Skip to main content
Log in

Non-homogeneous Non-inductive Chaotic Circuit Based on Fractional-Order Active Generalized Memristor and its FPGA Implementation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel active generalized fractional-order memristor is constructed by using a memristor diode bridge in parallel with a negative resistance. Combined with fractional calculus theory, the fractional-order model of the memristor is constructed by using predictive correction method. The model is connected in parallel with a capacitor to form a second-order nonlinear filter and coupled with an RC bridge oscillator to form a chaotic circuit. The fractional-order memristor model and the chaotic circuit it forms are novel. The mathematical model of the fractional-order memristor chaotic system is established, and its dynamic behavior is analyzed by theoretical calculation and numerical simulation. Dynamic characteristics of the system are verified by time series, phase diagram, bifurcation diagram and Lyapunov exponent spectrum, and the results of numerical simulation and analog outputs of electronic circuit are the same as expected. Finally, the fractional-order memristor chaotic circuit is realized by FPGA hardware circuit experiment, and its phase diagram is observed by oscilloscope to be consistent with numerical simulation and circuit simulation, which verifies the effectiveness of theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article [and its supplementary information files].

References

  1. N.H. Alombah, H. Fotsin, K. Romanic, Coexistence of multiple attractors, metastable chaos and bursting oscillations in a multiscroll memristive chaotic circuit. Int. J. Bifurc. Chaos 27(05), 1750067 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Atangana, J. Gómez-Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133(4), 1–22 (2018)

    Article  Google Scholar 

  3. A. Atangana, J. Gómez-Aguilar, Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fract. 114, 516–535 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Chen, C. Liu, C. Wu et al., A new fractional-order chaotic system and its synchronization with circuit simulation. Circuits Syst. Signal Process. 31(5), 1599–1613 (2012)

    Article  MathSciNet  Google Scholar 

  5. M. Chen, J. Qi, Q. Xu et al., Quasi-period, periodic bursting and bifurcations in memristor-based Fitzhugh–Nagumo circuit. AEU Int. J. Electron. Commun. 110(152), 840 (2019)

    Google Scholar 

  6. M. Chen, X. Ren, H.G. Wu et al., Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance. Front. Inf. Technol. Electron. Eng. 20(12), 1706–1716 (2019)

    Article  Google Scholar 

  7. W. Chunhua, L. Hairong, S. Jingru et al., Research progress on chaos, memory and neural network circuits based on memristor. J. Electron. Inf. Technol. 42(4), 795–810 (2020)

    Google Scholar 

  8. A. Coronel-Escamilla, J. Solís-Pérez, J. Gómez-Aguilar et al., Dynamics and synchronization of a fractional conformable neural network with power-law. Eur. Phys. J. Spec. Top., pp. 1–18 (2022)

  9. M. Di Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)

    Article  Google Scholar 

  10. M. Fouda, A. Radwan, On the fractional-order memristor model. J. Fract. Calculus Appl. 4(1), 1–7 (2013)

    MATH  Google Scholar 

  11. M.E. Fouda, A.G. Radwan, Fractional-order memristor response under DC and periodic signals. Circuits Syst. Signal Process. 34(3), 961–970 (2015)

    Article  Google Scholar 

  12. B. Guo, X. Pu, F. Huang, Fractional Partial Differential Equations and Their Numerical Solutions (World Scientific, Singapore, 2015)

    Book  MATH  Google Scholar 

  13. W. Hu, D. Ding, Y. Zhang et al., Hopf bifurcation and chaos in a fractional order delayed memristor-based chaotic circuit system. Optik 130, 189–200 (2017)

    Article  Google Scholar 

  14. M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. P.D.K. Kuate, A.E.T. Tchendjeu, H. Fotsin, A modified rössler prototype-4 system based on chua’s diode nonlinearity: dynamics, multistability, multiscroll generation and fpga implementation. Chaos Solitons Fractals 140(110), 213 (2020)

  16. J.F. Li, H. Jahanshahi, S. Kacar et al., On the variable-order fractional memristor oscillator: data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control. Chaos Solitons Fractals 145(110), 681 (2021)

    MathSciNet  MATH  Google Scholar 

  17. J. Luo, H. Bao, M. Chen et al., Inductor-free multi-stable chua’s circuit constructed by improved pi-type memristor emulator and active sallen-key high-pass filter. Eur. Phys. J. Spec. Top. 228(10), 1983–1994 (2019)

  18. J. Luo, H. Bao, M. Chen et al., Inductor-free multi-stable chua’s circuit constructed by improved pi-type memristor emulator and active sallen-key high-pass filter. Eur. Phys. J. Spec. Top. 228(10), 1983–1994 (2019)

  19. X. Ma, J. Mou, J. Liu et al., A novel simple chaotic circuit based on memristor–memcapacitor. Nonlinear Dyn. 100(3), 2859–2876 (2020)

    Article  Google Scholar 

  20. O. Martínez-Fuentes, J.J. Montesinos-García, J.F. Gómez-Aguilar, Generalized synchronization of commensurate fractional-order chaotic systems: applications in secure information transmission. Digit. Signal Process. 126(103), 494 (2022)

    Google Scholar 

  21. F. Meng, X. Zeng, Z. Wang, Impulsive anti-synchronization control for fractional-order chaotic circuit with memristor. Indian J. Phys. 93(9), 1187–1194 (2019)

    Article  Google Scholar 

  22. L. Merah, A. Ali-Pacha, N.H. Said et al., Design and FPGA implementation of Lorenz chaotic system for information security issues. Appl. Math. Sci. 7(5), 237–246 (2013)

    MathSciNet  Google Scholar 

  23. K.D. Park, The Analysis of Fractional Differential Equations. Lecturer Notes in Mathematics (2010)

  24. P. Prakash, K. Rajagopal, I. Koyuncu et al., A novel simple 4-D hyperchaotic system with a saddle-point index-2 equilibrium point and multistability: design and FPGA-based applications. Circuits Syst. Signal Process. 39(9), 4259–4280 (2020)

    Article  Google Scholar 

  25. K. Rajagopal, A. Karthikeyan, A.K. Srinivasan, Fpga implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dyn. 87(4), 2281–2304 (2017)

    Article  Google Scholar 

  26. K. Rajagopal, A. Karthikeyan, A. Srinivasan, Dynamical analysis and FPGA implementation of a chaotic oscillator with fractional-order memristor components. Nonlinear Dyn. 91(3), 1491–1512 (2018)

    Article  MATH  Google Scholar 

  27. K. Rajagopal, S.T. Kingni, A.J.M. Khalaf et al., Coexistence of attractors in a simple chaotic oscillator with fractional-order-memristor component: analysis, FPGA implementation, chaos control and synchronization. Eur. Phys. J. Spec. Top. 228(10), 2035–2051 (2019)

    Article  Google Scholar 

  28. A.A. Rezk, A.H. Madian, A.G. Radwan et al., Reconfigurable chaotic pseudo random number generator based on FPGA. AEU Int. J. Electron. Commun. 98, 174–180 (2019)

    Article  Google Scholar 

  29. J. Ruan, K. Sun, J. Mou et al., Fractional-order simplest memristor-based chaotic circuit with new derivative. Eur. Phys. J. Plus 133(1), 1–12 (2018)

    Article  Google Scholar 

  30. M.E. Sahin, Z.G. Cam Taskiran, H. Guler et al., Application and modeling of a novel 4D memristive chaotic system for communication systems. Circuits Syst. Signal Process. 39(7), 3320–3349 (2020)

    Article  Google Scholar 

  31. E.Y. Sar, I.B. Giresunlu, Fractional differential equations. Pramana-J. Phys. 87, 17 (2016)

    Google Scholar 

  32. L. Teng, H.H. Iu, X. Wang et al., Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dyn. 77(1), 231–241 (2014)

    Article  Google Scholar 

  33. V. Varshney, S. Sabarathinam, A. Prasad et al., Infinite number of hidden attractors in memristor-based autonomous Duffing oscillator. Int. J. Bifurc. Chaos 28(01), 1850013 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Viera-Martin, J. Gómez-Aguilar, J. Solís-Pérez et al., Anti-synchronization of a m-hopfield neural network with generalized hyperbolic tangent activation function. Eur. Phys. J. Spec. Top., pp. 1–14 (2022)

  35. C. Wu, Q. Zhang, Z. Liu et al., Dynamic behaviors analysis of a novel fractional-order Chua’s memristive circuit. Mathematical Problems in Engineering (2021)

  36. H. Wu, Y. Ye, B. Bao et al., Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system. Chaos Solitons Fractals 121, 178–185 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. W. Xie, C. Wang, H. Lin, A fractional-order multistable locally active memristor and its chaotic system with transient transition, state jump. Nonlinear Dyn. 104(4), 4523–4541 (2021)

    Article  Google Scholar 

  38. P.Y. Xiong, H. Jahanshahi, R. Alcaraz et al., Spectral entropy analysis and synchronization of a multi-stable fractional-order chaotic system using a novel neural network-based chattering-free sliding mode technique. Chaos Solitons Fractals 144(110), 576 (2021)

    MathSciNet  MATH  Google Scholar 

  39. B. Xu, G. Wang, H.H.C. Iu et al., A memristor-meminductor-based chaotic system with abundant dynamical behaviors. Nonlinear Dyn. 96(1), 765–788 (2019)

    Article  MATH  Google Scholar 

  40. N. Yang, Y. Han, C. Wu et al., Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system. Chin. Phys. B 26(8), 080503 (2017)

    Article  Google Scholar 

  41. J. Ying, Y. Liang, G. Wang et al., Locally active memristor based oscillators: the dynamic route from period to chaos and hyperchaos. Chaos Interdiscip. J. Nonlinear Sci. 31(6), 063114 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Q. Yu, B. Bao, Q. Xu et al., Research on non-inductive chaotic circuit based on active generalized memristor. J. Phys. 64(18), 180501 (2015)

    Google Scholar 

  43. Y. Yu, H. Bao, M. Shi et al., Complex dynamical behaviors of a fractional-order system based on a locally active memristor. Complexity (2019)

  44. Y. Zhang, Z. Liu, H. Wu et al., Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis. Chaos Solitons Fractals 127, 354–363 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Natural Science Foundation of China Grant No. (51507134) and Natural Science Foundation of Shaanxi Province Grant No. (2021JM-449, 2018JM5068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningning Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Liu, N. & Wu, C. Non-homogeneous Non-inductive Chaotic Circuit Based on Fractional-Order Active Generalized Memristor and its FPGA Implementation. Circuits Syst Signal Process 42, 1940–1958 (2023). https://doi.org/10.1007/s00034-022-02213-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02213-1

Keywords

Navigation