Skip to main content
Log in

A Low-Area Low-Power Column-parallel Digital Decimation Filter Using 1-Bit Pre-BWI Topology for CMOS Image Sensor in 40-nm CMOS Process

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A low-area and low-power (LAP) design of second-order digital decimation filter (DDF) with 13-bit dynamic range is proposed in this paper, for column-parallel \(\varSigma \varDelta \) ADC array in CMOS image sensor (CIS). The proposed structure moves the location of the bit-wise-inversion (BWI) cell to the front of the ripple counter and subtracts a fixed array-wise residual value defined by the ADC over-sampling ratio. Then, the number of inverters and multiplexers in the BWI unit is significantly reduced without changing the overall logical functionality of the digital decimation filter. Moreover, an inverted 13-bit register circuit is designed and the transistor number per cell is reduced from 9 to 7, while the sum logic of the 13-bit adder is modified accordingly. A sequential logic front-end circuit is also proposed for input bitstream preprocess and the glitch due to the clock phase misalignment can be eliminated. Compared with prior arts, the transistor usage of the proposed decimation filter topology is significantly reduced to only 292 and the power consumption is also reduced due to the minimized usage of the pre-BWI cell. The area of the proposed decimation filter is about \(4.5\times 32\ {\upmu }\hbox {m}^2\) per column by using a 40-nm CMOS process, and according to the post-layout simulation, the typical power consumption is about \(0.96\ {\upmu }\hbox {W}\) per column at 50-MHz clock frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the first author on reasonable request.

References

  1. A. Boukhayma, A. Peizerat, C. Enz, A Sub-0.5 Electron Read Noise VGA Image Sensor in a Standard CMOS process. IEEE J. Solid-State Circuits 51(9), 2180–2191 (2016). https://doi.org/10.1109/JSSC.2016.2579643

    Article  Google Scholar 

  2. I. Cevik, S.U. Ay, An Ultra-Low Power Energy Harvesting and Imaging (EHI) Type CMOS APS Imager With Self-Power Capability. IEEE Trans. Circuits and Systems I: Regular Papers 62(9), 2177–2186 (2015). https://doi.org/10.1109/TCSI.2015.2451892 . Circuits and Systems I: Regular Papers 62(9), 2177–2186 (2015). https://doi.org/10.1109/TCSI.2015.2451892

  3. N. Chen, S. Zhong, M. Zou, J. Zhang, Z. Ji, L. Yao, A Low-noise CMOS image sensor with digital correlated multiple sampling. IEEE Trans. Circuits Syst. I Regular Papers 65(1), 85–94 (2018). https://doi.org/10.1109/TCSI.2017.2724855

    Article  Google Scholar 

  4. T.C. Caldwell, D.A. Johns, Incremental data converters at low oversampling ratios. IEEE Trans. Circuits Syst. I Regular Papers 57(7), 1525–1537 (2010). https://doi.org/10.1109/TCSI.2009.2034879

    Article  MathSciNet  Google Scholar 

  5. Y. Chae, J. Cheon, S. Lim, M. Kwon, K. Yoo, W. Jung, D. Lee, S. Ham, G. Han, A 2.1 M Pixels, 120 Frame/s CMOS Image Sensor With Column-Parallel \(\varDelta \varSigma \) ADC Architecture. IEEE J. Solid-State Circuits 46(1), 236–247 (2011). https://doi.org/10.1109/JSSC.2010.2085910

  6. Y. Jo, S. Hong, O. Kwon, A multi-bit incremental ADC based on successive approximation for low noise and high resolution column-parallel readout circuits. IEEE Trans. Circuits Syst. I Regular Papers 62(9), 2156–2166 (2015). https://doi.org/10.1109/TCSI.2015.2451811

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Jo, S. Hong, O. Kwon, A Low-Noise and Area-Efficient PWM-\(\varDelta \varSigma \) ADC Using a Single-Slope Quantizer for CMOS Image Sensors. IEEE Trans. Electron Devices 63(1), 168–173 (2016). https://doi.org/10.1109/TED.2015.2430846

    Article  Google Scholar 

  8. H. Kim, S. Hwang, J. Kwon, D. Jin, B. Choi, S. Lee, J. Park, J. Shin, S. Ryu, A delta-readout scheme for low-power CMOS image sensors with multi-column-parallel SAR ADCs. IEEE J. Solid-State Circuits 51(10), 2262–2273 (2016). https://doi.org/10.1109/JSSC.2016.2581819

    Article  Google Scholar 

  9. M. Kim, S. Hong, O. Kwon, An area-efficient and low-power 12-b SAR/single-slope ADC without calibration method for CMOS image sensors. IEEE Trans. Electron Devices 63(9), 3599–3604 (2016). https://doi.org/10.1109/TED.2016.2587721

    Article  Google Scholar 

  10. M. Klosowski, W. Jendernalik, J. Jakusz, G. Blakiewicz, S. Szczepański, A CMOS pixel with embedded ADC, digital CDS and gain correction capability for massively parallel imaging array. IEEE Trans. Circuits Syst. I Regular Papers 64(1), 38–49 (2017). https://doi.org/10.1109/TCSI.2016.2610524

    Article  Google Scholar 

  11. J. Lee, H. Park, B. Song, K. Kim, J. Eom, K. Kim, J. Burm, High frame-rate VGA CMOS image sensor using non-memory capacitor two-step single-slope ADCs. IEEE Trans. Circuits Syst. I Regular Papers 62(9), 2147–2155 (2015). https://doi.org/10.1109/TCSI.2015.2451791

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Lee, J. Lin, C. Hsieh, A 0.4 V 1.94 fJ/conversion-step 10 bit 750 kS/s SAR ADC with Input-Range-Adaptive Switching. IEEE Trans. Circuits Syst. I Regular Papers 63(12), 2149–2157 (2016). https://doi.org/10.1109/TCSI.2016.2617879

    Article  Google Scholar 

  13. J. Markus, J. Silva, G.C. Temes, Theory and Applications of Incremental \(\varSigma \varDelta \) Converters. IEEE Trans. Circuits and Systems I: Regular Papers 51(4), 678–690 (2004). https://doi.org/10.1109/TCSI.2004.826202

  14. Y. Oike, A. El Gamal, CMOS image sensor with per-column \(\varSigma \varDelta \) ADC and programmable compressed sensing. IEEE J. Solid-State Circuits 48(1), 318–328 (2013). https://doi.org/10.1109/JSSC.2012.2214851

    Article  Google Scholar 

  15. F. Tang, B. Wang, A. Bermak, X. Zhou, S. Hu, X. He, A column-parallel inverter-based cyclic ADC for CMOS image sensor with capacitance and clock scaling. IEEE Trans. Electron Devices 63(1), 162–167 (2016). https://doi.org/10.1109/TED.2015.2450253

    Article  Google Scholar 

  16. F. Tang, Z. Wang, Y. Xia, F. Liu, X. Zhou, S. Hu, Z. Lin, A. Bermak, An area-efficient column-parallel digital decimation filter with pre-BWI topology for CMOS image sensor. IEEE Trans. Circuits Syst. I Regular Papers 65(8), 2524–2533 (2018). https://doi.org/10.1109/TCSI.2018.2795086

    Article  Google Scholar 

  17. A. Waters, J. Muhlestein, U. Moon, Analysis of metastability errors in conventional, LSB-first, and asynchronous SAR ADCs. IEEE Trans. Circuits Syst. I Regular Papers 63(11), 1898–1909 (2016). https://doi.org/10.1109/TCSI.2016.2594256

    Article  Google Scholar 

  18. H. Yu, W. Tang, M. Guo, S. Chen, A two-step prediction ADC architecture for integrated low power image sensors. IEEE Trans. Circuits Syst. I Regular Papers 64(1), 50–60 (2017). https://doi.org/10.1109/TCSI.2016.2603519

    Article  Google Scholar 

  19. T. Yasue, K. Kitamura, T. Watabe, H. Shimamoto, T. Kosugi, T. Watanabe, S. Aoyama, M. Monoi, Z. Wei, S. Kawahito, A 1.7-in, 33-Mpixel, 120-frames/s CMOS Image Sensor With Depletion-Mode MOS Capacitor-Based 14-b Two-Stage Cyclic A/D Converters. IEEE Trans. Electron Devices 63(1), 153–161 (2016). https://doi.org/10.1109/TED.2015.2451700

    Article  Google Scholar 

  20. H. Zhu, M. Zhang, Y. Suo, T.D. Tran, J. Van der Spiegel, Design of a digital address-event triggered compressive acquisition image sensor. IEEE Trans. Circuits Syst. I Regular Papers 63(2), 191–199 (2016). https://doi.org/10.1109/TCSI.2015.2512719

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partly sponsored by Natural Science Foundation of Chongqing, China, No. cstc2019jcyj-zdxmX0014.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Circuit design, simulation, layout were performed by Peng Yin, Zhongjie Wang, and Yingjun Xia. Professor Fang Tang and Xiaoping Zeng provided experimental platforms for circuit design and professional guidance for the revision of the paper.

Corresponding authors

Correspondence to Yingjun Xia or Xiaoping Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, P., Wang, Z., Xia, Y. et al. A Low-Area Low-Power Column-parallel Digital Decimation Filter Using 1-Bit Pre-BWI Topology for CMOS Image Sensor in 40-nm CMOS Process. Circuits Syst Signal Process 41, 2681–2698 (2022). https://doi.org/10.1007/s00034-021-01898-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01898-0

Keywords

Navigation