Skip to main content
Log in

A High-Precision Two-Dimensional DOA Estimation Algorithm with Parallel Coprime Array

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Recently, compressed sensing algorithms, including convex optimization and greedy algorithm, are considered as a new development for direction of arrival (DOA) estimation. For the problem of two-dimensional (2-D) DOA estimation, the existing convex optimization-based methods are usually limited by their computational complexity, while the greedy algorithm-based estimation is subjected to its low estimation accuracy. In the current paper, we propose a new 2-D DOA estimation scheme with parallel coprime array. We proposed a modified orthogonal matching pursuit method for the parallel coprime array, which transforms the 2-D DOA estimation into one-dimensional (1-D) DOA estimation to reduce the computation complexity. In addition, the proposed estimation scheme makes full use of the cross-correlation information of the received signal and combines the advantages of the coprime array to achieve a much higher precision with fewer array elements. The simulation results demonstrate the superiority of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Aghababaiyan, V. Shah-Mansouri, B. Maham, High-precision omp-based direction of arrival estimation scheme for hybrid non-uniform array. IEEE Commun. Lett. 24(2), 354–357 (2019)

    Article  Google Scholar 

  2. G.S. Bloom, S.W. Golomb, Applications of numbered undirected graphs. Proc. IEEE 65(4), 562–570 (1977)

    Article  Google Scholar 

  3. T. Blumensath, M.E. Davies, Gradient pursuits. IEEE Trans. Signal Process. 56(6), 2370–2382 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Blumensath, M.E. Davies, Stagewise weak gradient pursuits. IEEE Trans. Signal Process. 57(11), 4333–4346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. E.J. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Carlin, P. Rocca, G. Oliveri et al., Directions-of-arrival estimation through Bayesian compressive sensing strategies. IEEE Trans. Antennas Propag. 61(7), 3828–3838 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. S.S. Chen, D. Saunders, Atomic decomposition by basis pursuit. Siam Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Ganguly, J. Ghosh, K. Srinivas et al., Compressive sensing based two-dimensional DOA estimation using l-shaped array in a hostile environment. Traitement du Signal. 36(6), 529–538 (2019)

    Article  Google Scholar 

  10. J.F. Gu, P. Wei, Joint SVD of two cross-correlation matrices to achieve automatic pairing in 2-d angle estimation problems. IEEE Antennas Wirel. Propag. Lett. 6(99), 553–556 (2007)

    Article  Google Scholar 

  11. J. He, L. Li, T. Shu, 2-D direction finding using parallel nested arrays with full co-array aperture extension. Signal Process. 178, 107795 (2021)

    Article  Google Scholar 

  12. J. He, L. Li, T. Shu, Sparse nested arrays with spatially spread orthogonal dipoles: high accuracy passive direction finding with less mutual coupling. IEEE Trans. Aero. Elec. Sys. 57(4), 2337–2345 (2021)

    Article  Google Scholar 

  13. P. Heidenreich, M. Rubsamen, M. Rubsamen, Joint 2-D DOA estimation and phase calibration for uniform rectangular arrays. IEEE Trans. Signal Process. 60(9), 4683–4693 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Karabulut, T. Kurt, A. Yongacoglu, Estimation of directions of arrival by matching pursuit (EDAMP). Eurasip J. Wirel. Comm. 2005(2), 1–9 (2005)

    MATH  Google Scholar 

  15. K. Kheyrolahpour, A. Mahmoudi, B. Dumitrescu, DOA estimation in the autocorrelation domain for coprime array. Digit. Signal Process. 110, 102940 (2020)

    Article  Google Scholar 

  16. J. Li, D. Jiang, X. Zhang, Sparse representation based two-dimensional direction of arrival estimation using co-prime array. Multidim. Syst. Signal Process. 29, 35–47 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Li, Y. Lia, X. Zhang, Two-dimensional off-grid DOA estimation using unfolded parallel coprime array. IEEE Commun. Lett. 22(12), 2495–2498 (2018)

    Article  Google Scholar 

  18. C.L. Liu, P.P. Vaidyanathan, Remarks on the spatial smoothing step in coarray music. IEEE Signal Process Lett. 22(9), 1438–1442 (2015)

    Article  Google Scholar 

  19. S. Liu, Z. Mao, Y.D. Zhang et al., Rank minimization-based toeplitz reconstruction for doa estimation using coprime array. IEEE Commun. Lett. 25(7), 2265–2269 (2021)

    Article  Google Scholar 

  20. D. Malioutov, M. Cetin, A.S. Willsky, A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. S.G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  22. P. Pal, P.P. Vaidyanathan, Nested arrays: a novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 58(8), 4167–4181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Pal, P.P. Vaidyanathan, Coprime sampling and the MUSIC algorithm, in Proc. IEEE Digital Signal Process. Workshop and IEEE Signal Process. Educ. Workshop (DSP/SPE), (Sedona, AZ, 2011), pp. 289-294

  24. X.Y. Pan, Q.P. Xie, J.Y. Chen et al., Two-dimensional underdetermined doa estimation of quasi-stationary signals using parallel nested array. Radioengineering 29(1), 197–205 (2020)

    Article  Google Scholar 

  25. S. Qin, Y.D. Zhang, M.G. Amin, Improved two-dimensional DOA estimation using parallel coprime arrays. Signal Process 172, 107428 (2020)

    Article  Google Scholar 

  26. R. Roy, T. Kailath, ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    Article  MATH  Google Scholar 

  27. R. Roy, T. Kailath, Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 16(2), 172–175 (1968)

    Article  Google Scholar 

  28. S. Salari, F. Chan, Y. Chan et al., DOA estimation using compressive sampling-based sensors in the presence of interference. IEEE Trans. Aero. Elec. Sys. 56(6), 4395–4405 (2020)

    Article  Google Scholar 

  29. S. Salari, F. Chan, Y. Chan et al., Joint DOA and clutter covariance matrix estimation in compressive sensing MIMO radar. IEEE Trans. Aero. Elec. Sys. 55(1), 318–331 (2019)

    Article  Google Scholar 

  30. R. Schmidt, R.O. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  31. J. Shen, T. Zhou, C. Xu et al., Localization for mixed far-field and near-field sources utilizing improved symmetric nested array. Digit. Signal Process 107, 102879 (2020)

    Article  Google Scholar 

  32. Q. Shen, W. Liu, L. Wang et al., Group sparsity based localization for far-field and near-field sources based on distributed sensor array networks. IEEE Trans. Signal Process 68, 6493–6508 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Q. Si, Y.D. Zhang, M.G. Amin, Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Process 63(6), 1377–1390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Stoica, K.C. Sharman, Maximum likelihood methods for direction-of-arrival estimation. IEEE Trans. Acoust. Speech Signal Process 38(7), 1132–1143 (1990)

    Article  MATH  Google Scholar 

  35. N. Tayem, H.M. Kwon, L-shape 2-dimensional arrival angle estimation with propagator method. IEEE Trans. Antennas Propag. 53(5), 1622–1630 (2005)

    Article  Google Scholar 

  36. J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory. 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. P.P. Vaidyanathan, P. Pal, Sparse sensing with co-pprime samplers and arrays. IEEE Trans. Signal Process 59(2), 573–586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Z. Weng, P.M. Djurić, A search-free DOA estimation algorithm for coprime arrays, digit. Signal Process 24, 27–33 (2014)

    Google Scholar 

  39. Y. Wu, G. Liao, H.C. So, A fast algorithm for 2-D direction-of-arrival estimation. Signal Process 83(8), 1827–1831 (2003)

    Article  MATH  Google Scholar 

  40. X. Wu, W.P. Zhu, J. Yan, Direction of arrival estimation for off-grid signals based on sparse bayesian learning. IEEE Sens. J. 16(7), 2004–2016 (2016)

    Article  Google Scholar 

  41. R. Wu, Z. Zhang, Convex optimization-based 2-D DOA estimation with enhanced virtual aperture and virtual snapshots extension for l-shaped array. IEEE Trans. Veh. Technol. 69(6), 6473–6484 (2020)

    Article  Google Scholar 

  42. Y. Zhang, S. Liu, Z. Mao, et al., DoA estimation based on accelerated structured alternating projection using coprime array, in Proc. SPIE 12166, seventh Asia Pacific conference on optics manufacture and 2021 international forum of young scientists on advanced optical manufacturing (APCOM and YSAOM 2021), 121660T (15 February 2022)

  43. Z. Zheng, Y. Huang, W.-Q. Wang et al., Direction-of-arrival estimation of coherent signals via coprime array interpolation. IEEE Signal Process Lett. 27(1), 585–589 (2020)

    Article  Google Scholar 

  44. Z. Zheng, M. Fu, W.-Q. Wang et al., Symmetric displaced coprime array configurations for mixed near and far field source localization. IEEE Trans. Antennas Propag. 69(1), 465–477 (2021)

    Article  Google Scholar 

  45. Z. Zheng, Y. Huang, W.-Q. Wang et al., Augmented covariance matrix reconstruction for DOA estimation using difference coarray. IEEE Trans. Signal Process 69, 5345–5358 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  46. C. Zhou, Y. Gu, W.Z. Song, et al., Robust adaptive beamforming based on DOA support using decomposed coprime subarrays, in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP, Shanghai, 2016), pp. 2986-2990

  47. C. Zhou, Y. Gu, Z. Shi et al., Off-grid direction-of-arrival estimation using coprime array interpolation. IEEE Signal Process Lett. 25(11), 1710–1714 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under Grants \(\sharp \)62071349, \(\sharp \)61803294 and \(\sharp \)U21A20455, and the Science and Technology Program of Shaanxi Province under Grand \(\sharp \)2020JQ-684 and \(\sharp \)2020JM-499.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Chen, Y., Zang, B. et al. A High-Precision Two-Dimensional DOA Estimation Algorithm with Parallel Coprime Array. Circuits Syst Signal Process 41, 6960–6974 (2022). https://doi.org/10.1007/s00034-022-02102-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02102-7

Keywords

Navigation