. M.F. Hutton, F. Friedland, Routh approximations for reducing order of linear, time-invariant systems. IEEE Trans. Automat. Control. 20(3), 329–337 (1975)

    Article  MathSciNet  Google Scholar 

  11. O. Ismail, B. Bandopadhyay, R. Gorez, Discrete interval system reduction using Pade approximation to allow retention of dominant poles. IEEE Trans Circ. Syst. I Fund Theory Appl. 44(11), 1075–1078 (1997)

    Article  MathSciNet  Google Scholar 

  12. V. Krishnamurthy, V. Seshadri, Model reduction using the Routh stability criterion. IEEE Trans. Automat. Contr. 23(3), 729–731 (1978)

    Article  Google Scholar 

  13. A. Lepschy, U. Viaro, An improvement in the Routh Pade approximation techniques. Int. J. Control. 36(4), 643–661 (1982)

    Article  MathSciNet  Google Scholar 

  14. T.N. Lucas, Factor division: a useful algorithm in model reduction. IEEE Proc. D Control Theory Appl. A. 130(6), 362–364 (1983)

    Article  Google Scholar 

  15. A.K. Mittal, R. Prasad, S.P. Sharma, Reduction of linear dynamics system using an error minimization technique. J. Inst. Eng. India IE (I) J. EL 84, 201–206 (2004)

    Google Scholar 

  16. S. Mukherjee, Order reduction of linear system using Eigen spectrum analysis. J. Inst. Eng. (India) Part EL 77, 76–79 (1996)

    Google Scholar 

  17. S. Mukherjee, R.N. Mishra, Order reduction of linear systems using an error minimization technique. J. Franklin Inst. 323, 23–32 (1987)

    Article  MathSciNet  Google Scholar 

  18. S. Mukherjee, R.C. Mittal, Model order reduction using response matching technique. J. Franklin Institute 342, 503–519 (2005)

    Article  MathSciNet  Google Scholar 

  19. N.S. Nise, Control System Engineering, Sixth Edition, John Wiley & Sons Inc., U.S.A., 2011.

  20. M.K. Othman, Z.A. Hammour, Substructure preservation model order reduction with power system model investigation. Wulfenia J. 22(3), 44–55 (2015)

    Google Scholar 

  21. J. Pal, stable reduced-order Pade approximants using the Routh-Hurwitz array. Electron. Lett. 15(8), 225–226 (1979)

    Article  Google Scholar 

  22. G. Parmar and S. Mukherjee, “Order reduction using zero spectrum analysis,” Int. Conf. on Comput. Appl. In Elect. Eng., Recent Adv. (CERA-01), pp. 450–454.

  23. G. Parmar, S. Mukherjee, R. Prasad, System reduction using factor division algorithm and eigen spectrum analysis. Appl. Math. Model. 31, 2542–2552 (2007)

    Article  Google Scholar 

  24. G. Parmar, S. Mukherjee, R. Prasad, System reduction using eigen spectrum analysis and Pade approximation technique. Int. J. of Comput. Math. 84(12), 1871–1880 (2007)

    Article  MathSciNet  Google Scholar 

  25. G. Parmar, R. Prasad, S. Mukherjee, A mixed method for large scale system modeling using eigen spectrum analysis and Cauer second form. IETE J. Res. 53(2), 93–102 (2007)

    Article  Google Scholar 

  26. A.K. Prajapati, R. Prasad, Model order reduction by using the balanced truncation and factor division methods. IETE J. Res. 65(6), 827–842 (2019)

    Article  Google Scholar 

  27. R. Prasad, Pade type model order reduction for multivariable systems using Routh approximations. Electr. Eng. 26(6), 445–459 (2000)

    MATH  Google Scholar 

  28. R. Prasad, J. Pal, Stable reduction of linear systems by continued fractions. J. Inst. Eng. India IE I(72), 113–116 (1991)

    Google Scholar 

  29. R.S. Sengar, K. Chatterjee, J. Singh, A mixed approach for approximation of higher order linear time invariant systems. Int. J. Eng. Technol. 7(439), 375–380 (2018)

    Google Scholar 

  30. R.S. Sengar, K. Chatterjee, J. Singh, System approximation via restructured Hankel matrix. Circuits Syst. Signal Process. (2021). https://doi.org/10.1007/s00034-021-01745-2

    Article  Google Scholar 

  31. A. Sikander, R. Prasad, A new technique for reduced-order modelling of linear time-invariant system. IETE J. Res. 63(3), 316–324 (2017)

    Article  Google Scholar 

  32. J. Singh, K. Chatterjee, C.B. Vishwakarma, MIMO system using eigen algorithm and improved Pade approximations. SOP Trans. Appl. Math. 1(1), 60–70 (2014)

    Article  Google Scholar 

  33. J. Singh, C.B. Vishwakarma, K. Chatterjee, Biased reduction method by combining improved modified pole clustering and improved Pade approximations. Appl. Math. Model. 40, 1418–1426 (2016)

    Article  MathSciNet  Google Scholar 

  34. N.K. Sinha, G.T. Bereznai, Optimal approximation of high order systems by low order models. Inst. J. Control 14, 951–959 (1971)

    Article  Google Scholar 

  35. A.K. Sinha, J. Pal, Simulation based reduced order modeling using a clustering technique. Comput. Electr. Eng. 16(3), 159–169 (1990)

    Article  Google Scholar 

  36. Y. Shamash, Linear system reduction using pade approximation to allow retention of dominant modes. Int. J. Control 21(2), 257–272 (1975)

    Article  MathSciNet  Google Scholar 

  37. Y. Shamash, Model reduction using minimal realization algorithm. Electron. Lett. 11(16), 385–387 (1975)

    Article  Google Scholar 

  38. Y. Shamash, Model reduction using the Routh stability criterion and the Pade approximation technique. Int. J. Control. 21(3), 475–484 (1975)

    Article  MathSciNet  Google Scholar 

  39. Y. Shamash, Stable reduced—order models using Pade-type approximations. IEEE Trans Automat. Contr. 19, 615–616 (1974)

    Article  Google Scholar 

  40. M. Telescu, N. Iassamen, P. Cloastre, N. Tanguy, A simple algorithm for stable order reduction of z-domain Laguerre models. Signal Process. 93, 332–337 (2013)

    Article  Google Scholar 

  41. C.P. Therapos, J.E. Diamessis, A new method for linear system reduction. J. Franklin Inst. 316, 87–92 (1983)

    Article  Google Scholar 

  42. C.B. Vishwakarma, R. Prasad, Clustering method for reducing order of linear system using Pade approximation. IETE J. Res. 54(5), 326–330 (2008)

    Article  Google Scholar 

  43. B.W. Wan, Linear model reduction using Mihailov criterion and Pade approximation technique. Int. J. Control. 33(6), 1073–1089 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramveer Singh Sengar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengar, R.S., Chatterjee, K. & Singh, J. System Simplification Using Pole Spectrum Analysis (PSA) with the Advantage of Dominant Pole Retention. Circuits Syst Signal Process 41, 102–121 (2022). https://doi.org/10.1007/s00034-021-01792-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01792-9

Keywords

Navigation