Skip to main content
Log in

A Novel Feature Enhancement Technique for ECG Arrhythmia Classification Using Discrete Anamorphic Stretch Transform

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, one-dimensional Discrete Anamorphic Stretch Transform is proposed as an additional pre-processor for the feature extraction of the ECG signal using discrete wavelet transform in order to enhance the arrhythmia classification accuracy. Three DAST kernels: linear, sublinear, and superlinear kernels are proposed for enhancing the morphological features of the QRS complex. Its effectiveness is evaluated using two classifiers: feed-forward-based neural network and support vector machine with radial basis function. The MIT–BIH arrhythmia database and the generic cardiac beat classes such as normal (N), supraventricular ectopic (S), ventricular ectopic (V), fusion (F) and unknown beat (Q) are used for evaluating the proposed pre-processor. The training and testing of the classifier follow an inter-patient as well as intra-patient procedures. The classifier with SVM_RBF and the proposed pre-processor using DAST result in an increase in the average accuracy, sensitivity, specificity, positive predictivity, F-score and overall accuracy by 1.29%, 15.63%, 3.7%, 35.7%, 20.66%, and 2.796%, respectively, compared to that without DAST. The percentage improvement in the above performance metrics using ANN Classifier with DAST is 2.99%, 27.73%, 6.83%, 64.27%, 31.53% and 6.48%, respectively, compared to that without DAST. The morphological features obtained using DAST and DWT are also combined with RR-interval features. The combined feature set is found to have better classification accuracy than that using only morphological features. The accuracy of the proposed classifier is also found to be improved compared to many of the standard ECG classifiers reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are publically available and cited in [50].

References

  1. D. Ai, J. Yang, Z. Wang, J. Fan, C. Ai, Y. Wang, Fast multi-scale feature fusion for ECG heartbeat classification. EURASIP J. Adv. Signal Process. (2015). https://doi.org/10.1186/s13634-015-0231-0

    Article  Google Scholar 

  2. M. AlMahamdya, H.B. Riley, Performance study of different denoising methods for ECG signals. Procedia Comput. Sci. 37, 325–332 (2014)

    Article  Google Scholar 

  3. M.H. Asghari, B. Jalali, Anamorphic transformation and its allocation to time-bandwidth compression. Appl. Opt. 52, 6735–6743 (2013)

    Article  Google Scholar 

  4. M.H. Asghari, B. Jalali, Big data compression using anamorphic stretch transform. In: ASE BIGDATA/SOCIALCOM/Cybersecurity Conference (2014)

  5. M.H. Asghari, B. Jalali, Discrete anamorphic transform for image compression. IEEE Signal Process. Lett. 21, 829–833 (2014)

    Article  Google Scholar 

  6. S.K. Berkaya, A.K. Uysal, E.S. Gunal, S. Ergin, S. Gunal, M.B. Gulmezoglu, A survey on ECG analysis. Biomed. Signal Process. Control 43, 216–235 (2018)

    Article  Google Scholar 

  7. J.C. Bezdek, N.R. Pal, Some new indexes of cluster validity. IEEE Trans. Syst. Man Cybernet. B 28, 301–315 (1998)

    Article  Google Scholar 

  8. F. Bouaziz, H. Oulhadj, D. Boutana, P. Siarry, Automatic ECG arrhythmias classification scheme based on the conjoint use of the multi-layer perceptron neural network and a new improved metaheuristic approach. IET Signal Process. 13(8), 726–735 (2019)

    Article  Google Scholar 

  9. B.G. Celler, P.D Chazal, Low computational cost classifiers for ECG diagnosis using neural networks. In: Proc of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 3, 1337–1340 (1998)

  10. P.D. Chazal, M.O. Dwyer, R.B. Reilly, Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)

    Article  Google Scholar 

  11. P. De Chazal, R.B. Reilly, A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 53(12), 2535–2543 (2006)

    Article  Google Scholar 

  12. S.W. Chen, H.C. Chen, H.L. Chan, A real-time QRS detection Method based on moving-averaging incorporating with wavelet denoising. Comput. Methods Programs Biomed. 82, 187–195 (2006)

    Article  Google Scholar 

  13. T. Chen, E. Mazomenos, K. Maharatna, S. Dasmahapatra, M. Niranjan, On the trade-off of accuracy and computational complexity for classifying normal and abnormal ECG in remote CVD monitoring systems. In: IEEE Workshop on Signal Processing Systems 37–42 (2012)

  14. M.K. Das, S. Ari, ECG beats classification using mixture of features. hindawi publishing corporation international scholarly research notices. Article ID 178436 (2014)

  15. R. Debnath, N. Takahide, H. Takahashi, A decision based one-against-one method for multi-class support vector machine. Pattern Anal. Appl. 7, 164–175 (2004). https://doi.org/10.1007/s10044-004-0213-6

    Article  MathSciNet  Google Scholar 

  16. R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd edn. (Wiley Interscience Book, Hoboken, 2000)

    MATH  Google Scholar 

  17. M. Engin, ECG beat classification using neuro-fuzzy network. Pattern Recogn. Lett. 25, 1715–1722 (2004)

    Article  Google Scholar 

  18. E.D. Guler, Ubeyli, ECG beat classifier designed by combined neural network model. Pattern Recogn. 38(2), 199–208 (2005)

    Article  Google Scholar 

  19. N.I. Hasan, A. Bhattacharjee, Deep learning approach to cardiovascular disease classification employing modified ECG signal from empirical mode decomposition. Biomed. Signal Process. Control 52, 128–140 (2019)

    Article  Google Scholar 

  20. H.G. Hosseini, K.J. Reynolds, D. Powers, A multi-stage neural network classifier for ECG Events. In: Proceedings of the 23rd International Conference of the IEEE Engineering in Medicine and Biology Society. 2, (2001). https://doi.org/10.1109/IEMBS.2001.1020536

  21. Y.H. Hu, S. Palreddy, W.J. Tompkins, A patient-adaptable ECG beat classifier using a mixture of experts approach. IEEE Trans. Biomed. Eng. 44(9), 891–900 (1997)

    Article  Google Scholar 

  22. H. Huang, S. Hu, Y. Sun, A discrete curvature estimation based low-distortion adaptive savitzky-golay filter for ECG denoising. Sensors 19, 1617 (2019). https://doi.org/10.3390/s19071617

    Article  Google Scholar 

  23. J. Huang, B. Chen, B. Yao, W. He, ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2928017

    Article  Google Scholar 

  24. T. Ince, S. Kiranyaz, M. Gabbouj, A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans. Biomed. Eng. 56(5), 1415–1426 (2009)

    Article  Google Scholar 

  25. M. Jalalat, A. Mirzaei, A new hierarchical-clustering combination scheme based on scatter matrices and nearest neighbor criterion. In: 5th IEEE International Symposium on Telecommunications. (2010). https://doi.org/10.1109/ISTEL.2010.5734151

  26. B. Jalali, M.H. Asghari, The anamorphic stretch transform: putting the squeeze on “big data.” Opt. Photonics News 25(2), 24–31 (2014)

    Article  Google Scholar 

  27. W. Jiang, S.G. Kong, Block-based neural networks for personalized ECG Signal classification. IEEE Trans. Neural Netw. 18(6), 1750–1761 (2007)

    Article  Google Scholar 

  28. R.N. Kandala, R. Dhuli, P. Pławiak, G.R. Naik, H. Moeinzadeh, G.D. Gargiulo, S. Gunnam, Towards real-time heartbeat classification: evaluation of nonlinear morphological features and voting method. Sensors 19(23), 5079 (2019)

    Article  Google Scholar 

  29. M.R. Karimipour, Homaeinezhad, Real-time electrocardiogram P-QRS-T detection and delineation algorithm based on quality-supported analysis of characteristic templates. Comput. Biol. Med. 52, 153–165 (2014)

    Article  Google Scholar 

  30. L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis (John Wiley & Sons Inc, Hoboken, NJ, 1990)

    Book  MATH  Google Scholar 

  31. S. Kiranyaz, T. Ince, M. Gabbouj, Real-Time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2016)

    Article  Google Scholar 

  32. G.D Lannoy, D. Francois, J. Delbeke, M. Verleysen, Feature relevance assessment in automatic inter-patient heart beat classification. Bio-inspired Systems and Signal Processing. Biosignals (2010)

  33. G. Lenis, N. Pilia, T. Oesterlein, A. Luik, C. Schmitt, O. Dössel, P wave detection and delineation in the ECG based on the phase free stationary wavelet transform and using intracardiac atrial electrograms as reference. Biomed. Eng. Biomed. Tech. 61(1), 37–56 (2016)

    Article  Google Scholar 

  34. Z. Li, X. Feng, Z. Wu, C. Yang, B. Bai, Q. Yang, Classification of atrial fibrillation recurrence based on a convolution neural network with SVM architecture. IEEE Access 7, 77849–77856 (2019)

    Article  Google Scholar 

  35. C. Lin, C. Yang, Heartbeat classification using normalized RR intervals and morphological features. Math. Probl. Eng. Article ID 712474. (2014). https://doi.org/10.1155/2014/712474

  36. M. Llamedo, J.P. Martinez, An ECG classification model based on multilead wavelet transform features. Proc. Comput. Cardiol. 34, 105–108 (2007)

    Google Scholar 

  37. M. Llamedo, J.P. Martinez, Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 58(3), 616–625 (2011)

    Article  Google Scholar 

  38. Q. Long, Y. Ren, J. Han, X. Zeng, VLSI implementation for R-wave detection and heartbeat classification of ECG adaptive sampling signals. IEEE. 978-1-4673-9719-3/16/$31.00 (2016). https://doi.org/10.1109/ICSICT.2016.7998814

  39. E.J.D.S. Luz, W.R. Schwartz, G.C. Chavez, D. Menotti, ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Programs Biomed. 127, 144–164 (2016)

    Article  Google Scholar 

  40. M.S. Manikandan, S. Dandapat, Wavelet threshold based TDL and TDR algorithms for real-time ECG signal compression. Biomed. Signal Process. Control 3, 44–66 (2008)

    Article  Google Scholar 

  41. T. Mar, S. Zaunseder, J.P. Martinez, M. Llamedo, R. Poll, Optimization of ECG classification by means of feature selection. IEEE Trans. Biomed. Eng. 58(8), 2168–2177 (2011)

    Article  Google Scholar 

  42. R.J. Martis, U.R. Acharya, C.M. Lim, ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8, 437–448 (2013)

    Article  Google Scholar 

  43. R.J. Martis, U.R. Acharya, C.M. Lim, K.M. Mandana, A.K. Ray, C. Chakraborty, Application of higher order cumulant features for cardiac health diagnosis using ECG signals. Int. J. Neural Syst. 23(04), 1350014 (2013)

    Article  Google Scholar 

  44. R.J. Martis, U.R. Acharya, K.M. Mandana, A.K. Ray, C. Chakraborty, Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst. Appl. 39(14), 11792–11800 (2012)

    Article  Google Scholar 

  45. R.J. Martis, U.R. Acharya, K.M. Mandana, A.K. Ray, C. Chakraborty, Cardiac decision making using higher order spectra. Biomed. Signal Process. Control 8(2), 193–203 (2013)

    Article  Google Scholar 

  46. H.Y. Mir, O. Singh, ECG denoising and feature extraction techniques – a review. J. Med. Eng. Technol. (2021). https://doi.org/10.1080/03091902.2021.1955032

    Article  Google Scholar 

  47. T. Nguyen, X. Qin, A. Dinh, F. Bui, Low resource complexity R-peak detection based on triangle template matching and moving average filter. Sensors 19, 3997 (2019). https://doi.org/10.3390/s19183997

    Article  Google Scholar 

  48. J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 3, 230–236 (1985)

    Article  Google Scholar 

  49. K. Park, B. Cho, D. Lee, S. Song, J. Lee, Y. Chee, I. Kim, S. Kim, Hierarchical support vector machine based heartbeat classification using higher order statistics and hermite basis function. In: Proc. Comput. Cardiol. 229–232 (2008)

  50. Physionet.org: MIT-BIH Arrhythmia Database (2005). https://physionet.org/content/mitdb/1.0.0/

  51. V. Queiroz, E. Luz, G. Moreira, A. Guarda, D. Menotti Automatic cardiac arrhythmia detection and classification using vector cardiograms and complex networks. In: Annu Int Conf IEEE Eng Med Biol Soc. (2015). https://doi.org/10.1109/EMBC.2015.7319564

  52. Rabee, I. Barhumi, ECG Signal classification using support vector machine based on wavelet multiresolution analysis. Signal Processing and their Applications: Special Sessions. IEEE. (2012)

  53. S. Raj, G.S.S.P. Chand, K.C. Ray, ARM based arrhythmia beat monitoring system. Microprocess. Microsyst. 39, 504–511 (2015). https://doi.org/10.1016/j.micpro.2015.07.013

    Article  Google Scholar 

  54. K.N.V.P.S. Rajesh, R. Dhuli, Classification of ECG heartbeats using nonlinear decomposition methods and support vector machine. Comput. Biol. Med. 87, 271–284 (2017)

    Article  Google Scholar 

  55. R.G. Rivas, J.J. Garcia, W.P. Marnane, A. Hernandez, Novel real-time low-complexity QRS complex detector based on adaptive thresholding. IEEE Sens. J. 15(10), 6036–6043 (2015)

    Article  Google Scholar 

  56. E. Sadrfaridpour, T. Razzaghi, I. Safro, Engineering fast multilevel support vector machines. Mach. Learn. 108, 1879–1917 (2019)

    Article  MathSciNet  Google Scholar 

  57. S. Sahoo, B. Kanungo, S. Behera, S. Sabut, Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 108, 55–66 (2017)

    Article  Google Scholar 

  58. U. Satija, B. Ramkumar, M.S. Manikandan, A new automated signal quality-aware ECG beat classification method for unsupervised ECG diagnosis environments. IEEE Sens. J. 19 (1) (2019)

  59. U. Satija, B. Ramkumar, M.S. Manikandan, Automated ECG noise detection and classification system for unsupervised healthcare monitoring. IEEE J. Biomed. Health Inform. 22(3), 722–732 (2017)

    Article  Google Scholar 

  60. G. Serpen, Z. Gao, Complexity analysis of multilayer perceptron neural network embedded into a wireless sensor network. Procedia Comput. Sci. Sci. Direct 36, 192–197 (2014)

    Article  Google Scholar 

  61. S. Shadmand, B. Mashoufi, A new personalized ECG signal classification algorithm using Block-based neural network and particle swarm optimization. Biomed. Signal Process. Control 25, 12–23 (2016)

    Article  Google Scholar 

  62. M.H. Song, J. Lee, S.P. Cho, K.J. Lee, S.K. Yoo, Support vector machine-based arrhythmia classification using reduced features. Int. J. Control Autom. Syst. 3(4), 509–654 (2005)

    Google Scholar 

  63. Testing and Reporting Performance Results of Cardiac Rhythm and ST-Segment Measurement Algorithms, ANSI/AAMI Std. EC57:1998, Rev. (2008)

  64. N.V. Thakor, Y.S. Zhu, Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. IEEE Trans. Biomed. Eng. 38(8), 785–794 (1991)

    Article  Google Scholar 

  65. R. Thilagavathy, R. Srivatsan, S. Sreekarun, D. Sudeshna, P. Lakshmi Priya, B. Venkataramani, Real-time ECG signal feature extraction and classification using support vector machine. In: IEEE International Conference on Contemporary Computing and Applications (IC3A). 44–48 (2020)

  66. R. Thilagavathy, B. Venkataramani, A novel ECG signal compression using wavelet and discrete anamorphic stretch transforms. Biomed. Signal Process. Control 71, 10277310 (2022). https://doi.org/10.1016/j.bspc.2021.102773

    Article  Google Scholar 

  67. R. Thilagavathy, B. Venkataramani, ECG signal compression using discrete anamorphic stretch transform. In: 5th International Conference on Microelectronics, Circuits & Systems. (2018). ISBN: 81-85824-46-1

  68. R. Thilagavathy, B. Venkataramani, Optimization of discrete anamorphic stretch transform and phase recovery techniques for ECG signal compression. IETE J. Res. (2021). https://doi.org/10.1080/03772063.2021.2012281

    Article  Google Scholar 

  69. C. Tsai, W. Lin, Z. Hong, C. Hsieh, Distance-based features in pattern classification. EURASIP J. Adv. Signal Process. 62, (2011). http://asp.eurasipjournals.com/content/2011/1/62

  70. E.D. Ubeyli, ECG beats classification using multiclass support vector machines with error correcting output codes. Digital Signal Process. 17, 675–684 (2007)

    Article  Google Scholar 

  71. C. Venkatesan, P. Karthigaikumar, A. Paul, S. Satheeskumaran, R. Kumar, ECG signal preprocessing and SVM classifier-based abnormality detection in remote healthcare applications. IEEE Access 6, 9767–9773 (2018)

    Article  Google Scholar 

  72. P. Wang, B. Hou, S. Shao, R. Yan, ECG arrhythmias detection using auxiliary classifier generative adversarial network and residual network. IEEE Access 7, 100910–100922 (2019)

    Article  Google Scholar 

  73. Y. Wei, J. Zhou, Y. Liu, Q. Liu, J. Luo, C. Wang, F. Ren, L. Huang, A review of algorithm & hardware design for AI-based biomedical applications. IEEE Trans. Biomed. Circuits Syst. 14(2), 145–163 (2020). https://doi.org/10.1109/TBCAS.2020.2974154

    Article  Google Scholar 

  74. K.P. Wu, S. Wang, Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space. Pattern Recogn. 42, 710–717 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  75. M. Wu, Y. Lu, W. Yang, S.Y. Wong, A study on arrhythmia via ECG signal classification using the convolutional neural network. Front. Comput. Neurosci. 14, 564015 (2021). https://doi.org/10.3389/fncom.2020.564015

    Article  Google Scholar 

  76. X. Xu, H. Liu, ECG heartbeat classification using convolutional neural networks. IEEE Access 8, 8614–8619 (2020)

    Article  Google Scholar 

  77. H. Yang, Z. Wei, Arrhythmia recognition and classification using combined parametric and visual pattern features of ECG morphology. IEEE Access 8, 47103–47117 (2020)

    Article  Google Scholar 

  78. C. Ye, M.T. Coimbra, B.V.K.V Kumar, Arrhythmia detection and classification using morphological and dynamic features of ECG signals. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 1918–1921 (2010)

  79. C. Ye, B. Kumar, M. Coimbra, Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10), 2930–2941 (2012)

    Article  Google Scholar 

  80. Y.C. Yeh, C.W. Chiou, H.J. Lin, Analyzing ECG for cardiac arrhythmia using cluster analysis. Expert Syst. Appl. 39(1), 1000–1010 (2012)

    Article  Google Scholar 

  81. S.N. Yu, K.T. Chou, Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst. Appl. 34, 2841–2846 (2008)

    Article  Google Scholar 

  82. S.D. Yusuf, F.C. Maduakolam, I. Umar, A.Z. Loko, L.W. Lumbi, Comparative analysis of savitzky-golay and butterworth filters for electrocardiogram de-noising using daubechies wavelets. Asian J. Res. Cardiovasc. Dis. 2(1), 15–29 (2020)

    Google Scholar 

  83. X. Zhang, J. Zhou, C. Wang, C. Li, L. Song, Multi-class support vector machine optimized by inter-cluster distance and self-adaptive differential evolution. Appl. Math. Comput. 218, 4973–4987 (2012). https://doi.org/10.1016/j.amc.2011.10.063

    Article  MathSciNet  MATH  Google Scholar 

  84. Z. Zhang, J. Dong, X. Luo, K.S. Choi, X. Wu, Heartbeat classification using disease-specific feature selection. Comput. Biol. Med. 46, 79–89 (2014)

    Article  Google Scholar 

  85. Y. Zhao, Z. Shang, Y. Lian, A 13.34 μW event-driven patient-specific ANN cardiac arrhythmia classifier for wearable ECG sensors. IEEE Trans. Biomed. Circuits Syst. 14(2), 186–197 (2020)

    Article  Google Scholar 

  86. X. Zheng, J. Jia, S. Guo, J. Chen, L. Sun, Y. Xiong, W. Xu, Full Parameter time complexity (FPTC): a method to evaluate the running time of machine learning classifiers for land use/land cover classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 2222–2235 (2021)

    Article  Google Scholar 

  87. W. Zhu, X. Chen, Y. Wang, L. Wang, Arrhythmia recognition and classification using ECG morphology and segment feature analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(1), 131–138 (2019)

    Article  Google Scholar 

  88. Z. Zidelmal, A. Amirou, M. Adnane, A. Belouchrani, QRS Detection based on wavelet coefficients. Comput. Methods Programs Biomed. 107, 490–496 (2012). https://doi.org/10.1016/j.cmpb.2011.12.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thilagavathy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thilagavathy, R., Venkataramani, B. A Novel Feature Enhancement Technique for ECG Arrhythmia Classification Using Discrete Anamorphic Stretch Transform. Circuits Syst Signal Process 42, 277–306 (2023). https://doi.org/10.1007/s00034-022-02120-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02120-5

Keyword

Navigation