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COMPLEXITY OF POSITIVSTELLENSATZ
PROOFS FOR THE KNAPSACK

D.GRIGORIEV

Abstract. A lower bound is established on degrees of Positivstellen-
satz calculus refutations (over a real field) introduced in (Grigoriev &
Vorobjov 1999; Grigoriev 1999), for the knapsack problem. The bound
depends on the values of coefficients of an instance of the knapsack prob-
lem: for certain values the lower bound is linear and for certain values
the upper bound is constant, while in the polynomial calculus the degree
is always linear (regardless of the values of coefficients) (Impagliazzo et
al. 1997). This shows that the Positivstellensatz calculus can be strictly
stronger than the polynomial calculus from the point of view of the
complexity of the proofs.

Keywords. polynomial calculus, Positivstellensatz proofs, complexity
of the knapsack

Subject classification. 68Q)25

Introduction

In recent years there has been an intensive activity in the research of algebraic
proof systems (Beame et al. (1996); Buss et al. (1999, 1996/1997); Clegg et al.
(1996); Grigoriev (1998); Impagliazzo et al. (1999); Razborov (1998) ). The
approach relies on Hilbert’s Nullstellensatz and treats the problem of feasibility
of a system of polynomial equations

fr=r=fi=0,

where among the polynomials fi,..., fr € F[Xi,...,X,], there appear the
polynomials X7 — Xi,..., X2 — X,, (the so-called, Boolean case). Note that
this problem is, in general, N P-complete.

The Nullstellensatz proof system (NS) was first considered in (Beame et al.
1996). The aim of the system is to find the polynomials gy, ... ,gx € F[X;, ...,
X,| such that 1 = ¢y fi+- - -+gi fx- The latter representation is sometimes called
a Nullstellensatz refutation. The number max;<;,<z{deg(g;f;)} is called the
Nullstellensatz degree. A linear upper bound O(n) on the Nullstellensatz degree
is evident, in (Beame et al. 1996) a non-constant lower bound was proved, while
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after a series of improvements in (Grigoriev 1998) a linear (and thus sharp)
lower bound was proved.

In (Clegg et al. 1996) a stronger proof system — polynomial calculus (PC)
was introduced. Starting from axioms fi, ..., fx, PC allows one to derive new
polynomials from two given polynomials a,b € F[X7, ..., X,], according to the
following two rules:

1. (additive) a,btF aa+ Bb, where o, 3 € F;
2. (multiplicative) atF X;a for 1 <i <n.

The aim of a derivation is to achieve 1.

The degree of a PC derivation is defined as the maximum of the degrees of
all intermediately derived polynomials. The first lower bound on the degrees of
PC derivations was obtained in (Razborov 1998) (see also (Impagliazzo et al.
1999) and (Buss et al. 1996/1997)). A linear lower bound for PC for Tseitin’s
tautologies was proved in Buss et al. (1999, 2001). Note that the latter bound
is sharp.

In (Grigoriev & Vorobjov 2001), for the case of input polynomials f1,. .., fi
€ R[X1,..., X,] with real coefficients, derivations of inequalities as well as
equalities were considered. The case of linear inequalities with added conditions
X? = X; (Boolean programming) was widely studied by means of cutting
planes proofs, for which an exponential lower bound on the length was obtained
(a survey and references can be found in (Pudldk 1999)). Another approach
to systems of linear inequalities was undertaken in Lovdsz (1994); Lovész &
Schrijver (1991); Stephen & Tungel (1999), where a derivation system was
introduced which, given any linear polynomial e, allows one to derive e2 > 0,
given any already derived linear inequalities a; > 0,as > 0, allows one to derive
ay + as > 0, ajas > 0, and, given any already derived quadratic inequalities
p1 > 0,p2 > 0, allows one to derive p; + py > 0. In (Pudldk 1999) one can find
some remarks on the complexity of this (called Lovasz-Schrijver) procedure, in
particular, an upper bound for the Pigeon Hole Principle (written as a system
of linear inequalities).

More precisely, following (Grigoriev & Vorobjov 2001), let a system of equa-
tions and inequalities

be given. Dealing with systems of inequalities one could get profit from using
the axiom that any square is non-negative, and the rules of adding or multiply-
ing inequalities. This is formalized in the following notion of the cone (which
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replaces the role of ideals for systems of equations) and in two proof systems
described below for refuting systems of inequalities, they extend the systems
NS and PC, respectively.

DEFINITION 0.2. The cone ¢(hy,... , hy,) generated by polynomials hy, ... | hy,
€ R[Xy,...,X,] is the smallest family of polynomials containing hy, ... , hy,
and satistying the following rules:

(a) e?€c(hy,..., hy) forany e € R[X,,...,X,];

ifa,b € ¢(hy,..., hy), then
(b) a+beclh,... hp);
(¢c) ab€c(hy,... hy).

REMARK 0.3. The minimal cone ¢(()) consists of all sums of squares of poly-
nomials.

REMARK 0.4. Any element of ¢(hy, ... ,h,) can be represented in a form

Ic{;,m} (11 hi) (; eij)

for some polynomials ey j € R[ Xy, ..., X,].

The two proof systems introduced in (Grigoriev & Vorobjov 2001) (which
could be viewed as static and dynamic, respectively), rely on the following
Positivestellensatz (see Bochnak et al. (1998); Stengle (1974)).

Positivstellensatz. A system (0.1) has no common solutions in R™ if and
only if for a suitable polynomial f € R[Xy, ..., X,] from the ideal (fi,..., fr)
and a polynomial h € c(hy, ..., hy) we have: f+h=—1.

The first (static) proof system is stronger than NS refutations and could be
viewed as its Positivstellensatz analogue.

DEFINITION 0.5. A pair of polynomials

(f,h) = (Z fags D (H hi) (Z I))

1<s<k 1c{1,...;m} \iel



4 D.Grigoriev

with f +h = —1 where g;,e;; € R[X,...,X,] we call a Positivstellensatz
refutation for (0.1) (we denote it by PS- ). The degree of the refutation is

max{deg(f.g,), deg(e7; [] ha)}-

s,I,
J il

The second (dynamic) proof system is stronger than PC and could be viewed
as its Positivstellensatz analogue.

DEFINITION 0.6. Let a polynomial f € (f1,..., fr) be derived in PC from the

axioms f, ..., fi, and let a polynomial h € c(hy, ... , hy) be derived, applying
the rules (a), (b), (c) from Definition 0.2, from the axioms hy, ... , hy,. Suppose
that f + h = —1. This pair of derivations we call a Positivstellensatz calculus

refutation for (0.1) (we denote it by PC~ ). By its degree we mean the maximum
of the degrees of intermediate polynomials from both derivations. The length
of the refutation we define as the total number of steps in both derivations.

In the present paper we consider just the systems of equations f; = --- =
fn = 0 (the polynomials hy, ..., h,, are absent). In this case a polynomial A is
just a sum of squares ), h? (cf. Remark 0.3).

In (Grigoriev & Vorobjov 2001) a so-called telescopic system of equations
due to Lazard-Mora-Philippon is considered and an exponential lower bound
on the degree of any its PSs refutation (see Definition 0.5) is proved. On
the other hand it is shown a linear upper bound for the telescopic system
on the degree of PC, being sharp because a linear lower bound is proved in
(Grigoriev & Vorobjov 2001) for the stronger system of the PCS refutations
(see Definition 0.6), and for the latter one also an exponential lower bound on
the lengths of proofs is established.

However, the telescopic system is not Boolean, whereas the main interest
in the proof theory is just in the Boolean systems. In (Grigoriev 2001) a linear
lower bound on the degree of PC- refutations is established for the Tseitin’s
tautologies and for the parity principle, the proofs extend the argument from
Buss et al. (1999, 2001) and similar lower bounds for PC.

In the present paper as in (Impagliazzo et al. 1999) we consider the following
system which is a particular case of the knapsack problem

(0.7) fi=X-X;=0,1<i<n,f=X1+ -+ X,—7r=0

We note that throughout the paper » € R denotes a real number.

The PS- (see Definition 0.5) and PC- (see Definition 0.6) degrees of (0.7)
depend essentially on the value of r. If either » < 0 or r > n then the following
obvious identities
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~fim = o [ X X =

and respectively,

i G -+ (X =) =0
show that both PS. and PC- degrees of (0.7) are 2. On the other hand,
theorem 5.1 of Impagliazzo et al. (1999) establishes a lower bound of [n/2] 41
on the PC degree of (0.7) regardless of the value of r. Thus, PCs can be
strictly stronger than PC and PS. can be strictly stronger than PS. The main

result of the present paper is the following lower bound on the PS< and PC-
degrees of (0.7).

THEOREM. Let k be a non-negative integer and suppose that k <r <n — k.

(i) When 0 < k < (n — 3)/2 the Positivstellensatz refutation degree of (0.7)
is greater or equal to 2k + 4. For k > (n — 2)/2 the degree is greater or
equal ton + 1;

(ii) when 0 < k < [n/4] — 2 the Positivstellensatz calculus refutation degree
of (0.7) is greater or equal to 2k + 4. For k > [n/4] — 2 the degree is
greater or equal to [n/2] + 1.

REMARK 0.8. Actually one could rephrase the theorem invoking the following
stairs-form function § which equals to 2 outside the interval (0,n) and which
equals to 2k + 4 on the intervals (k,k+1) and (n —k —1,n — k) for all integers
0 < k < n/2. Then the bound in a) on the degree is min{d,n + 1} and the
bound in b) is min{d, [n/2] + 1}. The values of the function § at the integer
points 0,...,n does not matter since system (0.7) has a solution at precisely
these values of r. Observe also that both degrees in the theorem as functions
in m are symmetric with respect to the point n/2, taking into account the
transformation X; — 1 — X;,1 <1 <n.

In section 1 we show how to reduce the proof of the theorem to the non-
negativity of a relevant quadratic form which in its turn is proved in section
2.

In the theorem we establish lower bounds on the degrees of PS. and PCs
refutations. It would be interesting to learn how close are they to upper bounds
(we know this for r < 0 or > n due to the identities above and also when
k> (n—2)/2in case (i) and when k£ > [n/4] — 2 in case (ii)).
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1. Reduction to the non-negativity of a quadratic form

As in Impagliazzo et al. (1999) we consider a factor-algebra
A=R[Xy,..., X,]/(X? - X1,..., X2~ X,)

which has a canonical basis of the multilinear monomials {X?} where I C
{1,...n}. For a polynomial ¢ € R[X,..., X,,] denote by § € A the multilinear
polynomial that is the canonical image of ¢ in A.

Lemma 5.2 of Impagliazzo et al. (1999) states that deg(fg) = deg(g) +
1, provided that deg(g) < [n/2]. This implies (theorem 5.1 of Impagliazzo
et al. (1999)) the lower bound [n/2] on the degree of PC refutations of (0.7).
This bound is sharp (theorem 4.2 Impagliazzo et al. (1999)). Moreover, it
is claimed in the proof of theorem 5.1 of Impagliazzo et al. (1999) that if a
polynomial 4 is deducible in PC from (0.7) with a degree of the refutation at
most [n/2] then h = figi +-- -+ fogn + fg for suitable gy, ..., g,, g such that
G = g,deg(h) = deg(g) + 1 and deg(f;g;) < deg(h),1 < i < n (this claim is
verified in Impagliazzo et al. (1999) by induction along a deduction of A in PC
relying on lemma 5.2 of Impagliazzo et al. (1999)). For a weaker system of NS
one can prove a better (also sharp) lower bound (which holds, in fact, over any
field of characteristic either zero or greater than n).

PrOPOSITION 1.1. The Nullstellensatz degree of (0.7) equals to n + 1.

ProoOF. The upper bound n+1 on the degree was established in Beame et al.
(1996). Indeed, there is a polynomial g such that § = ¢ and fg = 1. Then
the polynomial fg — 1 belongs to the ideal generated by fi,..., f,. Now we
proceed to the lower bound.

Denote by S = # Y scs, 0 the operator of symmetrization. Fix an NS
refutation 1 = fig; + -+ fngn + fg, one can assume without loss of generality
that ¢ = g and so deg(fg) = deg(g) + 1, provided that deg(g) < n. After
applying S to the NS refutation one could assume that S(g) = g, indeed,
S(g) is a linear combination of elementary symmetric functions sy = 1,51 =
Xi+-+X,,...,8, = Xy --- X, assuming that k£ = deg(g) < n, for the highest
terms in the product fg we have 755 = (k + 1)sgy1 + ksg since f=s; —r. O

Now we proceed to the proof of the theorem. Suppose that there is a
PS. refutation of (0.7) in case (i) and a PC. refutation of (0.7) in case (ii),
respectively, of degree d being less than a respective bound in the theorem. Note
that d < nin case (i) and d < [n/2] in case (ii) (see also the Remark 0.8 after
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the theorem). Definitions Definition 0.5, Definition 0.6, respectively, imply that
for appropriate polynomials h; we have an equality

(1.2) 1+ 02 = figi+ -+ fagn + fg
J

where deg(f;g:),deg(fg) < d,1 < i < n in case (i), and in case (ii) the
right-hand side is deducible in the PC within the degree d. Observe that
deg(h3) < deg(figr + -+ fagn + fg) < d. Indeed, consider among all the
monomials occurring in all i; the highest one with respect to the deglex mono-
mial ordering, then the coefficient of the square of this monomial in the sum
143, h? should be positive. In case (ii) the (already mentioned at the be-
ginning of the section) claim in the proof of theorem 5.1 of Impagliazzo et al.
(1999) states that deg(fg),deg(fig;) < d,1 < i <n for g,g1,...,9, chosen in
a suitable way.

Define a linear mapping B : A — R by letting B(X') = B;, = %
for the basis elements X of A corresponding to any set I with |I| = k and ex-
tending linearly. Further, extend B to all of R[X7, ..., X, by defining B(g) =
B(g). Observe that the mapping B is symmetric and that B(1) = By = 1.

LEMMA 1.3. For a polynomial gy € R[X}, ..., X,] with deg(gy) < n we have
B(fgo) = 0.

PrROOF. It suffices for a multilinear monomial X! with |I| = k < n to verify
that B(fXT) = 0, which is valid since B(fX!) = (n — k)Byy1 + (k —r)By,. O

Denote by P, C A,0 < k < n the linear hull of all the monomials X' of
degree |I| = k. Then A = ®o<p<p L.

We introduce a quadratic form @) in the space @o<j<|n/2/ P With the entry
in the place (X!, X7) being equal to B(X'X”7). By Q;,1 < |n/2]| we denote
the restriction of () onto the subspace @o<xr<;F, in particular, @,/2; = Q. In
the sequel we often identify a quadratic form with the symmetric matrix of its
coefficients and we identify a polynomial with the vector of its coefficients.

LEMMA 1.4. The quadratic form (), is non-negative when [—1 < r <n—I[+1.

The proof of the Lemma 1.4 is contained in the next section, and now we
show how to deduce the theorem from the Lemma 1.4.

End of the proof of the theorem. We apply the mapping B to both sides
of (1.2). In the right-hand side we obtain B(fg) = 0 due to Lemma 1.3
because deg(fg) < d < n in both cases (i), (ii). On the other hand let h; =
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3, EI)XI then B(h%) =37, ; 51) ; )B(XTX7) = h; QLd/QJh > 0 according
to Lemma 1.4, taking into the account that deg(h}) < d (see above) and that
in case (i) when 0 < k£ < (n — 3)/2 or in case (ii) When 0<k<|n/4] —2 we
have |d/2]| < k+1 by the adopted supposition that the theorem is wrong, and
in case (i) when £ > (n —2)/2 we have k+1 > n/2 > d/2, and finally in case
(ii) when k > [n/4] — 2 we have k +1 > Un/Q | > |d/2] (here k] denotes the
transposed vector of coefficients of h;). Since B(1) =1 we get a contradiction.
0

Note that one can obtain another proof of the Proposition 1.1 just applying
the mapping B to any NS refutation and making use of Lemma 1.3.

2. Non-negativity of the quadratic form @

Now we proceed to the proof of Lemma 1.4. The plan is to describe the kernel
of (); and its eigenspaces, and to prove that non-zero eigenvalues are positive.

First observe that the vector fX7,|I| < — 1 belongs to the kernel ker Q.
Indeed, the product of the row of the matrix ; which corresponds to a mono-
mial X7 by the vector fX', equals to B(fX'X7) = B(fX'Y/) which vanishes
since |J| <, hence [TUJ| < 2/—1 < n—1 and we apply Lemma 1.3. Actually,
we’ll show in the sequel that ker (); is the linear hull of these vectors.

In the sequel for a vector v € P, we utilize a notation v = (v;) where vy is
I-component of v, i.e. the coefficient of X' in v. Consider a linear mapping
Cr : Py = Py where for a vector v = (vr) € Py its image (Cr(v)) s = >, v,
here and below I,.J C {1,...,n};|J| = k+ 1,|I| = k. Also consider a linear
mapping Dy : Pyy1 — Py under which the image of a vector w = (wy) € Pryq
is a vector whose /-component equals to (Dy(w))r =) -, w;.

Denote by Pko1 C Ppi1 a subspace {(uy) :¥[I| =k (3> ,5;us=0)}. For

t > k denote a subspace Pk =Cy-Cyq- - Craa k+)1) C Py and besides,
for any vector w = (wy) € Pkﬂ and any L C {1,...,n};|L| =t+ 1 we have

(2.1) ((Cy Comy =+ Copn) (W) = (t = k)Y wy)

JCL

For a vector u € Pk((_)& one can represent (in algebra A defined in section 1

above) the polynomial
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(2.2) s4 Z us X7 = Z (Crge - Crar(u) gk X5 +
7 |K|=k-+t+1
M D (D)X YN XX
|K|=k+t JCK |K|=k+1

for appropriate constants 77,(:: t) , by means of opening the parenthesis in s¢ and
taking into the account (2.1), provided that k+¢+1 < n (in fact, this equality
holds for any vector w € Pyy1). The vectors of coefficients of the polynomials

51— 1,51(s1 —1),55(s1 —7),...,87 (sy — ) (of the degrees 1,2, ...,1, respec-
tively) belong to the ker @); (see the beginning of the present section), the same
holds for the polynomials (or more precisely, the elements of A)

(2.3) (sl—r)ZuJXJ,sl(sl—r)ZuJXJ,

s2(sy —T)ZUJXJ,...,Slfk’Q(sl —T)ZUJXJ
7 7

Thus, using (2.2) we summarize the properties of the polynomials (2.3) in
the following proposition.

PROPOSITION 2.4. The vectors of coefficients of polynomials (2.3) belong to
the kernel ker (), and the leading homogeneous forms of (2.3) are

Crt1(u), Cryo - Crga(u), ..., Croq + - Chpa - Crya(u)

of the degrees k + 2,k + 3,...,1, respectively. The polynomials (2.3) lie in
(I — k)-dimensional subspace P(u) with the basis

(2.5)  w* = (w), u*™? = Cppy(u), u® = =Crpy - Crpa(u), ...,

1
'0171"-Ck+2-0k+1(u) EP 1P Pa® - ®P

0 _
ey

Due to (2.1) for |K| =t the coordinate of the vector (u®)x =3, ) uy.
For a subset T' C {1,...,n},|T"| < k we have (recall that |.J| = k + 1)
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(2.6) » u;=0

because up to a constant (positive) factor it equals to Y-~ ;- D257 g = 0.
For fixed subsets K C {1,...,n},|K|=iand T C K,|T| < k+ 1 we prove
the following identity:

(2.7) > up= (=N,

JNK=T TCJCK

The proof goes by induction on k + 1 — |T|. The base when i > k + 1
for |T| = k + 1 is trivial since both sides of (2.7) in this case equal to ur.
Respectively, when 7 < k we put for the base 7' = K , then the both sides of
(2.7) in this case vanish due to (2.6). For the inductive step from (2.6) we get

JOT JNK=T
E Uy + E Uy + -+ E Uy =
JOT,|INK|=|T|+1 JDOT,|INK|=|T|+2 JOT,|INK|=k+1

(in case when i < k all the sums in the latter line vanish by the inductive
hypothesis, hence the sum ) ,_,u; = 0 vanishes as well, which proves
the inductive step, thus we continue the chain of equalities assumming that
i>k+1)

= Z uy + Z (—1)FHt=T Z uy+

JNK=T HOT,|H|=|T|+1 HCJCK
k+1—-(|T]4+2
E (_1)+ (17[+2) E Uy + -+ E ug =
HOT,|H|=|T|+2 HCJICK HOT, H|=k+1

due to the inductive hypothesis (where in the double sums the external summa-
tion ranges over H while the internal one ranges over .J); in its turn continuing
the chain of equalities we get

_ Z w + Z (1_(k+11—|T|>+(k+12—|T|>_.“+

JNK=T TCJICK



Positivstellensatz proofs for the Knapsack 11

(_1)k|T(k'l|€‘i|_T||T|>)uJ: Z wy — (—1)FHIT Z "

JNK=T TCICK

that proves (2.7).
Next we prove the following proposition.

PRrROPOSITION 2.8. The composition of the operators D, - C; restricted on the
subspace Cy_y - - 'Ck-l-l(Pk(?i-)l) equals to a multiple (n —t —k —1)(t — k)E of the
identity operator E, provided that n —t —k —1 > 0.

Proof of the proposition. Let M C {1,...,n};|M| =t and u € P,§°+)1, we
obtain the following chain of inequalities

(t_lk)'(DtCtCkJrl(u))M: Z ZUJ:

LOM,|L|=t+1JCL

(due to (2.1))

:(n—t)ZUJ—F Z U/J:(n_t)ZU]— Z Z uy =

JCM |JNM|=k JCM ICM,|I|=k ICICM

(see (2.7))

Z(H—t)Zw—(kﬂ)Zujz(n—t—k—l)ZuJ:

JCM JCM JCM
n—t—k—1
m(@fl ++ Oy (u))

(again due to (2.1)). This proves Proposition 2.8. [
We prove by induction on ¢ that P; is the direct sum of its subspaces

(2‘9) Pt(O) @ Ct—1Pt(_0)1 & C,_y - C’t_th(_O)Q D PCi_y-Chg--- COPO(O)

The base case for ¢ = 0 is obvious. Assuming (2.9) as the inductive hypoth-
esis, we obtain that the image under the operator C; of (2.9) is also a direct sum
(due to Proposition 2.8 applied to each item of the direct sum (2.9), observe
that n —2t — 1 > 0 since t < < |n/2]):
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Ctpt - Ctpt(O)EBCt'thlpt(E)lEBCt'Ct,1'thgpt(_O)QEB' : 'EBCt'Ct,1 e CUPO(O) C Pt+1

and D, - C,P, = P,, moreover D, - C} is an automorphlsm of P,. Apart from
that, the kernel ker D; = Pt(f:)l. Therefore, P, = t+1 @ Cy P, that proves the
inductive hypothesis and (2.9).
Partition the matrix @; into the blocks Q%) : P; — P;,0 < i,j < L.
Our next purpose is to calculate the vector QUF+Y(u) € P;, recall that u €
k+1’ |J| = k + 1. Let |K| = i, we have using the definition of the mapping B
from section 1

QU Vw)k= > > BX*X)u;= Bim Y, us

T, TCK J, KNJ=T TCK KNnJ=T

The latter sum vanishes when i < k since ) . ;_ru; = 0 due to (2.7).
Now when ¢ > k + 1 we obtain using (2.7)

(210) (@ V(u))x

:BiZUJ+Bi+1 Z Uy

JCK \JNK|=k
+Biy2 Z uy+-+ Biygg Z Uy
|JNK|=k—1 |JNK|=0
k+1 k+1
:BiZUJ_BiJrl( I )ZUJ+Bi+2<k_1>ZUJ_"'
JCK JCK JCK
k+1
+(—1)k+lBi+k+1< 0 ) Z wy

JCK

E+1 E+1
:(Bi_Bi—l—l( f >+Bi+2<k_1> -

E+1
+(_1)k+lBi+k+1< > > uy

JCK

Thus, (QWF+Y(u)) = ppr1u® (see (2.5)) where

k+1
(2.11) i1 = Z (—1)7~ <]_Z>B I>i>k+1
i<j<itk+1
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(we recall that k + 1 is fixed for the time being). In particular, for i = k£ + 1
the vector u**!) = u is an eigenvector of the operator QU+1F+1),
Because

0= (Q(i,k+1) Q(i,k+2)) . (51 _ 7,) Z UJXJ
J

for all i < [, taking into the account Proposition 2.4, we get that Q(*+2) .
ulk+2) = ;. ou® for appropriate constant j; ;o when i > k + 1 and QU++2) .

u*+2) = 0 when 7 < k. In a similar way,

0= (Q(i,k+1) Q(i,k+2) Q(i,k+3)) csi(sp — 1) ZUJXJ’
J

this implies that Q@F+3) . (k+3) = 1, 20 for appropriate constants fi; 3
when i > k+1 and QUF+3).4(++3) = (0 when i < k and so on. Thus, the operator
Q) acts on the subspace P(u) (see (2.5)), in other words P(u) is invariant under
@1, and (4;;) is the matrix of its action with respect to the basis (2.5) if in
addition we set ; ; = 0 when j < £+ 1. Since the polynomials (2.3) belong to
ker @); due to Proposition 2.4, the rank of (y; ;) is at most 1. We have already
calculated the first (possibly) non-zero column of the matrix (y;;),0 < 1,7 <1
(the index of this column is &k + 1).

Our next purpose is to calculate the first (possibly) non-zero row of this
matrix (its index is also k + 1 as was just proved).

So, we need to calculate the coordinate of the vector (Q**1)y®); for a
fixed |Jo| = k£ + 1. This coordinate equals to

(2.12) > B > > u;

1<j<i+k+1 |KNJo|=k+1—j+i JCK

where the second summation ranges over K and the third (internal) one ranges
over .J.
Now we transform one item of the sum (2.12):

> Su-

|KNJo|=k+1—j+i JCK

P VI (SU R T | e [ S

0<t<k+1—j+i |INJo|=t
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where the first binomial coefficient (k Jjj:; +Z.) counts the number of possi-

bilities (for fixed .J,.Jy) to choose a subset (Jy — J) N K in the set Jy — J
(note that |Jo — J| =k+1—t |[(Jo—J)NK|=k+1—1t—j+i); while
the second binomial coefficient (?:;ﬁ:gﬁ) counts the number of possibilities
to choose a subset K — J — Jy in the set {1,...,n} — J — Jy (note that
K —J—J) =j—2k—2+¢t|{1,....n} = J = | = n—2k—2+1).
Thereby, the product of these two binomial coefficients provides the numbers
of possibilities for K from the left-hand side.

Because of (2.7) we obtain that >, _ u; = (—l)k“_t(k;rl)uh. There-
fore, (2.13) equals to

P IR Ll G | e )| G LTS

0<t<k—+1—j-+i

(O (o (k +1)! '<n—2k—2+t>)w0:

' _ _ . . ' . _ . o .
0<t<k-+1—j+i te+1—t—j+9)!(— ) n-—Jj

(@+1>( Z (_1)k+1t(k+1t—j+z'> <n—ik_—j2+t>)uh _

J— -
0<t<k+1—j+i

Ak +1\ (n—2k—2
_1)ii
() ()

To prove the latter equality denote by =, T some sets of the cardinalities k +
1 —j41,n— 2k — 2, respectively. Observe that the sum in the second-to-last
line in the chain of the equalities

Z (—1)FH1t (k +1 t— j+ z) (n — ik_—]? +t>

0<t<k—+1—j-+i

coincides with the weighted sum of the number of choices of first, a subset A
of = of the cardinality ¢ and subsequently a subset A of the cardinality n — j
of the union A U Y, taken with the weight (—1)**1=t. On the other hand, if A
does not contain = the contribution of A into the weighted sum vanishes since
this contribution equals the weighted sum of occurances of A, i.e.

S (a3 (_1)T<TTO>

ZENACACE 0<7<m0
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where 79 = |= — A|. Else when A contains =, the contribution (for the unique
A = =) equals (—1)’7%. In order to finish this proof notice that the number of
such A equals the number of subsets ANY of the cardinality (n—j)—(k+1—j+1)
of the set T, i.e. (n":;ffl).

Thus, (2.12) equals to

n—2k—2 (k+1
<i—k—1>( 2, v ( ')Bj)u"“
i<y <itk+1

hence

() E e (G m = (G e

i<j<ithk+1

Therefore, the matrix (p; ;) (being of the rank at most 1) is non-negative
if and only if its entry pp11,+1 > 0, provided that g1 41 7# 0. Indeed, each
diagonal entry s;,; of the matrix (u; ;) is non-negative (respectively, each one
is non-positive) if and only if g1 .41 > 0 (respectively, pgi1x+1 < 0) since
due to (2.14) the signs of pg41,; and p; k41 coincide and taking into account
that f k1,41 = Mik+1 /1,5 furthermore, the only non-zero eigenvalue of
the rank 1 matrix (yu; ;) equals to its trace, the latter is thereby positive if and
only if pig11 41 > 0.

Suppose that we have proved already that the matrices (1, ;) (let us un-
derline that the matrix (p; ;) was defined for a fixed k + 1) are non-negative
for all 0 < k£ + 1 < [. This would imply that the matrix (); is non-negative
as well since (y; ;) is the action of (); on the subspace P(u) (see above), hence
the unique non-zero eigenvalue of the matrix (y; ;) is the eigenvalue of Q); as
well, actually, this eigenvalue depends only on k£ + 1 and does not depend on a
particular vector u € Pk((_)&. Moreover, these eigenvalues for all 0 < k +1 <
exhaust all the eigenvalues of ();. Indeed, the subspace

(2-15) Pk((-)i-)l ©® Ck+1P1§(-)|r)1 ©® Ck+2Ck+1Pk(3-)1 G- ®Cpg - 'Ck+1P1§(-)|r)1

equals the direct sum of subspaces of the form P(u) where u ranges over the
elements of an arbitrary basis of the subspace P,§°+)1, and on the other hand, the
direct sum of all these subspaces of the form (2.15) for 0 < k£ + 1 <[ coincides
with the whole space Py @ --- @ P, due to (2.9). Thus, (); is non-negative.
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So, to complete the proof of Lemma 1.4 it remains to verify that fi41 541 > 0
forall 0 < k+1<I.
Denote B = Wikt1,! >0 > k+1 where p; g4 is taken from (2.11). We

i

prove by induction on £ that

(2.16) sty _ Mgl +1= ) [ogin( = +1)
. i n(n_l)(n—l—k)
For the base of induction £ = —1 we have BZ(O) = B; (see section 1).

(k1) _ gk _ pk)

For the inductive step we observe that B, .1 and apply the

inductive hypothesis, that proves (2.16).
Finally, the diagonal entry fig41 441 = B,(f:{l) is positive for k <r <n —k

because of (2.16), that proves Lemma 1.4 since k+1 <. O
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