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Abstract
Entropy has been widely applied in system identification in the last decade. In this
paper, a novel stochastic gradient algorithm based on minimum Shannon entropy is
proposed. Though needing less computation than the mean square error algorithm,
the traditional stochastic gradient algorithm converges relatively slowly. To make the
convergence faster, a multi-error method and a forgetting factor are integrated into the
algorithm. The scalar error is replaced by a vector error with stacked errors. Further,
a simple step size method is proposed and a forgetting factor is adopted to adjust the
step size. The proposed algorithm is utilized to estimate the parameters of an ARX
model with random impulse noise. Several numerical solutions and case study indicate
that the proposed algorithm can obtain more accurate estimates than the traditional
gradient algorithm and has a faster convergence speed.

Keywords ARX model · Parameter estimation · Minimum error entropy ·
Information gradient · Multi-error · Forgetting factor

Symbols and abbreviations
u(k) System input at time k
y(k) System output at time k
y∗(k) System output without noise at time k
n(k) System noise at time k
θ Parameter vector
θ0 True value of parameter vector
θ̂ (k) Parameter estimate at time k
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θ̃ (k) θ̃(k) = θ̂ (k) − θ0
n Dimension of parameter vector
N Data length
L Parzen window length
σ Kernel width of Gaussian kernel
e Error variable
e(k) Error at time k
pdf Probability density function
f (e) Pdf of error
f̂ (e(k)) Estimate of f (e) at time k
H(e) Shannon entropy for e
Ĥ(e(k)) Estimate of H(e) at time k
E(�) Mathematical expectation
Δki Δki = e(k) − e(i)
εki εki = ϕ(k) − ϕ(i)
g(k) Stochastic gradient of Shannon entropy
κσ (�) Gaussian kernel with variance σ 2

κ ′
σ (·) Derivative of κσ (�)
SG Stochastic gradient
SIG Stochastic information gradient
η(k) Step size of SIG
ME Multi-error
p Stack length of ME
E(p, k) Stacked error vector
�(p, k) Stacked information matrix
Δ�(p; k, i)Δ�(p; k, i)=�(p, k) − �(p, i)
ΔE(p; k, i)ΔE(p; k, i)=E(p, k) − E(p, i)
FF Forgetting factor
λ Forgetting factor

H1 H1 = ∂gT

∂θ
I Identity matrix
γ Eigenvalue

1 Introduction

ARX model is an AutoRegressive model with eXogenous terms [31]. Because of its
simplicity and easy parameterization, the ARXmodel has been widely used tomodel a
lot of real systems, such as micro-turbines, data improving, fault detection, biomedical
signals, COVID-19 case forecasting and communication systems [1,3,7,28,34,44].

Much research has been performed to identify ARXmodels in the last five decades.
A piecewise auto-regressive exogenous structure was adopted to forecast the river
floods [18]. A novel automated framework based on generalized spectral decomposi-
tion was proposed to estimate the parameters of an ARX model [33]. A new method
based on the expectation–maximization (EM) algorithm was utilized for the identifi-
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cation of ARX models subject to missing data [24]. A recursive EM algorithm based
on Student’s t-distribution was used for robust identification of ARX models [8]. A
modified momentum gradient descent algorithm was investigated to identify ARX
models [50]. A three-stage algorithm was studied for the identification of fractional
differencing ARX with errors in variables [25].

However, most of the noises considered in the aforementioned papers are white
noises or Gaussian noises. Random impulse signals can often be found in industrial
signals, such as image signals, audio signals and communication signals [2,9,46].

Identification criteria play an important role in system identification. The classical
identification criteria include the least square criterion, maximum likelihood crite-
rion and so on. These criteria have the advantages of simple calculation and easy
theoretical analysis. However, the performance of the least-squares algorithm is poor
for the non-Gaussian case, and the maximum likelihood algorithm needs to know
the conditional probability density of the sample. Because of these problems, many
researchers have put forward many other criteria, such as p−norm error criterion
and mixed-norm error criterion [39,53]. In recent years, information criteria have
become more widespread in signal processing and system identification [14,23,32].
Compared with mean square error (MSE) criterion, which focuses on second-order
statistics, the information-theoretic criterion (e.g., minimum error entropy (MEE) [4],
Renyi’s entropy [15,41], fixed-point maximum correntropy [21]) is related to various
statistical behaviors of the probability density function (pdf) of the error. Algorithms
based on information-theoretic criterionmayhave better performance thanMSE-based
algorithms [6,15,16].

In the last decade, entropy has found significant applications in system identifi-
cation. A maximum correntropy criterion (MCC) algorithm was proposed for sparse
system identification based on normalized adaptive filter theory [30]. An extended
version of correntropy, whose center can be located at any position, and a new opti-
mization criterion based onMCCwith a variable center, were proposed [5]. A blocked
proportionate normalized maximum correntropy algorithm and a separable maximum
correntropy adaptive algorithm were presented to identify dynamic systems [29,45].

To decrease the entropy estimators’ complexity, a stochastic information gradient
(SIG) algorithm was proposed and its performance was investigated [14]. To improve
the estimates, a joint stochastic gradient algorithm based on MSE and MEE was
proposed and applied to identify an RBF network [4]. Though having less complexity,
the SIG converges very slowly. To speed up the SIG, like the multi-innovation used
in [12], a multi-error strategy is adopted and a feasible equation for calculation of the
step size is introduced.

Since its introduction in 2003, the SIG algorithm has been widely used in system
identification and machine learning. For example, a kernel-based gradient descent
algorithms based on MEE was proposed to find nonlinear structures in the data, and
its convergence rate was deduced [22]. A kernel adaptive filter for quaternion data
was developed, and a new algorithm based on the SIG approach was applied to this
filter [37]. To avoid unstable training or poor performance in deep learning, a strategy
of directly estimating the gradients of information measures with respect to model
parameters was explored, and a general gradient estimation method for information
measures was proposed [52]. To avoid potentially sub-optimal solutions with respect
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to class separability, a dimensionality reduction network training procedure based on
the stochastic estimate of the mutual information gradient was presented [38].

For several decades, data-driven techniques have been used in modeling and fault
detection. For example, a surrogate model was developed based on a data-driven
approach, and it can facilitate the design and optimization processes of permanent
magnet systems [36]. A Matlab toolbox for data-based fault detection was developed
in a unified data-driven framework. [27]. A new recursive total principle component
regression-based design and implementation approachwas proposed for efficient data-
driven fault detection and applied to vehicular cyber-physical systems [26].

In this paper, the problem of parameter identification of the ARX model disturbed
by random impulse noise is studied. The premise is that the structure of the model is
known, the type of noise is known, the identification data are normal measurement
data, and there are no outliers except impulse noise. The possible outliers, modeling
errors, and other uncertainties in practice are not considered. Interested readers can
refer to the recent literature [13,47–49]. The main contributions of this work are as
follows:

(1) For the SIG algorithm, a simple step size method is proposed.
(2) To make the algorithm faster, a multi-error method that uses stack error instead of

instantaneous scalar error is applied.
(3) Since the stack length can only be taken as an integer, a forgetting factor is used

to further accelerate the algorithm.
(4) The proposed algorithm is utilized to estimate the parameters of an ARX model

with random impulse noise. Several numerical simulations and a case study show
the effectiveness of the algorithm.

The rest of this work is organized as follows. In the next section, we describe the ARX
model to be estimated. Based on an SIG algorithm in Sect. 3, a multi-error SIG with a
forgetting factor is presented in Sect. 4. The convergence and the computational cost
are analyzed in Sect. 5. Then, parameter estimation of an ARX model with a random
impulse noise and a gas furnace dataset from the literature [42] is used to validate the
proposed algorithm in Sect. 6. Finally, conclusions are presented in Sect. 7.

2 ProblemDescription

Consider an ARX model depicted in Fig. 1, where u(k) is the input and y(k) is the
output. A(z−1) and B(z−1) are two polynomials with respect to z−1, and their degrees
are na and nb, respectively. The model is polluted by a random impulse noise v(k).
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Fig. 1 Block diagram of an
ARX model

It is easy to find that

y(k) = B(z−1)

A(z−1)
u(k) + 1

A(z−1)
v(k). (1)

Multiplying both sides of Eq. 1 by A(z−1) gives

A(z−1)y(k) = B(z−1)u(k) + v(k). (2)

Suppose A(z−1) = 1 + a1z−1 + a2z−2 + · · · + ana z
−na and B(z−1) = b1z−1 +

b2z−2 + · · · + bnb z
−nb , then we can directly parameterize the model as follows,

y(k) =
(
1 − A(z−1)

)
y(k) + B(z−1)u(k) + v(k),

= ϕT (k)θ + v(k),
(3)

with

⎧⎨
⎩

θ = [
a1, · · · , ana , b1, · · · , bnb

]T ∈ R
n×1,

ϕ(k) = [−y(k − 1), · · · ,−y(k − na), u(k − 1), · · · , u(k − nb)]T ∈ R
n×1,

n = na + nb.
(4)

Then, the identification of the ARX model shown in Fig. 1 can be transformed into
the estimation of the parameters θ based on the observations {u(k), y(k)}Nk=1 , where
N is the data length.

However, traditional identification algorithms, such as the least-square algorithm
and the mean square error algorithm, only consider the second moment of the error,
and in some cases (such as the presence of random impulse noise) identification results
deteriorate further. The information criterion algorithm based on a probability density
function (pdf) considers the statistical information of each order of the error and is
expected to achieve better estimates.

Next, we introduce the SIG algorithm and then describe our algorithm based on
information gradient, which is integrated with the multi-error and a forgetting factor.



920 Circuits, Systems, and Signal Processing (2022) 41:915–932

3 SIG of Shannon’s Error Entropy

Consider the parameterized system in Eq. 3, and denote a random error e(k) as

e(k) = y∗(k) − ϕT (k)θ, (5)

where y∗(k) is the system output without noise.
Shannon’s entropy for e with pdf f (e) is [43]

H(e) = −
∫ ∞

−∞
f (e) log f (e)de = E

[− log f (e)
]
. (6)

In practice, the pdf of e, i.e., f (e), is unknown. Thus, Eq. 6 cannot be used to
calculate the entropyof e directly.Oneway is to utilize aParzenwindow to approximate
the unknown pdf underlying the N observations by [41]

f̂ (e) = 1

N

N∑
i=1

κσ (e − e(i)) , (7)

where κσ (·) is the kernel function with size σ [40].
At time k, a Parzen window estimate of e with window length L is

f̂ (e(k)) = 1

L

k−1∑
i=k−L

κσ (Δki ) , (8)

where Δki=e(k) − e(i), and e(k), e(i) denote the error at time k, i , respectively.
Thus, the stochastic entropy estimate at time k becomes

Ĥ(e(k)) = E

[
− log

(
1

L

k−1∑
i=k−L

κσ (Δki )

)]
. (9)

Dropping the expectation in Eq. 9 [14], we obtain

Ĥ(e(k)) ≈ − log

(
1

L

k−1∑
i=k−L

κσ (Δki )

)
. (10)

The stochastic gradient of Shannon entropy concerning θ at time k, g, is

g = −

k−1∑
i=k−L

κ ′
σ (Δki )

(
∂e(k)
∂θ

− ∂e(i)
∂θ

)

k−1∑
i=k−L

κσ (Δki )

, (11)
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where κ ′
σ (·) is the derivative of the kernel function.

Using the following Gaussian kernel with variance σ 2, i.e.,

κσ (Δki ) = exp

(
−‖Δki‖2

2σ 2

)
, (12)

Equation 11 becomes

g =

k−1∑
i=k−L

κσ (Δki ) εkiΔki

σ 2
k−1∑

i=k−L
κσ (Δki )

, (13)

with
εki = ϕ(k) − ϕ(i). (14)

The SIG for estimating the parameter vector θ is obtained as follows:

θ̂ (k) = θ̂ (k − 1) + η(k)g, (15)

where η(k) is the step size and is critical for convergence speed. However, equations
to calculate the step size in [4] and [14] are too complicated to operate online. Here,
we utilize the equation in stochastic gradient [10]:

⎧⎨
⎩
r(k) = r(k − 1) + ‖ϕ(k)‖2 , r(0) = 1,

η(k) = 1

r(k)
.

(16)

In practice, the θ and the outputwithout noise y∗(k) in Eq. 5 are unknown.A feasible
way is to replace them by θ̂ (k − 1) and y(k), respectively. Thus, Eq. 5 becomes

e(k) = y(k) − ϕT (k)θ̂(k − 1). (17)

4 Forgetting Factor Multi-error SIG Algorithm

One drawback of the SIG algorithm is its slow convergence. To enable the algorithm
converge faster, a multi-error strategy is adopted and Eq. 13 is rewritten as follows:

g =

k−1∑
i=k−L

κσ (Δki )Δ�(p; k, i)ΔE(p; k, i)

σ 2
k−1∑

i=k−L
κσ (Δki )

(18)
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with {
Δ�(p; k, i)=�(p, k) − �(p, i),

ΔE(p; k, i)=E(p, k) − E(p, i),
(19)

where p is the stack length and E(p, k) and �(p, k) are the stacked error vector and
stacked information matrix, respectively,

E(p, k) =

⎡
⎢⎢⎢⎣

e(k)
e(k − 1)

...

e(k − p + 1)

⎤
⎥⎥⎥⎦ ∈ R

p×1, (20)

and
�(p, k) = [ϕ(k), ϕ(k − 1), · · · , ϕ(k − p + 1)] ∈ R

n×p. (21)

Note that the scalar error Δki in Eq. 13 is replaced by the vector error ΔE(k, i) in
Eq. 18. In other words, multi-error takes the place of a single error. Thus, the algorithm
is named a multi-error SIG algorithm (ME-SIG).

The stack length p can only be a positive integer. To make the ME-SIG faster, a
forgetting factor (FF) λ is introduced. The first equation of Eq. 16 becomes

r(k) = λr(k − 1) + ‖ϕ(k)‖2 , r(0) = 1. (22)

Equations 15 and 17–22 construct the FF-ME-SIG algorithm.

5 Performance Analysis

5.1 Convergence Analysis

The approximate linearization approach [17] is used to analyze the convergence of the
proposed ME-SIG algorithm in Eq. (15) with Eqs. (18) and (19).

Subtracting θ0 from both sides of Eq. (15), we obtain

θ̃ (k) = θ̃ (k − 1) + η(k)g, (23)

where θ̃ (k) = θ̂ (k) − θ0 is the estimation error vector of the parameter.
Approximating the gradient g in Eq. (18) using the first-order Taylor expansion:

g ≈ g(θ0) + H1

(
θ̂ (k − 1) − θ0

)

= H1

(
θ̂ (k − 1) − θ0

)

= H1θ̃ (k − 1),

(24)
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where H1 = ∂gT (θ0)
∂θ

is the Hessian matrix and is expressed as

H1 =

k−1∑
i=k−L

κσ (Δki )
(
ΔET (p; k, i))′

Δ�T (k, i)

σ 2
k−1∑

i=k−L
κσ (Δki )

+

k−1∑
i=k−L

κσ (Δki )ΔET (p; k, i) (
Δ�T (k, i)

)′

σ 2
k−1∑

i=k−L
κσ (Δki )

−

k−1∑
i=k−L

κσ (Δki )ΔET (p; k, i)Δ�T (k, i)
k−1∑

i=k−L
κ ′
σ (Δki )

σ 2
k−1∑

i=k−L
κ2
σ (Δki )

.

(25)

Substituting Eq. (24) into Eq. (23), we obtains

θ̃ (k) = θ̃ (k − 1) + η(k)H1θ̃ (k − 1), (26)

We analyze the convergence of Eq. 26 by borrowing the results from the LMS
convergence theory [19,20]. Assuming that the Hessian matrix H1 is a normal matrix
and can be decomposed into the following normal form:

H1 = Q1Λ1Q
−1
1 , (27)

where Q1 is an m × m orthogonal matrix, Λ1 = diag[γ1, γ2, · · · , γm], γi is the
eigenvalue of H1. Then, the recursive Eq. 26 can be expressed as

θ̃ (k) = Q1 [I + η(k)Λ1] Q
−1
1 θ̃ (k − 1)

= Q1

[
k∏

i=1

(I + η(i)Λ1)

]
Q−1

1 θ̃ (0).
(28)

Clearly, if the following conditions are satisfied, θ̃ (k) → 0 , i.e., θ̂ (k) → θ0:

∣∣1 + η(i)γ j
∣∣ < 1, i = 1, 2, · · · , k, j = 1, 2, . . . ,m. (29)

Thus, a sufficient condition that ensures the convergence of the algorithm is as
follows: ⎧⎪⎨

⎪⎩

γ j < 0, j = 1, 2, · · · ,m,

0 < η(i) <
2

max
j

|γ j | .
(30)
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Table 1 Computational cost of SIG, ME-SIG and FF-ME-SIG

Algorithm Computation cost (flops) n = 4, L = 3, p = 5 Time (s)

SIG 3nL + 17L + n + 2 93 0.1788

ME-SIG npL + pL + 16L + 2 125 0.1860

FF-ME-SIG npL + pL + 16L + 3 126 0.1862

5.2 Computational Analysis

According to the calculationmethod of [11], the calculation amount of each iteration of
the three algorithms is shown in Table 1, where ex is calculated by its Taylor expansion,
and the first three terms are used. ‘Time’ denotes the time that the numerical example
consumes.

From the calculation of complexity and running time, we can see that the former
algorithm has lower values than the others, while the latter two algorithms have lit-
tle difference. The computational complexity of the two algorithms proposed in this
paper is larger than that of the first algorithm, because the latter two algorithms need
the calculation of multi-error. In terms of running time, the latter two algorithms take
approximately 4% more time than the previous SIG algorithm, which is not a signifi-
cant difference.

6 Experimental Results

Consider the ARX model depicted in Fig. 1 with

{
A(z−1) = 1.0 − 1.5z−1 + 0.7z−2,

B(z−1) = 1.0z−1 + 0.5z−2,
(31)

where input data u(k) are anM-sequence and v(k) is a random impulse noise. 5%of the
output data (30 outputs) are randomly selected, and 30 noises with random amplitude
between 0 and 1 are added, respectively. The curves of input u(k) and output y(k) are
shown in Fig. 2. All simulation experiments use this model.

6.1 Numerical Simulation

(1) Results using SIG algorithm
The parameter estimates using the SIG with window length L = 3 are shown in

Table 2, where the estimation error δ is defined as δ=

∥∥∥θ̂ (k)-θ0
∥∥∥

‖θ0‖ × 100. It is easy to
determine that estimation error decreases as data length k increases (for a given L).
However, the errors are very large (38.9319%) at the end of the estimation.
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Fig. 2 Curves of input–output
data

Table 2 Results using SIG algorithm (L = 5)

k 25 50 100 200 400 600 True value

a1 −0.8723 −0.8514 −0.8443 −0.8453 −0.8461 −0.8436 −1.5000

a2 −0.1863 −0.0802 −0.0595 −0.0454 −0.0264 −0.0135 0.7000

b1 0.1902 0.2164 0.2192 0.2238 0.2288 0.2321 1.0000

b2 −0.0186 0.0397 0.0456 0.0526 0.0612 0.0666 0.5000

δ(%) 69.6451 68.1897 67.5927 66.9201 66.0873 65.6092

Table 3 Results using ME-SIG algorithm (p = 5, L = 3)

k 25 50 100 200 400 600 True value

a1 −1.3218 −1.3024 −1.3212 −1.3428 −1.3725 −1.3874 −1.5000

a2 −0.2220 0.4978 0.5452 0.5706 0.5970 0.6133 0.7000

b1 0.3139 0.8141 0.8219 0.8260 0.8375 0.8454 1.0000

b2 −0.0422 0.2836 0.3057 0.3321 0.3684 0.3854 0.5000

δ(%) 29.3258 20.1085 17.7285 15.8231 13.3009 11.9745

(2) Results using ME-SIG algorithm
The parameter estimates using the proposed ME-SIG with stack length p = 5 and

L = 3 are shown in Table 3. The estimation errors with different p are depicted in
Fig. 3 (L = 3). It can be seen that:

(1) Estimation error of a given p decreases when data length k increases;
(2) With stack length p increasing, the estimation error decreases quickly.

(3) Results using FF-ME-SIG algorithm
The parameter estimates using proposed FF-ME-SIG with forgetting factor λ =

0.99 are shown in Table 4, where L = 3 and p = 5. It can be seen that:
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Fig. 3 Estimation errors using
ME-SIG with different stack
length p

Table 4 Results using FF-ME-SIG algorithm (p = 5, L = 3, λ = 0.99)

k 25 50 100 200 400 600 True value

a1 −1.3236 −1.3184 −1.3425 −1.3746 −1.4372 −1.4641 −1.5000

a2 −0.2209 0.5130 0.5627 0.6075 0.6513 0.6741 0.7000

b1 0.3152 0.8302 0.8386 0.8463 0.8864 0.9188 1.0000

b2 −0.0425 0.3015 0.3283 0.3724 0.4446 0.4723 0.5000

δ(%) 29.1555 18.4745 15.7657 12.6848 7.4742 4.8337

Fig. 4 Estimation errors using
SIG, ME-SIG, FF-ME-SIG

(1) Estimation error decreases when data length k increases;
(2) Compared with Table 3, the estimation error of the FF-ME-SIG is smaller at the

same data length k.

(4) Comparison of the results of SIG, ME-SIG and FF-ME-SIG algorithms
The estimation errors using SIG, ME-SIG and FF-ME-SIG are depicted in Fig. 4.

It can be seen that:

(1) All curves decrease when data length k increases;
(2) The estimation error of the SIG algorithm is larger than that of ME-SIG, which

means that multi-error can improve the accuracy of the SIG’s estimate;
(3) The estimate of the FF-ME-SIG is the most accurate one of the three. In other

words, the introduction of the forgetting factor improves the accuracy of the esti-
mation.
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Table 5 Results using FF-ME-SIG algorithm under different noise additions (p = 5, L = 3, λ = 0.99)

Estimates 5% 10% 30% 50% True value

a1 −1.4641 −1.4322 −1.4807 −1.3607 1.5000

a2 0.6741 0.6419 0.6910 0.5651 0.7000

b1 0.9188 0.9084 0.9329 0.9424 1.0000

b2 0.4723 0.5026 0.4043 0.4841 0.5000

δ(%) 4.8337 6.4037 5.9477 10.1580

Fig. 5 Estimates of FF-ME-SIG using samples with different noise additions

(5) Results using FF-ME-SIG algorithm under different noise additions
To test the performance of the algorithm under different noise levels, we add 5%,

10%, 30%, and 50% of noises to the samples. The mean of the noise is 0.5, and the
amplitude is between 0 and 1. The estimation results when k = 600 are shown in
Table 5, where p = 5, L = 3, λ = 0.99. The estimation error curve is shown in
Fig. 5. It can be seen from Table 5 and Fig. 5 that with the increase in the added noise,
the estimation error tends to increase, but the change is small, which indicates that the
proposed algorithm has strong adaptability to noise.
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Fig. 6 Predicted and observed
output using FF-ME-SIG for
Eqs. 32–33

(6) Results using the FF-ME-SIG for the identification of the Narendra difference
equations

To support this paper’s argument, we add further simulation examples involving
synthetic input–output relations such as the Narendra difference equations proposed
in [35,51]:

y(n + 1) = 0.3 y(n) + 0.6 y(n − 1) + f [e(n)], (32)

where {
f (e) = 0.6 sin(πe) + 0.3 sin(3πe) + 0.1 sin(5πe)

e(n) = sin [(1 + a)ω0n] .
(33)

Using the following structure to the model above equation:

y(k) = a1y(k − 1) + a2y(k − 2) + a3y(k − 3) + a4y
2(k − 1) + a5y

2(k − 2) (34)

Let the data length be 240. The estimate using the proposed algorithm is
[0.3084, 0.3255, 0.3641,−0.0264, 0.0372] (when k = 240). The predicted y(k) and
observed y(k) are depicted in Fig. 6.

(7) Results using FF-ME-SIG algorithm and RLS, SG algorithm
To prove the superiority of the proposed algorithm, the identification results of the

stochastic gradient (SG) algorithm and recursive least squares (RLS) algorithm are
compared with that of the proposed algorithm. Figure 7 shows the estimation error
curves of the three algorithms.When k = 600, the estimation error of the SG, RLS and
FF-ME-SIG is 55.5395%, 5.2045% and 4.8337%, respectively. It can be seen that the
estimation error of SG is very large, and the estimation error of the RLS algorithm is
slightly larger than that of the proposed algorithm. However, due to the impulse noise,
the estimation error of the RLS algorithm changes dramatically, which indicates that
the estimates given by the RLS algorithm change significantly.
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Fig. 7 Estimate errors using SG,
RLS and FF-ME-SIG

Fig. 8 Curves of the input and
output data of a gas furnace

Table 6 Results using SIG,
ME-SIG and FF-ME-SIG
algorithm

k SIG ME-SIG FF-ME-SIG

a1 −0.4295 −0.6126 −0.6215

a2 −0.3003 −0.0561 0.0029

b1 −0.0868 −0.0904 0.0614

b2 −0.1350 −0.2137 −0.1414

b3 −0.1891 −0.4097 −0.4190

b4 −0.1994 −0.4148 −0.4577

b5 −0.1686 −0.2513 −0.2869

RMSE 0.2782 0.1183 0.0594

6.2 Case Study

The data set of a gas furnace from the literature [42] is used to validate the proposed
algorithm. These data were continuously collected from a gas furnace and then read
every 9 s. The air feed of the furnace was kept constant, but the methane feed rate was
varied and the resultingCO2 concentration in the off gaseswasmeasured.There are 296
input–output data in this set. The first 200 data are adopted to estimate the parameters.
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Fig. 9 Curves of the outputs and
prediction errors of a gas furnace

The curves of the input and output are shown in Fig. 8. The estimation results and
the prediction errors using SIG, ME-SIG and FF-ME-SIG are listed in Table 6. The
outputs y(k) and the prediction errors pe(k) using the proposed algorithm are shown
in Fig. 9.

(1) It can be seen from Table 6 that among three algorithms, the proposed FF-ME-SIG
algorithm has the smallest RMSE, which means that the proposed algorithm can
give the most accurate estimate.

(2) As shown in Fig. 9, the outputs of the obtainedmodel using the proposed algorithm
can predict the observations well.

7 Conclusions

In this paper, a novel SIG algorithm based onminimum error entropy is presented. The
traditional SIG algorithm needs less computation than theMSE algorithm. However, it
converges slowly. Amulti-error strategy and a forgetting factor are introduced to speed
up the SIG. We compared the results of SIG, ME-SIG and FF-ME-SIG by estimating
the parameters of an ARXmodel with random impulse noise and through a case study.
It is found that SIG with ME and FF can obtain accurate estimates, and it has a quick
convergence rate.

Data Availability Statement All data generated or analyzed during this study are included in the attached
file “data used in the paper.xlsx”.

References

1. H.N. Akouemo, R.J. Povinelli, Data improving in time series using ARX and ANN models. IEEE
Trans. Power Syst. 32(5), 3352–3359 (2017)

2. A. Awad, Impulse noise reduction in audio signal through multi-stage technique. Eng. Sci. Technol.
Int. J. 22(2), 629–636 (2018)

3. C. Böck, K. Kostoglou, P. Kovacs, M. Huemer, J. Meier, A linear parameter varying ARX model for
describing biomedical signal couplings, in Computer Aided Systems Theory-EUROCAST 2019. 17th
International Conference. (Las Palmas de Gran Canaria, Spain, 2020), pp. 339–346



Circuits, Systems, and Signal Processing (2022) 41:915–932 931

4. B. Chen, J. Hu, H. Li, Z. Sun. A joint stochastic gradient algorithm and its application to system
identification with RBF networks, in Proceedings of the 6th World Congress on Intelligent Control
and Automation (Dalian, China, 2006), pp. 1754–1758

5. B. Chen, X. Wang, Y. Li, J.C. Principe, Maximum correntropy criterion with variable center. IEEE
Signal Process. Lett. 26(8), 1212–1216 (2019)

6. B. Chen, Y. Zhu, J. Hu, J.C. Principe, System Parameter Identification: Information Criteria and
Algorithms (Elsevier, New York, 2013)

7. J. Chen, Y. Liu, F. Ding, Q. Zhu, Gradient-based particle filter algorithm for an ARX model with
nonlinear communication output. IEEE Trans. Syst. Man Cybern. Syst. 50(6), 2198–2207 (2020)

8. X. Chen, S. Zhao, F. Liu, Robust identification of linear ARX models with recursive EM algorithm
based on student’s t-distribution. J. Frankl. Inst. 358(1), 1103–1121 (2021)

9. H.Dawood,H.Dawood, P.Guo,Removal of random-valued impulse noise by local statistics.Multimed.
Tools Appl. 74(24), 11485–11498 (2015)

10. F. Ding, System identification. Part F: multi-innovation identification theory and methods. J. Nanjing
Univ. Inf. Sci. Technol. 4(1), 1–28 (2012)

11. F. Ding, New Theory of System Identification (Tsinghua University Press, Beijing, 2013)
12. F. Ding, T. Chen, Performance analysis of multi-innovation gradient type identification methods.

Automatica 43(1), 1–14 (2007)
13. X. Dong, S. He, V. Stojanovic, Robust fault detection filter design for a class of discrete-time conic-type

nonlinearMarkov jump systems with jump fault signals. IET Control Theory Appl. 14(14), 1912–1919
(2020)

14. D. Erdogmus, K.E. Hild, J.C. Principe, Online entropy manipulation: stochastic information gradient.
Signal Process. Lett. 10(8), 242–245 (2003)

15. D. Erdogmus, J.C. Principe, An error-entropy minimization algorithm for supervised training of non-
linear adaptive systems. IEEE Trans. Signal Process. 50(7), 1780–1786 (2002)

16. D. Erdogmus, J.C. Principe, Generalized information potential criterion for adaptive system training.
IEEE Trans. Neural Netw. 13(5), 35–44 (2002)

17. D. Erdogmus, J.C. Principe, Convergence properties and data efficiency of the minimum error entropy
criterion in Adaline training. IEEE Trans. Signal Process. 51(7), 1966–1978 (2003)

18. B. Hadid, E. Duviella, S. Lecoeuche, Data-driven modeling for river flood forecasting based on a
piecewise linear ARX system identification. J. Process Control 86, 44–56 (2020)

19. S. Haykin, Least-Mean-Square Adaptive Filters (Wiley, New York, 2003)
20. S. Haykin, Adaptive Filter Theory (Pearson Education Limited, England, 2014)
21. A.R. Heravi, G.A. Hodtani, Comparison of the convergence rates of the new correntropy-based

Levenberg–Marquardt (CLM) method and the fixed-point maximum correntropy (FP-MCC) algo-
rithm. Circuits Syst. Signal Process. 37(7), 2884–2910 (2018)

22. T. Hu,Q.Wu,D. Zhou,Kernel gradient descent algorithm for information theoretic learning. J. Approx.
Theory 263, 105518 (2021)

23. A. Hyvarinen, E. Oja, Independent component analysis: algorithms and applications. Neural Netw.
13(4), 411–430 (2000)

24. A.J. Isaksson, Identification of ARX-models subject to missing data. IEEE Trans. Autom. Control
38(5), 813–819 (2002)

25. D.V. Ivanov, I.L. Sandler, O.A. Katsyuba, V.N. Vlasova, Identification of FARARX models with
errors in variables, in Recent Trends in Intelligent Computing, Communication and Devices. Advances
in Intelligent Systems and Computing, vol. 1006, ed. by V. Jain, S. Patnaik, V.F. Popentiu, I. Sethi
(Springer, Singapore, 2020), pp. 481–487

26. Y. Jiang, S.Yin, Recursive total principle component regression based fault detection and its application
to vehicular cyber-physical systems. IEEE Trans. Industr. Inf. 14(4), 1415–1423 (2017)

27. Y. Jiang, S. Yin, Recent advances in key-performance-indicator oriented prognosis and diagnosis with
a Matlab toolbox: Db-kit. IEEE Trans. Industr. Inf. 15(5), 2849–2858 (2018)

28. F. Jurado, A. Cano, Use of ARX algorithms for modelling micro-turbines on the distribution feeder.
IEE Proc. Gener. Trans. Distrib. 151(2), 232–238 (2004)

29. Y. Li, Z. Jiang, W. Shi, X. Han, B. Chen, Blocked maximum correntropy criterion algorithm for
cluster-sparse system identifications. IEEE Trans. Circuits Syst. II Express Briefs 66(11), 1915–1919
(2019)

30. Y.Li,Y.Wang,R.Yang, F.Albu,A soft parameter function penalized normalizedmaximumcorrentropy
criterion algorithm for sparse system identification. Entropy 19(1), 1–16 (2017)



932 Circuits, Systems, and Signal Processing (2022) 41:915–932

31. L. Ljung, System Identification: Theory for the User (Tsinghua University Press, Beijing, 2002)
32. W. Magdy, T. Elsayed, Unsupervised adaptive microblog filtering for broad dynamic topics. Inf. Pro-

cess. Manage. 52(4), 513–528 (2016)
33. D. Maurya, A. Tangirala, S. Narasimhan. ARXmodel identification using generalized spectral decom-

position. eprint arXiv:2008.04779 (2020)
34. T. Najeh, C.B. Njima, T. Garna, J. Ragot, Input fault detection and estimation using pi observer based

on the ARX-Laguerre model. Int. J. Adv. Manuf. Technol. 90(5), 1317–1336 (2017)
35. K.S.Narendra,K. Parthasarathy, Identification and control of dynamical systemsusingneural networks.

IEEE Trans. Neural Netw. 1(1), 4–27 (1990)
36. V.T. Nguyen,M. Bermingham,M.S. Dargusch, Data-driven modelling of the interaction force between

permanent magnets. J. Magn. Magn. Mater. 532, 167869 (2021)
37. T. Ogunfunmi, C. Safarian, The quaternion stochastic information gradient algorithm for nonlinear

adaptive systems. IEEE Trans. Signal Process. 67(23), 5909–5921 (2019)
38. O. Özdenizci, D. Erdogmus, Stochastic mutual information gradient estimation for dimensionality

reduction networks. Inf. Sci. 570, 298–305 (2021)
39. E.V. Papoulis, T. Stathaki, A normalized robust mixed-norm adaptive algorithm for system identifica-

tion. IEEE Signal Process. Lett. 11(1), 56–59 (2004)
40. E. Parzen,On estimation of a probability density function andmode.Ann.Math. Stat. 33(3), 1065–1076

(1962)
41. J.C. Principe, Information Theoretic Learning: Renyis Entropy andKernel Perspectives (Springer, New

York, 2010)
42. T. Söderström, P. Stoica, Instrumental variable methods for system identification. Lect. Notes Control

Inf. Ences 21(1), 1–9 (1983)
43. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)
44. R.R. Sharma, M. Kumar, S. Maheshwari, K.P. Ray, Evdhm-Arima-based time series forecasting model

and its application for Covid-19 cases. IEEE Trans. Instrum. Meas. 70, 1–10 (2021)
45. W. Shi, Y. Li, B. Chen, A separable maximum correntropy adaptive algorithm. IEEE Trans. Circuits

Syst. II Express Briefs 67(11), 2797–2801 (2020)
46. W. Shieh, I.B. Djordjevic, OFDM for Optical Communications (Elsevier, London, 2010)
47. V. Stojanovic, S. He, B. Zhang, State and parameter joint estimation of linear stochastic systems in

presence of faults and non-gaussian noises. Int. J. Robust Nonlinear Control 30(16), 6683–6700 (2020)
48. V. Stojanovic, D. Prsic, Robust identification for fault detection in the presence of non-gaussian noises:

application to hydraulic servo drives. Nonlinear Dyn. 100, 2299–2313 (2020)
49. H. Tao, P. Wang, Y. Chen, V. Stojanovic, H. Yang, An unsupervised fault diagnosis method for rolling

bearing using STFT and generative neural networks. J. Franklin Inst. 357(11), 7286–7307 (2020)
50. Q. Tu, Y. Rong, J. Chen, Parameter identification of ARX models based on modified momentum

gradient descent algorithm. Complexity 2020(3), 1–11 (2020)
51. C. Turchetti, G. Biagetti, F. Gianfelici, P. Crippa, Nonlinear system identification: an effective frame-

work based on the Karhunen–Loeve transform. IEEE Trans. Signal Process. 57(2), 536–550 (2009)
52. L. Wen, H. Bai, L. He, Y. Zhou, M. Zhou, Z. Xu, Gradient estimation of information measures in deep

learning. Knowl. Based Syst. 224, 107046 (2021)
53. H. Zayyani, Continuous mixed p-norm adaptive algorithm for system identification. IEEE Signal

Process. Lett. 21(9), 1108–1110 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/2008.04779

	Identification of the ARX Model with Random Impulse Noise Based on Forgetting Factor Multi-error Information Entropy
	Abstract
	1 Introduction
	2 Problem Description
	3 SIG of Shannon's Error Entropy
	4  Forgetting Factor Multi-error SIG Algorithm 
	5 Performance Analysis
	5.1 Convergence Analysis
	5.2  Computational Analysis 

	6  Experimental Results 
	6.1 Numerical Simulation
	6.2 Case Study

	7  Conclusions 
	References




