Skip to main content
Log in

A Programmable Analog Front-End IC Applied for Biomedical Signal Monitoring Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a programmable low-power analog front-end (AFE) integrated circuit (IC) for biomedical signal monitoring systems is presented. The whole system includes four parts, instrumentation amplifiers (IA), programmable gain amplifiers (PGA), programmable bandwidth filters (PBF) and successive approximation register analog-to-digital convertors (SAR ADC). The proposed IA employs a pseudo-differential structure to enhance the input impedance of the system. A novel hybrid bandwidth extension technology is introduced in the proposed PGA to correct the low-frequency distortion and improve the low-frequency bandwidth. In the design of PBF, the current steering technology is applied to achieve an area-efficient and energy-efficient architecture. Furthermore, a novel efficient switching scheme and a self-calibration dynamic element matching method are presented in the design of SAR ADC to reduce the power consumption and eliminate the effect of capacitor mismatch. In 0.18 μm CMOS technology, this AFE IC consumes 46.8 μW and occupies 0.36 mm2. It achieves a variable gain from 40.4 to 55.1 dB under different modes designed for different biomedical signals. The spurious-free dynamic range and signal-to-noise plus distortion ratio of the proposed SAR ADC are 71.3 and 53.3 dB, respectively, along with a figure of merit of 0.18 pJ/conv.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Akbari, O. Hashemipour, M. Nazari, F. Moradi, A charge sharing-based switching scheme for SAR ADCs. Int. J. Circuit Theory Appl. 47, 1188–1198 (2019)

    Article  Google Scholar 

  2. W. Bai, Z. Zhu, Y. Li, L. Liu, A 64.8μW>2.2GΩ DC–AC configurable CMOS front-end IC for wearable ECG monitoring. IEEE Sens. J. 18, 3400–3409 (2018)

    Article  Google Scholar 

  3. C.-H. Chang, S.A. Zahrai, K. Wang, L. Xu, I. Farah, M. Onabajo, An analog front-end chip with self-calibrated input impedance for monitoring of biosignals via dry electrode-skin interfaces. IEEE Trans. Circuits Syst. I Reg. Papers 64, 2666–2678 (2017)

    Article  Google Scholar 

  4. S. Dong, X. Tong, L. Liu, A. Yang, R. Li, A gain & bandwidth reprogrammable neural recording amplifier with leakage reduction switches. In 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 1–3 (2019)

  5. A.L. Goldberger et al., PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  6. W. Guo, Y. Kim, A.H. Tewfik, N. Sun, A fully passive compressive sensing SAR ADC for low-power wireless sensors. IEEE J. Solid-State Circuits 52, 2154–2167 (2017)

    Article  Google Scholar 

  7. N. Helleputte, S. Kim, H. Kim, J. Kim, C. Hoof, R. Yazicioglu, A 160 uA biopotential acquisition IC with fully integrated IA and motion artifact suppression. IEEE Trans. Biomed. Circuits Syst. 6, 552–561 (2012)

    Article  Google Scholar 

  8. Y. Hsu, Z. Liu, M. Hella, A 12.3-μW 0.72-mm2 fully integrated front-end IC for arterial pulse waveform and ExG recording. IEEE J. Solid-State Circuits 55, 2756–2770 (2020)

    Article  Google Scholar 

  9. J. Lee, K. Lee, U. Ha, J. Kim, K. Lee, S. Gweon, J. Jang, H. Yoo, A 0.8-V 82.9-μW in-ear BCI controller IC with 8.8 PEF EEG instrumentation amplifier and wireless BAN transceiver. IEEE J. Solid-State Circuits 54, 1185–1195 (2019)

    Article  Google Scholar 

  10. C.C. Liu, S.J. Chang, G.Y. Huang, Y.Z. Lin, A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J. Solid-State Circuits 45, 731–740 (2010)

    Article  Google Scholar 

  11. W. Lin, T. Kuo, A compact dynamic-performance-improved current-steering DAC with random rotation-based binary-weighted selection. IEEE J. Solid-State Circuits 47, 444–453 (2012)

    Article  Google Scholar 

  12. J. Luo, J. Li, N. Ning, K. Wu, Z. Liu, Y. Liu, Q. Yu, A low voltage 10-bit non-binary 2b/cycle time and voltage based SAR ADC. In IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2019)

  13. K. Ng, A. Rusly, G. Gammad, N. Le, S. Liu, K. Leong, M. Zhang, J. Ho, J. Yoo, S. Yen, A 3-Mbps, 802.11g-based EMG recording system with fully implantable 5-electrode EMGxbrk acquisition device. IEEE Trans. Biomed. Circuits Syst. 14, 889–902 (2020)

    Article  Google Scholar 

  14. E. Rahimi, M. Yavari, Energy-efficient high-accuracy switching method for SAR ADCs. Electron. Lett. 50, 499–501 (2014)

    Article  Google Scholar 

  15. A. Rodríguez-Pérez, M. Delgado-Restituto, F. Medeiro, A 515 nW, 0–18 dB programmable gain analog-to-digital converter for in-channel neural recording interfaces. IEEE Trans. Biomed. Circuits Syst. 8, 358–370 (2014)

    Article  Google Scholar 

  16. A. Rodríguez-Pérez, J. Ruiz-Amaya, M. Delgado-Restituto, Á. Rodríguez-Vázquez, A low-power programmable neural spike detection channel with embedded calibration and data compression. IEEE Trans. Biomed. Circuits Syst. 6, 87–100 (2012)

    Article  Google Scholar 

  17. A. Sanyal, N. Sun, SAR ADC architecture with 98% reduction in switching energy over conventional scheme. Electron. Lett. 49, 248–250 (2013)

    Article  Google Scholar 

  18. S. Teng, R. Rieger, Y. Lin, Programmable ExG biopotential front-end IC for wearable applications. IEEE Trans. Biomed. Circuits Syst. 8, 543–551 (2014)

    Article  Google Scholar 

  19. X. Wang, H. Huang, Q. Li, Design considerations of ultralow-voltage self-calibrated SAR ADC. IEEE Trans. Circuits Syst. II Exp. Briefs 62, 337–341 (2015)

    Google Scholar 

  20. J. Xu et al., A 36 μW 1.1 mm2 reconfigurable analog front-end for cardiovascular and respiratory signals recording. IEEE Trans. Biomed. Circuits Syst. 12, 774–783 (2018)

    Article  Google Scholar 

  21. L. Yan et al., A 680 nA fully integrated implantable ECG-acquisition IC with analog feature extraction. In IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp. 418–419 (2014)

  22. F.M. Yaul, A.P. Chandrakasan, A noise-efficient 36 nV/√Hz chopper amplifier using an inverter-based 0.2-V supply input stage. IEEE J. Solid-State Circuits 52, 3032–3042 (2017)

    Article  Google Scholar 

  23. D. Yoon, D. Jung, B. Jung, J. Choi, Y. Jo, S. Lee, W. Lee, K. Baek, LW-DEM: designing a low power digital-to-analog converter using lightweight dynamic element matching technique. IEEE Access 7, 112617–112628 (2019)

    Article  Google Scholar 

  24. T. Yousefi, A. Dabbaghian, M. Yavari, An energy-efficient DAC switching method for SAR ADCs. IEEE Trans. Circuits Syst. II Express Briefs 65, 41–45 (2018)

    Google Scholar 

  25. C. Zhang, J. Wang, L. Wang, L. Liu, Y. Li, Z. Zhu, High input impedance low-noise CMOS analog frontend IC for wearable electrocardiogram monitoring. IEEE Trans. Circuits Syst. II Exp. Briefs 67, 1169–1173 (2020)

    Google Scholar 

  26. Z. Zhu, W. Bai, A 0.5-V 1.3-μW analog front-end CMOS circuit. IEEE Trans. Circuits Syst. II Exp. Briefs 63, 523–527 (2016)

    Google Scholar 

  27. Y. Zhu, C. Chan, U. Seng-Pan, R. Martins, A 10.4-ENOB 120MS/s SAR ADC with DAC linearity calibration in 90 nm CMOS. In IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 1–4 (2013)

  28. Y. Zhu, C.H. Chan, U.F. Chio, S.W. Sin, U. Seng-Pan, R.P. Martins, F. Maloberti, A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE J. Solid-State Circuits 45, 1111–1121 (2010)

    Article  Google Scholar 

  29. Z. Zhu, Y. Xiao, X. Song, VCM-based monotonic capacitor switching scheme for SAR ADC. Electron. Lett. 49, 327–329 (2013)

    Article  Google Scholar 

  30. H. Zhuang, C. Tong, X. Peng, H. Tang, Low-power, low-noise edge-race comparator for SAR ADCs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28, 2699–2707 (2020)

    Article  Google Scholar 

  31. X. Zou, X. Xu, L. Yao, Y. Lian, A 1-V 450-nW fully integrated programmable biomedical sensor interface chip. IEEE J. Solid-State Circuits 44, 1067–1077 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Wuhu and Xidian University special fund for industry-university-research cooperation (Project No.: XWYCXY-012020013-HT) and CHINA SCHOLARSHIP COUNCIL (CSC) (Project No.: 202006960020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hualian Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Tang, H., Wang, Z. et al. A Programmable Analog Front-End IC Applied for Biomedical Signal Monitoring Systems. Circuits Syst Signal Process 42, 2–26 (2023). https://doi.org/10.1007/s00034-022-02119-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02119-y

Keywords

Navigation