Skip to main content
Log in

Coherent Wideband Signals Direction Finding Using Subspace-Based Methods

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we aim to develop a new subspace-based method for Direction Of Arrival estimation (direction-finding) using coherent wide band (WB) or ultra-wide band (UWB) signals. Subspace-based methods are well-established in the incoherent narrow band signals context; nevertheless, only a few of them are adapted to the case of WB or UWB coherent signals. Specifically, the proposed method is applied in the spectral domain using a zoomed digital Fourier transform achieved by chirped Z transform instead of the classical fast Fourier transform and does not need a decorrelation process. Then, it is implemented in a real-life application using single-input multiple-output UWB radar. The obtained results reveal the effectiveness of the proposed method compared with the existing methods in both simulated and real-life data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statements

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. Around the central frequency, P(f) can be considered as a complex constant.

  2. \(f_z\) is the frequency where smoothing is applied with respect to the spectral flatness.

References

  1. H. Abadlia, A. Mesloub, I. Kakouche, S. Sadoudi, Image reconstruction and enhancement for radar imaging using IR-UWB signals. 2022 7th International Conference on Image and Signal Processing and Their Applications (ISPA). (2022). https://doi.org/10.1109/ispa54004.2022.9786299

  2. A. Asadzadeh, S.M. Alavi, M. Karimi, H. Amiri, Coherent wide-band signals DOA estimation by the new CTOPS algorithm. Multidimension. Syst. Signal Process. 31(3), 1075–1089 (2020). https://doi.org/10.1007/s11045-020-00699-z

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Asami, K. Kusunoki, N. Shimizu, Y. Aoki, Ultra-Wideband Modulation Signal Measurement Using Local Sweep Digitizing Method. 2020 IEEE 38th VLSI Test Symposium (VTS). (2020). https://doi.org/10.1109/vts48691.2020.9107610

  4. Y. Bai, J. Li, Y. Wu, Q. Wang, X. Zhang, Weighted incoherent signal subspace method for DOA estimation on wideband colored signals. IEEE Access 7, 1224–1233 (2019). https://doi.org/10.1109/access.2018.2886250

    Article  Google Scholar 

  5. W. Cheng, Z. Zhang, H. Cao, Z. He, G. Zhu, A comparative study of information-based source number estimation methods and experimental validations on mechanical systems. Sensors 14(5), 7625–7646 (2014). https://doi.org/10.3390/s140507625

    Article  Google Scholar 

  6. E. di Claudio, R. Parisi, WAVES: weighted average of signal subspaces for robust wideband direction finding. IEEE Trans. Signal Process. 49(10), 2179–2191 (2001). https://doi.org/10.1109/78.950774

    Article  Google Scholar 

  7. A. Fathtabar, A.A. Khazaei, A. Ghezelbigloo, A new eigen-structure based DOA estimation method for wideband coherent signals. Wireless Pers. Commun. 117(2), 577–589 (2021). https://doi.org/10.1007/s11277-020-07884-0

    Article  Google Scholar 

  8. E. Gentilho, P.R. Scalassara, T. Abrão, Direction-of-arrival estimation methods: a performance-complexity tradeoff perspective. J. Signal Process. Syst. 92(2), 239–256 (2019). https://doi.org/10.1007/s11265-019-01467-4

    Article  Google Scholar 

  9. M. Haardt, J. Nossek, Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden. IEEE Trans. Signal Process. 43(5), 1232–1242 (1995). https://doi.org/10.1109/78.382406

    Article  Google Scholar 

  10. F. Hartmann, F. Pistorius, A. Lauber, K. Hildenbrand, J. Becker, W. Stork, Design of an embedded UWB hardware platform for navigation in GPS denied environments. 2015 IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT). (2015b). https://doi.org/10.1109/scvt.2015.7374232

  11. J. He, S. Jiang, J. Wang, Z. Liu, Polarization difference smoothing for direction finding of coherent signals. IEEE Trans. Aerosp. Electron. Syst. 46(1), 469–480 (2010). https://doi.org/10.1109/taes.2010.5417176

    Article  Google Scholar 

  12. I. Kakouche, H. Abadlia, M.N. el Korso, A. Mesloub, A. Maali, M.S. Azzaz, Joint vital signs and position estimation of multiple persons using SIMO radar. Electronics 10(22), 2805 (2021). https://doi.org/10.3390/electronics10222805

    Article  Google Scholar 

  13. D. S. Kumar, I. S. Hinduja, V. V. Mani, DOA estimation of IR-UWB signals using coherent signal processing. 2014 IEEE 10th International Colloquium on Signal Processing and Its Applications. (2014). https://doi.org/10.1109/cspa.2014.6805766

  14. J. Li, Q.H. Lin, C.Y. Kang, K. Wang, X.T. Yang, DOA estimation for underwater wideband weak targets based on coherent signal subspace and compressed sensing. Sensors 18(3), 902 (2018). https://doi.org/10.3390/s18030902

    Article  Google Scholar 

  15. L. Li, F. Chen, J. Dai, Separate DOD and DOA estimation for bistatic MIMO radar. Int. J. Antennas Propag. 1–11, 889 (2016). https://doi.org/10.1155/2016/9170403

    Article  Google Scholar 

  16. Y. Liang, W. Liu, Q. Shen, W. Cui, S. Wu, A review of closed-form Cramér-Rao bounds for DOA estimation in the presence of Gaussian noise under a unified framework. IEEE Access 8, 175101–175124 (2020). https://doi.org/10.1109/access.2020.3026203

    Article  Google Scholar 

  17. L. Lou, Q. Li, Z. Zhang, R. Yang, W. He, An IoT-driven vehicle detection method based on multisource data fusion technology for smart parking management system. IEEE Internet Things J. 7(11), 11020–11029 (2020). https://doi.org/10.1109/jiot.2020.2992431

    Article  Google Scholar 

  18. V.V. Mani, R. Bose, Direction of arrival estimation of multiple UWB signals. Wireless Pers. Commun. 57(2), 277–289 (2009). https://doi.org/10.1007/s11277-009-9857-2

    Article  Google Scholar 

  19. D. Minoli, B Occhiogrosso, Ultrawideband (UWB) Technology For Smart Cities IoT Applications. 2018 IEEE International Smart Cities Conference (ISC2). (2018). https://doi.org/10.1109/isc2.2018.8656958

  20. I. Pasya, N. Iwakiri, T. Kobayashi, Performance of joint direction-of-departure and direction-of-arrival estimation in UWB MIMO radars detecting targets with fluctuating radar cross sections. 2014 11th European Radar Conference. (2014). https://doi.org/10.1109/eurad.2014.6991261

  21. M. Pesavento, A. Gershman, M. Haardt, Unitary root-MUSIC with a real-valued eigendecomposition: a theoretical and experimental performance study. IEEE Trans. Signal Process. 48(5), 1306–1314 (2000). https://doi.org/10.1109/78.839978

    Article  Google Scholar 

  22. P. Ponnusamy, K. Subramaniam, S. Chintagunta, Computationally efficient method for joint DOD and DOA estimation of coherent targets in MIMO radar. Signal Process. 165, 262–267 (2019). https://doi.org/10.1016/j.sigpro.2019.07.015

    Article  Google Scholar 

  23. X. Qiang, Y. Liu, Q. Feng, Y. Zhang, T. Qiu, M. Jin, Adaptive DOA estimation with low complexity for wideband signals of massive MIMO systems. Signal Process. 176, 107702 (2020). https://doi.org/10.1016/j.sigpro.2020.107702

    Article  Google Scholar 

  24. S. Ren, X. Ma, S. Yan, C. Hao, 2-D unitary ESPRIT-like direction-of-arrival (DOA) estimation for coherent signals with a uniform rectangular array. Sensors 13(4), 4272–4288 (2013). https://doi.org/10.3390/s130404272

    Article  Google Scholar 

  25. F. Sabath, E.L. Mokole, S.N. Samaddar, Definition and classification of ultra-wideband signals and devices. URSI Radio Sci. Bull. 20(313), 12–26 (2005)

    Google Scholar 

  26. J. Shi, Z. Yang, Y. Liu, On parameter identifiability of diversity-smoothing-based MIMO radar. IEEE Trans. Aerosp. Electron. Syst. 58(3), 1660–1675 (2022). https://doi.org/10.1109/taes.2021.3126370

    Article  Google Scholar 

  27. X. Song, S. Zhou, P. Willett, Reducing the waveform cross correlation of MIMO radar with space-time coding. IEEE Trans. Signal Process. 58(8), 4213–4224 (2010). https://doi.org/10.1109/tsp.2010.2048207

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Tang, X. Ma, W. Sheng, Y. Han, Transmit waveform optimization for spatial-frequency diversity MIMO radar in the presence of clutter. Int. J. Antennas Propag. 2014, 1–9 (2014). https://doi.org/10.1155/2014/510569

    Article  Google Scholar 

  29. P. Totarong, A. El-Jaroudi, Robust high-resolution direction-of-arrival estimation via signal eigenvector domain. IEEE J. Oceanic Eng. 18(4), 491–499 (1993). https://doi.org/10.1109/48.262299

    Article  Google Scholar 

  30. S. Valaee, P. Kabal, Wideband array processing using a two-sided correlation transformation. IEEE Trans. Signal Process. 43(1), 160–172 (1995). https://doi.org/10.1109/78.365295

    Article  Google Scholar 

  31. F. Wen, J. Shi, Z. Zhang, Joint 2D-DOD, 2D-DOA, and polarization angles estimation for bistatic EMVS-MIMO radar via PARAFAC analysis. IEEE Trans. Veh. Technol. 69(2), 1626–1638 (2020). https://doi.org/10.1109/tvt.2019.2957511

    Article  Google Scholar 

  32. F. Wen, J. Shi, Z. Zhang, Closed-form estimation algorithm for EMVS-MIMO radar with arbitrary sensor geometry. Signal Process. 186, 108117 (2021). https://doi.org/10.1016/j.sigpro.2021.108117

    Article  Google Scholar 

  33. F. Wen, J. Shi, Z. Zhang, Generalized spatial smoothing in bistatic EMVS-MIMO radar. Signal Process. 193, 108406 (2022). https://doi.org/10.1016/j.sigpro.2021.108406

    Article  Google Scholar 

  34. Y.-S. Yoon, L. Kaplan, J. McClellan, TOPS: new DOA estimator for wideband signals. IEEE Trans. Signal Process. 54(6), 1977–1989 (2006). https://doi.org/10.1109/tsp.2006.872581

    Article  MATH  Google Scholar 

  35. C.B. Yin, D. Ran, Precision imaging of frequency stepped SAR with frequency domain extracted HRRP and fast factorized back projection algorithm. Int. J. Antennas Propag. 2017, 1–13 (2017). https://doi.org/10.1155/2017/7253059

    Article  Google Scholar 

  36. X. Zeng, M. Yang, B. Chen, Y. Jin, Estimation of direction of arrival by time reversal for low-angle targets. IEEE Trans. Aerosp. Electron. Syst. 54(6), 2675–2694 (2018). https://doi.org/10.1109/taes.2018.2828200

    Article  Google Scholar 

  37. Y. Zhang, Y. Ma, X. Yu, P. Wang, H. Lv, F. Liang, Z. Li, J. Wang, A coarse-to-fine detection and localization method for multiple human subjects under through-wall condition using a new telescopic SIMO UWB radar. Sens. Actuators A 332, 113064 (2021). https://doi.org/10.1016/j.sna.2021.113064

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesloub Ammar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamza, A., Ammar, M., Nabil, E.k.M. et al. Coherent Wideband Signals Direction Finding Using Subspace-Based Methods. Circuits Syst Signal Process 42, 1663–1684 (2023). https://doi.org/10.1007/s00034-022-02185-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02185-2

Keywords

Navigation