Skip to main content
Log in

A 134-nW Single BJT Bandgap Voltage and Current Reference in 0.18-µm CMOS

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a sub-microwatt sub-bandgap voltage and current reference that can generate proportional-to-absolute-temperature (PTAT) and complementary-to-absolute-temperature (CTAT) currents concurrently. The voltage reference is derived from the process-insensitive silicon bandgap voltage of a bipolar junction transistor, whereas the current reference is made by combining PTAT and CTAT currents. Line regulation is improved by incorporating cascode devices without an operational amplifier (opamp). Fabricated in a standard 0.18-µm CMOS process, the proposed bandgap reference occupies an active area of 0.4 mm2. The current and voltage reference (\({I}_{\mathrm{REF}}\) and \({V}_{\mathrm{REF}}\)) are measured as 170 mV and 21 nA, respectively, while the start-up settling response is measured as 20 ms at room temperature. The average temperature coefficient of \({I}_{\mathrm{REF}}\) and \({V}_{\mathrm{REF}}\) is 79.8 ppm/°C and 87.93 ppm/°C across the temperature range from − 40 to 120 °C, respectively. The power consumption is 134 nW at the minimum supply voltage of 1.2 V. The power supply ripple rejection of \({V}_{\mathrm{REF}}\) is measured as − 10 dB at 100 kHz without any filtering capacitor, when the 1.6 V input line voltage is distorted by a 300-mVp-p ripple. The measured line sensitivity of the voltage and current reference is 0.142%/V and 0.757%/V, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Aminzadeh, All–MOS self-powered subthreshold voltage reference with enhanced line regulation. AEU-Int. J. Electron. Commun. 122, 153245 (2020)

    Article  Google Scholar 

  2. H. Aminzadeh, Self-biased nano-power four-transistor current and voltage reference with a single resistor. Electron. Lett. 56, 282–284 (2020)

    Article  Google Scholar 

  3. H. Aminzadeh, Subthreshold reference circuit with curvature compensation based on the channel length modulation of MOS devices. Int. J. Circuit Theory Appl. 50, 1082–1100 (2021)

    Article  Google Scholar 

  4. A.-J. Annema, P. Veldhorst, G. Doornbos, and B. Nauta, A sub-1V bandgap voltage reference in 32nm FinFET technology. in 2009 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, pp. 332–333 (2009)

  5. H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi et al., A CMOS bandgap reference circuit with sub-1-V operation. IEEE J. Solid-State Circuits 34, 670–674 (1999)

    Article  Google Scholar 

  6. T.L. Brooks and A.L. Westwick, A low-power differential CMOS bandgap reference. in Proceedings of IEEE International Solid-State Circuits Conference-ISSCC'94, pp. 248–249 (1994).

  7. M. Conti, P. Crippa, S. Orcioni, M. Pesare, C. Turchetti, L. Vendrame et al., An integrated CAD methodology for yield enhancement of VLSI CMOS circuits including statistical device variations. Analog Integr. Circ. Sig. Process 37, 85–102 (2003)

    Article  Google Scholar 

  8. M. Conti, P. Crippa, S. Orcioni, C. Turchetti, Parametric yield formulation of MOS IC’s affected by mismatch effect. IEEE Trans. Comput. Aid. Des. Integr. Circuits Syst. 18, 582–596 (1999)

    Article  Google Scholar 

  9. M. Conti, P. Crippa, S. Orcioni, C. Turchetti, Layout-based statistical modeling for the prediction of the matching properties of MOS transistors. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49, 680–685 (2002)

    Article  Google Scholar 

  10. F. Crupi, R. De Rose, M. Paliy, M. Lanuzza, M. Perna, G. Iannaccone, A portable class of 3-transistor current references with low-power sub-0.5 V operation. Int. J. Circuit Theory Appl. 46, 779–795 (2018)

    Article  Google Scholar 

  11. U. Chi-Wa, W.-L. Zeng, M.-K. Law, C.-S. Lam, R.P. Martins, A 0.5-V supply, 36 nW bandgap reference with 42 ppm/°C average temperature coefficient within −40 °C to 120 °C. IEEE Trans. Circuits Syst. I Regul. Pap. 67, 3656–3669 (2020)

    Article  Google Scholar 

  12. G. Giustolisi, G. Palumbo, M. Criscione, F. Cutri, A low-voltage low-power voltage reference based on subthreshold MOSFETs. IEEE J. Solid-State Circuits 38, 151–154 (2003)

    Article  Google Scholar 

  13. C. Hagleitner, A. Hierlemann, O. Brand, H. Baltes, CMOS single chip gas detection systems—Part I. Sensors Update 11, 101–155 (2002)

    Article  Google Scholar 

  14. W. Huang, L. Liu, Z. Zhu, A sub-200nW all-in-one bandgap voltage and current reference without amplifiers. IEEE Trans. Circuits Syst. II Express Briefs 68, 121–125 (2021)

    Google Scholar 

  15. J. Jiang, W. Shu, J.S. Chang, A 5.6 ppm/°C temperature coefficient, 87-dB PSRR, sub-1-V voltage reference in 65-nm CMOS exploiting the zero-temperature-coefficient point. IEEE J. Solid-State Circuits 52, 623–633 (2016)

    Article  Google Scholar 

  16. M. Kim, S. Cho, A 0.0082-mm2, 192-nW single BJT branch bandgap reference in 0.18-μm CMOS. IEEE Solid-State Circuits Letters 3, 426–429 (2020)

    Article  Google Scholar 

  17. M. Kim, S. Cho, A single BJT bandgap reference with frequency compensation exploiting mirror pole. IEEE J. Solid-State Circuits 56, 2902–2912 (2021)

    Article  Google Scholar 

  18. A. Lahiri, N. Agarwal, Design of sub-1-V CMOS bandgap reference circuit using only one BJT. Analog Integr. Circ. Sig. Process 71, 359–369 (2012)

    Article  Google Scholar 

  19. C.-C. Lee, H.-M. Chen, C.-C. Lu, B.-Y. Lee, H.-C. Huang, H.-S. Fu et al., A High-precision bandgap reference with a V-curve correction circuit. IEEE Access 8, 62632–62638 (2020)

    Article  Google Scholar 

  20. I. Lee, G. Kim, W. Kim, Exponential curvature-compensated BiCMOS bandgap references. IEEE J. Solid-State Circuits 29, 1396–1403 (1994)

    Article  Google Scholar 

  21. S.-Y. Lee, Z.-X. Liao, C.-H. Lee, Energy-harvesting circuits with a high-efficiency rectifier and a low temperature coefficient bandgap voltage reference. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27, 1760–1767 (2019)

    Article  Google Scholar 

  22. W. Li, R. Yao, and L. Guo, A low power CMOS bandgap voltage reference with enhanced power supply rejection. in 2009 IEEE 8th International Conference on ASIC, pp. 300–304 (2009)

  23. J. Lin, L. Wang, Y. Lu, C. Zhan, A nano-watt dual-output subthreshold CMOS voltage reference. IEEE Open J. Circuits Syst. 1, 100–106 (2020)

    Article  Google Scholar 

  24. Q. Liu, B. Zhang, S. Zhen, W. Xue, M. Qiao, A 2.6 ppm/° C 2.5 V piece-wise compensated bandgap reference with low beta bipolar. Electronics 8, 555 (2019)

    Article  Google Scholar 

  25. R. Nagulapalli, K. Hayatleh, S. Barker, and B.N.K. Reddy, A Single BJT 10.2 ppm/°C bandgap reference in 45nm CMOS technology. in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–4 (2020)

  26. R. Nagulapalli, R.K. Palani, S. Bhagavatula, A 24.4 ppm/°C voltage mode bandgap reference with a 1.05V supply. IEEE Trans. Circuits Syst. II Express Briefs 68, 1088–1092 (2021)

    Google Scholar 

  27. F. Olivera, A. Petraglia, Adjustable output CMOS voltage reference design. IEEE Trans. Circuits Syst. II Express Briefs 67, 1690–1694 (2019)

    Google Scholar 

  28. Y. Osaki, T. Hirose, N. Kuroki, M. Numa, 1.2-V supply, 100-nW, 1.09-V bandgap and 0.7-V supply, 52.5-nW, 0.55-V subbandgap reference circuits for nanowatt CMOS LSIs. IEEE J. Solid-State Circuits 48, 1530–1538 (2013)

    Article  Google Scholar 

  29. D. Osipov, S. Paul, Compact extended industrial range CMOS current references. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 1998–2006 (2019)

    Article  Google Scholar 

  30. M.J. Pelgrom, A.C. Duinmaijer, A.P. Welbers, Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24, 1433–1439 (1989)

    Article  Google Scholar 

  31. H. Qiao, C. Zhan, Y. Chen, A-40°C to 140°C picowatt CMOS voltage reference with 0.25-V power supply. IEEE Trans. Circuits Syst. II Express Briefs 68, 3118–3122 (2021)

    Google Scholar 

  32. B. Razavi, Design of Analog CMOS Integrated Circuits (Tata McGraw-Hill Education, New York, 2002)

    Google Scholar 

  33. K. Sanborn, D. Ma, V. Ivanov, A sub-1-V low-noise bandgap voltage reference. IEEE J. Solid-State Circuits 42, 2466–2481 (2007)

    Article  Google Scholar 

  34. M. Seok, G. Kim, D. Blaauw, D. Sylvester, A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 V. IEEE J. Solid-State Circuits 47, 2534–2545 (2012)

    Article  Google Scholar 

  35. Y. Shi, S. Li, J. Cao, Z. Zhou, W. Ling, A 180 nm self-biased bandgap reference with high PSRR enhancement. Nanoscale Res. Lett. 15, 1–10 (2020)

    Article  Google Scholar 

  36. A. Thakur, R. Pandey, S.K. Rai, Low temperature coefficient and low line sensitivity subthreshold curvature-compensated voltage reference. Int. J. Circuit Theory Appl. 48, 1900–1921 (2020)

    Article  Google Scholar 

  37. L. Wang, C. Zhan, A 0.7-V 28-nW CMOS subthreshold voltage and current reference in one simple circuit. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 3457–3466 (2019)

    Article  Google Scholar 

  38. L. Wang, C. Zhan, J. Tang, Y. Liu, G. Li, A 0.9-V 33.7-ppm/°C 85-nW sub-bandgap voltage reference consisting of subthreshold MOSFETs and single BJT. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26, 2190–2194 (2018)

    Article  Google Scholar 

  39. L. Wang, C. Zhan, J. Tang, Y. Liu, G. Li, A 0.9-V 33.7-ppm/°C 85-nW sub-bandgap voltage reference consisting of subthreshold MOSFETs and single BJT. IEEE Trans Very Large Scale Integr. VLSI Syst. 26, 2190–2194 (2018)

    Article  Google Scholar 

  40. L. Wang, C. Zhan, J. Tang, S. Zhao, G. Cai, Y. Liu et al., Analysis and design of a current-mode bandgap reference with high power supply ripple rejection. Microelectron. J. 68, 7–13 (2017)

    Article  Google Scholar 

  41. S. Wang, P.K.T. Mok, An 18-nA ultra-low-current resistor-less bandgap reference for 2.8 V–4.5 V high voltage supply li-ion-battery-based LSIs. IEEE Trans. Circuits Syst. II Express Briefs 67, 2382–2386 (2020)

    Google Scholar 

  42. Z.-K. Zhou, Y. Shi, Y. Wang, N. Li, Z. Xiao, Y. Wang et al., A resistorless high-precision compensated CMOS bandgap voltage reference. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 428–437 (2018)

    Article  Google Scholar 

  43. G. Zhu, Z. Fu, T. Liu, Q. Zhang, Y. Yang, A 2.5 V, 2.56 ppm/° C curvature-compensated bandgap reference for high-precision monitoring applications. Micromachines 13, 465 (2022)

    Article  Google Scholar 

  44. H. Zhuang, Z. Zhu, Y. Yang, A 19-nW 0.7-V CMOS voltage reference with no amplifiers and no clock circuits. IEEE Trans. Circuits Syst. II Express Briefs 61, 830–834 (2014)

    Google Scholar 

Download references

Funding

The authors did not receive any direct support from any organization for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hamed Aminzadeh. Simulations were performed by Hamed Aminzadeh, Dalton Martini Colombo and Mohammad Mahdi Valinezhad. The first draft of the manuscript was written by Hamed Aminzadeh, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hamed Aminzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminzadeh, H., Colombo, D.M. & Valinezhad, M.M. A 134-nW Single BJT Bandgap Voltage and Current Reference in 0.18-µm CMOS. Circuits Syst Signal Process 42, 1293–1311 (2023). https://doi.org/10.1007/s00034-022-02158-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02158-5

Keywords

Navigation