Skip to main content
Log in

An Improved CACIS Configuration for DOA Estimation with Enhanced Degrees of Freedom

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, we propose a novel coprime array with compressed inter-element spacing (CACIS) configuration, which achieves the more consecutive and unique degrees of freedom (DOF) over the existing CACIS configuration. We know that CACIS is a popular configuration of the coprime class of arrays for direction-of-arrival estimation, where the inter-element spacing in one of the subarrays is compressed by an integer factor. If M and N are the parameters of a coprime array, it will be proved that the increase in the number of both consecutive and unique DOF of the proposed CACIS will be \(O(\breve{M}N)\) over the existing CACIS, where \(\breve{M}\) is the compressed inter-element spacing. We provide the closed-form expressions of the unique and consecutive DOF of the proposed CACIS. Spatial smoothing MUltiple SIgnal Classification is applied to estimate the directions of the sources. Simulation results demonstrate the superiority of the proposed CACIS over the existing CACIS and the existing coprime arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Z. Chen, G. Gokeda, Y. Yu, Introduction to Direction-of-Arrival Estimation (Artech House, Norwood, 2010)

    Google Scholar 

  2. L.C. Godara, Application of antenna arrays to mobile communications, part II: beam-forming and direction-of-arrival considerations. Proc. IEEE. 85(8), 1195–1245 (1997)

    Article  Google Scholar 

  3. F.B. Gross, Smart Antennas with MATLAB® (McGraw-Hill Education, New York, 2015)

    Google Scholar 

  4. H. Krim, M. Viberg, Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13, 67–94 (1992)

    Article  Google Scholar 

  5. C.L. Liu, P.P. Vaidyanathan, Remarks on the spatial smoothing step in coarray MUSIC. IEEE Signal Process Lett. 22(9), 1438–1442 (2015)

    Article  Google Scholar 

  6. C.L. Liu, P.P. Vaidyanathan, Super nested arrays: linear sparse arrays with reduced mutual coupling-Part I: fundamentals. IEEE Trans. Signal Process. 64(15), 3997–4012 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Liu, Y. Zhang, Y. Lu, S. Ren, S. Cao, Augmented nested arrays with enhanced DOF and reduced mutual coupling. IEEE Trans. Signal Process. 65(21), 5549–5563 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Malioutov, M. Cetin, A.S. Willsky, A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. A.T. Moffet, Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 16(2), 172–175 (1968)

    Article  Google Scholar 

  10. P. Pal, P.P. Vaidyanathan, Coprime sampling and the MUSIC algorithm, in 2011 digital signal processing and signal processing education meeting (DSP/SPE) (IEEE, 2011), pp. 289–294

  11. P. Pal, P.P. Vaidyanathan, Nested arrays: a novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 58(8), 4167–4181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Qin, Y.D. Zhang, M.G. Amin, Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Process. 63(6), 1377–1390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Raza, W. Liu, Q. Shen, Thinned coprime array for second-order difference co-array generation with reduced mutual coupling. IEEE Trans. Signal Process. 67(8), 2052–2065 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  15. T.J. Shan, M. Wax, T. Kailath, On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. Acoust. Speech Signal Process. 33(4), 806–811 (1985)

    Article  Google Scholar 

  16. J. Shi, G. Hu, X. Zhang, H. Zhou, Generalized nested array: optimization for degrees of freedom and mutual coupling. IEEE Commun. Lett. 22(6), 1208–1211 (2018)

    Article  Google Scholar 

  17. P.P. Vaidyanathan, P. Pal, Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 59(2), 573–586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. H.L. Van Trees, Detection, Estimation, and Modulation Theory (Optimum Array Processing, Part IV) (Wiley, New Jersey, 2002)

    Google Scholar 

  19. Z. Yang, L. Xie, C. Zhang, Off-grid direction of arrival estimation using sparse bayesian inference. IEEE Trans. Signal Process. 61(1), 38–43 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Zamani, H. Zayyani, F. Marvasti, An iterative dictionary learning-based algorithm for DOA estimation. IEEE Commun. Lett. 20(9), 1784–1787 (2016)

    Article  Google Scholar 

  21. P. Zhao, G. Hu, Z. Qu et al., Enhanced nested array configuration with hole-free co-array and increasing degrees of freedom for DOA estimation. IEEE Commun. Lett. 23(12), 2224–2228 (2019)

    Article  Google Scholar 

  22. Z. Zheng, W.Q. Wang, Y. Kong, Y.D. Zhang, M.I.S.C. Array, A new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect. IEEE Trans. Signal Process. 67(7), 1728–1741 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. W. Zheng, X. Zhang, Y. Wang, J. Shen, B. Champagne, Padded coprime arrays for improved DOA estimation: exploiting hole representation and filling strategies. IEEE Trans. Signal Process. 68, 4597–4611 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Director, ITR, for motivating to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajen Kumar Patra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Proposition 1

In the proposed I-CACIS, let us denote the forward cross-difference lags and the backward cross-difference lags by \(L_{\mathrm{cd}_{I}}\) and \(L^-_{\mathrm{cd}_{I}}\), respectively. Hence, \(L_{\mathrm{cd}_{I}}=\frac{\breve{M}N}{2}-\breve{M}+ Nm-\breve{M}n, 0\le m \le \textit{M}-1, 0\le n \le \textit{N}-1\). From Proposition 1b of [12], \(L_\mathrm{cd}\) of the original CACIS is hole-free up to \(MN-\breve{M}(N-1)-1\). Hence, from \(\frac{\breve{M}N}{2}-\breve{M}+1\) to \(MN-\frac{\breve{M}N}{2}-1\), \(L_{\mathrm{cd}_{I}}\) of the I-CACIS will have uniform lags.

Let us investigate the positive holes of \(L_{\mathrm{cd}_{I}}\) up to \(\frac{\breve{M}N}{2}-\breve{M}\). From Proposition 1e of [12], the negative holes of \(L_\mathrm{cd}\) of the original CACIS are located at \(-(a\breve{M}+bN),a\ge 0,b>0\). Hence, the positive holes of \(L_{\mathrm{cd}_{I}}\) in the proposed I-CACIS up to \(\frac{\breve{M}N}{2}-\breve{M}\) will be located at \(\breve{M}(\frac{N}{2}-1)-(a_1\breve{M}+b_1N),a_1\ge 0,b_1>0,a_1\breve{M}+b_1N<\breve{M}(\frac{N}{2}-1)\). Now, let us look at the positive holes of \(L^-_{\mathrm{cd}_{I}}\) up to \(\frac{\breve{M}N}{2}-\breve{M}\). In a similar way, we can find the holes of \(L^-_{\mathrm{cd}_{I}}\) up to \(\frac{\breve{M}N}{2}-\breve{M}\), which will be located at \((a_2\breve{M}+b_2N)-\breve{M}(\frac{N}{2}-1),a_2\ge 0,b_2>0, a_2\breve{M}+b_2N>\breve{M}(\frac{N}{2}-1)\). For the common holes of \(L_{\mathrm{cd}_{I}}\) and \(L^-_{\mathrm{cd}_{I}}\) up to \(\breve{M}(\frac{N}{2}-1)\), we can write

$$\begin{aligned}&\breve{M} \left( \frac{N}{2}-1\right) -(a_1\breve{M}+b_1N)= (a_2\breve{M}+b_2N) -\breve{M} \left( \frac{N}{2}-1\right) , \nonumber \\&\quad a_1\ge 0,b_1>0,a_2\ge 0,b_2>0. \end{aligned}$$
(9)

From (9), we have

$$\begin{aligned} \frac{\breve{M}}{N}=\frac{b_1+ b_2}{N-(a_1+a_2+2)} . \end{aligned}$$
(10)

here \(a_1\ge 0,b_1>0,a_2\ge 0,b_2>0\). Now, \(\breve{M}\) and N are coprime because M and N are coprimes and \(\breve{M}\) is a factor of M. As, \(a_1\ge 0, a_2\ge 0\), the denominator of the right side of (10) will always be less than N. Thus, it can be inferred that (10) cannot be satisfied. So, no common hole will be there between \(L_{\mathrm{cd}_{I}}\) and \(L^-_{\mathrm{cd}_{I}}\) up to \(\breve{M}(\frac{N}{2}-1)\). Hence, the DC of the proposed I-CACIS is hole-free up to \(\frac{\breve{M}N}{2}-\breve{M}\). It is already proven that \(L_{\mathrm{cd}_{I}}\) of the proposed I-CACIS has consecutive lags from \(\frac{\breve{M}N}{2}-\breve{M}+1\) to \(MN-\frac{\breve{M}N}{2}-1\). Hence, we can conclude that, in this case, the DC of the proposed I-CACIS has consecutive positive lags up to \(MN-\frac{\breve{M}N}{2}-1\).

Appendix B

Proof of Proposition 2

The DC of the original CACIS has \(MN-\breve{M}(N-1)-1\) consecutive positive lags and \(MN-\frac{\breve{M}N}{2}+\frac{\breve{M}}{2}-\frac{N}{2}-\frac{1}{2}\) unique positive lags [12]. Hence, the DC of the original CACIS has \(\frac{\breve{M}N}{2}-\frac{N}{2}-\frac{\breve{M}}{2}+\frac{1}{2}\) unique lags in the range \(\left[ MN-\breve{M}(N-1)+1,N(M-1)\right] \). Obviously, these lags will come from \(L_\mathrm{cd}\) as the maximum positive lag of \(L^-_\mathrm{cd}\) of original CACIS is \(\breve{M}(N-1)\) (it can be verified that whatever value of p we choose, \(\breve{M}(N-1)\) will always be less than \(MN-\breve{M}(N-1)+1)\).

Now, in the proposed I-CACIS, in this case, all the forward cross lags will shift in the positive direction by \(\frac{\breve{M}N}{2}-\breve{M}\). Hence, in the proposed I-CACIS, from \(MN-\breve{M}(N-1)+1+\frac{\breve{M}N}{2}-\breve{M}\) to \(N(M-1)+\frac{\breve{M}N}{2}-\breve{M}\), \(L_{\mathrm{cd}_{I}}\) will have \(\frac{\breve{M}N}{2}-\frac{N}{2}-\frac{\breve{M}}{2}+\frac{1}{2}\) unique lags. Again, it can be checked that \(L^-_{\mathrm{cd}_{I}}\) will not have any lag in that range. It is already proved that the proposed I-CACIS has \(MN-\frac{\breve{M}N}{2}-1\) consecutive positive lags. Hence, in this case, the number of unique positive lags in the DC of the proposed I-CACIS is \(MN-\frac{\breve{M}N}{2}-1+\frac{\breve{M}N}{2}-\frac{N}{2}-\frac{\breve{M}}{2}+\frac{1}{2}=MN-\frac{\breve{M}}{2}-\frac{N}{2}-\frac{1}{2}\).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, R.K., Dhar, A.S. An Improved CACIS Configuration for DOA Estimation with Enhanced Degrees of Freedom. Circuits Syst Signal Process 42, 1860–1872 (2023). https://doi.org/10.1007/s00034-022-02186-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02186-1

Keywords

Navigation