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COMPLEXITY OF POSITIVSTELLENSATZPROOFS FOR THE KNAPSACKD.GrigorievAbstrat. A lower bound is established on degrees of Positivstellen-satz alulus refutations (over a real �eld) introdued in (Grigoriev &Vorobjov 1999; Grigoriev 1999), for the knapsak problem. The bounddepends on the values of oeÆients of an instane of the knapsak prob-lem: for ertain values the lower bound is linear and for ertain valuesthe upper bound is onstant, while in the polynomial alulus the degreeis always linear (regardless of the values of oeÆients) (Impagliazzo etal. 1997). This shows that the Positivstellensatz alulus an be stritlystronger than the polynomial alulus from the point of view of theomplexity of the proofs.Keywords. polynomial alulus, Positivstellensatz proofs, omplexityof the knapsakSubjet lassi�ation. 68Q25IntrodutionIn reent years there has been an intensive ativity in the researh of algebraiproof systems (Beame et al. (1996); Buss et al. (1999, 1996/1997); Clegg et al.(1996); Grigoriev (1998); Impagliazzo et al. (1999); Razborov (1998) ). Theapproah relies on Hilbert's Nullstellensatz and treats the problem of feasibilityof a system of polynomial equationsf1 = � � � = fk = 0;where among the polynomials f1; : : : ; fk 2 F [X1; : : : ; Xn℄, there appear thepolynomials X21 � X1; : : : ; X2n � Xn (the so-alled, Boolean ase). Note thatthis problem is, in general, NP -omplete.The Nullstellensatz proof system (NS) was �rst onsidered in (Beame et al.1996). The aim of the system is to �nd the polynomials g1; : : : ; gk 2 F [X1; : : : ;Xn℄ suh that 1 = g1f1+� � �+gkfk. The latter representation is sometimes alleda Nullstellensatz refutation. The number max1�i�kfdeg(gifi)g is alled theNullstellensatz degree. A linear upper bound O(n) on the Nullstellensatz degreeis evident, in (Beame et al. 1996) a non-onstant lower bound was proved, while



2 D.Grigorievafter a series of improvements in (Grigoriev 1998) a linear (and thus sharp)lower bound was proved.In (Clegg et al. 1996) a stronger proof system | polynomial alulus (PC)was introdued. Starting from axioms f1; : : : ; fk, PC allows one to derive newpolynomials from two given polynomials a; b 2 F [X1; : : : ; Xn℄, aording to thefollowing two rules:1. (additive) a; b ` �a+ �b, where �; � 2 F ;2. (multipliative) a ` Xia for 1 � i � n.The aim of a derivation is to ahieve 1.The degree of a PC derivation is de�ned as the maximum of the degrees ofall intermediately derived polynomials. The �rst lower bound on the degrees ofPC derivations was obtained in (Razborov 1998) (see also (Impagliazzo et al.1999) and (Buss et al. 1996/1997)). A linear lower bound for PC for Tseitin'stautologies was proved in Buss et al. (1999, 2001). Note that the latter boundis sharp.In (Grigoriev & Vorobjov 2001), for the ase of input polynomials f1; : : : ; fk2 R[X1; : : : ; Xn℄ with real oeÆients, derivations of inequalities as well asequalities were onsidered. The ase of linear inequalities with added onditionsX2i = Xi (Boolean programming) was widely studied by means of uttingplanes proofs, for whih an exponential lower bound on the length was obtained(a survey and referenes an be found in (Pudl�ak 1999)). Another approahto systems of linear inequalities was undertaken in Lov�asz (1994); Lov�asz &Shrijver (1991); Stephen & Tun�el (1999), where a derivation system wasintrodued whih, given any linear polynomial e, allows one to derive e2 � 0,given any already derived linear inequalities a1 � 0; a2 � 0, allows one to derivea1 + a2 � 0; a1a2 � 0, and, given any already derived quadrati inequalitiesp1 � 0; p2 � 0, allows one to derive p1 + p2 � 0. In (Pudl�ak 1999) one an �ndsome remarks on the omplexity of this (alled Lov�asz-Shrijver) proedure, inpartiular, an upper bound for the Pigeon Hole Priniple (written as a systemof linear inequalities).More preisely, following (Grigoriev & Vorobjov 2001), let a system of equa-tions and inequalitiesf1 = � � � fk = 0; h1 � 0; : : : ; hm � 0:(0.1)be given. Dealing with systems of inequalities one ould get pro�t from usingthe axiom that any square is non-negative, and the rules of adding or multiply-ing inequalities. This is formalized in the following notion of the one (whih



Positivstellensatz proofs for the Knapsak 3replaes the role of ideals for systems of equations) and in two proof systemsdesribed below for refuting systems of inequalities, they extend the systemsNS and PC, respetively.Definition 0.2. The one (h1; : : : ; hm) generated by polynomials h1; : : : ; hm2 R[X1; : : : ; Xn℄ is the smallest family of polynomials ontaining h1; : : : ; hmand satisfying the following rules:(a) e2 2 (h1; : : : ; hm) for any e 2 R[X1; : : : ; Xn℄;if a; b 2 (h1; : : : ; hm), then(b) a+ b 2 (h1; : : : ; hm);() ab 2 (h1; : : : ; hm).Remark 0.3. The minimal one (;) onsists of all sums of squares of poly-nomials.Remark 0.4. Any element of (h1; : : : ; hm) an be represented in a formXI�f1;::: ;mg Yi2I hi! Xj e2I;j!for some polynomials eI;j 2 R[X1; : : : ; Xn℄.The two proof systems introdued in (Grigoriev & Vorobjov 2001) (whihould be viewed as stati and dynami, respetively), rely on the followingPositivestellensatz (see Bohnak et al. (1998); Stengle (1974)).Positivstellensatz. A system (0.1) has no ommon solutions in Rn if andonly if for a suitable polynomial f 2 R[X1; : : : ; Xn℄ from the ideal (f1; : : : ; fk)and a polynomial h 2 (h1; : : : ; hm) we have: f + h = �1.The �rst (stati) proof system is stronger than NS refutations and ould beviewed as its Positivstellensatz analogue.Definition 0.5. A pair of polynomials(f; h) =  X1�s�k fsgs; XI�f1;::: ;mg Yi2I hi! Xj e2I;j!!



4 D.Grigorievwith f + h = �1 where gi; eI;j 2 R[X1; : : : ; Xn℄ we all a Positivstellensatzrefutation for (0.1) (we denote it by PS>). The degree of the refutation ismaxs;I;j fdeg(fsgs); deg(e2I;jYi2I hi)g:The seond (dynami) proof system is stronger than PC and ould be viewedas its Positivstellensatz analogue.Definition 0.6. Let a polynomial f 2 (f1; : : : ; fk) be derived in PC from theaxioms f1; : : : ; fk, and let a polynomial h 2 (h1; : : : ; hm) be derived, applyingthe rules (a), (b), () from De�nition 0.2, from the axioms h1; : : : ; hm. Supposethat f + h = �1. This pair of derivations we all a Positivstellensatz alulusrefutation for (0.1) (we denote it by PC>). By its degree we mean the maximumof the degrees of intermediate polynomials from both derivations. The lengthof the refutation we de�ne as the total number of steps in both derivations.In the present paper we onsider just the systems of equations f1 = � � � =fn = 0 (the polynomials h1; : : : ; hm are absent). In this ase a polynomial h isjust a sum of squares Pj h2j (f. Remark 0.3).In (Grigoriev & Vorobjov 2001) a so-alled telesopi system of equationsdue to Lazard-Mora-Philippon is onsidered and an exponential lower boundon the degree of any its PS> refutation (see De�nition 0.5) is proved. Onthe other hand it is shown a linear upper bound for the telesopi systemon the degree of PC, being sharp beause a linear lower bound is proved in(Grigoriev & Vorobjov 2001) for the stronger system of the PC> refutations(see De�nition 0.6), and for the latter one also an exponential lower bound onthe lengths of proofs is established.However, the telesopi system is not Boolean, whereas the main interestin the proof theory is just in the Boolean systems. In (Grigoriev 2001) a linearlower bound on the degree of PC> refutations is established for the Tseitin'stautologies and for the parity priniple, the proofs extend the argument fromBuss et al. (1999, 2001) and similar lower bounds for PC.In the present paper as in (Impagliazzo et al. 1999) we onsider the followingsystem whih is a partiular ase of the knapsak problemfi = X2i �Xi = 0; 1 � i � n; f = X1 + � � �+Xn � r = 0(0.7)We note that throughout the paper r 2 R denotes a real number.The PS> (see De�nition 0.5) and PC> (see De�nition 0.6) degrees of (0.7)depend essentially on the value of r. If either r < 0 or r > n then the followingobvious identities



Positivstellensatz proofs for the Knapsak 5�f1 � � � � � fn � f +X21 + � � �+X2n = rand respetively,�f1 � � � � � fn + f + (X1 � 1)2 + � � �+ (Xn � 1)2 = n� rshow that both PS> and PC> degrees of (0.7) are 2. On the other hand,theorem 5.1 of Impagliazzo et al. (1999) establishes a lower bound of dn=2e+1on the PC degree of (0.7) regardless of the value of r. Thus, PC> an bestritly stronger than PC and PS> an be stritly stronger than PS. The mainresult of the present paper is the following lower bound on the PS> and PC>degrees of (0.7).Theorem. Let k be a non-negative integer and suppose that k < r < n� k.(i) When 0 � k � (n� 3)=2 the Positivstellensatz refutation degree of (0.7)is greater or equal to 2k + 4. For k � (n � 2)=2 the degree is greater orequal to n + 1;(ii) when 0 � k � dn=4e � 2 the Positivstellensatz alulus refutation degreeof (0.7) is greater or equal to 2k + 4. For k > dn=4e � 2 the degree isgreater or equal to dn=2e + 1.Remark 0.8. Atually one ould rephrase the theorem invoking the followingstairs-form funtion Æ whih equals to 2 outside the interval (0; n) and whihequals to 2k+4 on the intervals (k; k+1) and (n�k� 1; n�k) for all integers0 � k < n=2. Then the bound in a) on the degree is minfÆ; n + 1g and thebound in b) is minfÆ; dn=2e + 1g. The values of the funtion Æ at the integerpoints 0; : : : ; n does not matter sine system (0.7) has a solution at preiselythese values of r. Observe also that both degrees in the theorem as funtionsin m are symmetri with respet to the point n=2, taking into aount thetransformation Xi ! 1�Xi; 1 � i � n.In setion 1 we show how to redue the proof of the theorem to the non-negativity of a relevant quadrati form whih in its turn is proved in setion2. In the theorem we establish lower bounds on the degrees of PS> and PC>refutations. It would be interesting to learn how lose are they to upper bounds(we know this for r < 0 or r > n due to the identities above and also whenk � (n� 2)=2 in ase (i) and when k > dn=4e � 2 in ase (ii)).



6 D.Grigoriev1. Redution to the non-negativity of a quadrati formAs in Impagliazzo et al. (1999) we onsider a fator-algebraA = R[X1; : : : ; Xn℄=(X21 �X1; : : : ; X2n �Xn)whih has a anonial basis of the multilinear monomials fXIg where I �f1; : : : ng. For a polynomial g 2 R[X1; : : : ; Xn℄ denote by g 2 A the multilinearpolynomial that is the anonial image of g in A.Lemma 5.2 of Impagliazzo et al. (1999) states that deg(fg) = deg(g) +1, provided that deg(g) < dn=2e. This implies (theorem 5.1 of Impagliazzoet al. (1999)) the lower bound dn=2e on the degree of PC refutations of (0.7).This bound is sharp (theorem 4.2 Impagliazzo et al. (1999)). Moreover, itis laimed in the proof of theorem 5.1 of Impagliazzo et al. (1999) that if apolynomial h is deduible in PC from (0.7) with a degree of the refutation atmost dn=2e then h = f1g1 + � � �+ fngn + fg for suitable g1; : : : ; gn; g suh thatg = g; deg(h) = deg(g) + 1 and deg(figi) � deg(h); 1 � i � n (this laim isveri�ed in Impagliazzo et al. (1999) by indution along a dedution of h in PCrelying on lemma 5.2 of Impagliazzo et al. (1999)). For a weaker system of NSone an prove a better (also sharp) lower bound (whih holds, in fat, over any�eld of harateristi either zero or greater than n).Proposition 1.1. The Nullstellensatz degree of (0.7) equals to n+ 1.Proof. The upper bound n+1 on the degree was established in Beame et al.(1996). Indeed, there is a polynomial g suh that g = g and fg = 1. Thenthe polynomial fg � 1 belongs to the ideal generated by f1; : : : ; fn. Now weproeed to the lower bound.Denote by S = 1n!P�2Sn � the operator of symmetrization. Fix an NSrefutation 1 = f1g1 + � � � fngn + fg, one an assume without loss of generalitythat g = g and so deg(fg) = deg(g) + 1, provided that deg(g) < n. Afterapplying S to the NS refutation one ould assume that S(g) = g, indeed,S(g) is a linear ombination of elementary symmetri funtions s0 = 1; s1 =X1+� � �+Xn; : : : ; sn = X1 � � �Xn, assuming that k = deg(g) < n, for the highestterms in the produt fg we have s1sk = (k + 1)sk+1 + ksk sine f = s1 � r. �Now we proeed to the proof of the theorem. Suppose that there is aPS> refutation of (0.7) in ase (i) and a PC> refutation of (0.7) in ase (ii),respetively, of degree d being less than a respetive bound in the theorem. Notethat d � n in ase (i) and d � dn=2e in ase (ii) (see also the Remark 0.8 after



Positivstellensatz proofs for the Knapsak 7the theorem). De�nitions De�nition 0.5, De�nition 0.6, respetively, imply thatfor appropriate polynomials hj we have an equality1 +Xj h2j = f1g1 + � � �+ fngn + fg(1.2)where deg(figi); deg(fg) � d; 1 � i � n in ase (i), and in ase (ii) theright-hand side is deduible in the PC within the degree d. Observe thatdeg(h2j) � deg(f1g1 + � � � + fngn + fg) � d. Indeed, onsider among all themonomials ourring in all hj the highest one with respet to the deglex mono-mial ordering, then the oeÆient of the square of this monomial in the sum1 +Pj h2j should be positive. In ase (ii) the (already mentioned at the be-ginning of the setion) laim in the proof of theorem 5.1 of Impagliazzo et al.(1999) states that deg(fg); deg(figi) � d; 1 � i � n for g; g1; : : : ; gn hosen ina suitable way.De�ne a linear mappingB : A! R by lettingB(XI) = Bk = r(r�1)���(r�k+1)n(n�1)���(n�k+1)for the basis elements XI of A orresponding to any set I with jIj = k and ex-tending linearly. Further, extend B to all of R[X1; : : : ; Xn℄ by de�ning B(g) =B(g). Observe that the mapping B is symmetri and that B(1) = B0 = 1.Lemma 1.3. For a polynomial g0 2 R[X1; : : : ; Xn℄ with deg(g0) < n we haveB(fg0) = 0.Proof. It suÆes for a multilinear monomial XI with jIj = k < n to verifythat B(fXI) = 0, whih is valid sine B(fXI) = (n� k)Bk+1 + (k � r)Bk. �Denote by Pk � A; 0 � k � n the linear hull of all the monomials XI ofdegree jIj = k. Then A = �0�k�nPk.We introdue a quadrati form Q in the spae �0�k�bn=2Pk with the entryin the plae (XI ; XJ) being equal to B(XIXJ). By Ql; l � bn=2 we denotethe restrition of Q onto the subspae �0�k�lPk, in partiular, Qbn=2 = Q. Inthe sequel we often identify a quadrati form with the symmetri matrix of itsoeÆients and we identify a polynomial with the vetor of its oeÆients.Lemma 1.4. The quadrati form Ql is non-negative when l�1 < r < n� l+1.The proof of the Lemma 1.4 is ontained in the next setion, and now weshow how to dedue the theorem from the Lemma 1.4.End of the proof of the theorem. We apply the mapping B to both sidesof (1.2). In the right-hand side we obtain B(fg) = 0 due to Lemma 1.3beause deg(fg) � d � n in both ases (i), (ii). On the other hand let hj =



8 D.GrigorievPI h(I)j XI, then B(h2j) = PI;J h(I)j h(J)j B(XIXJ) = hjQbd=2hTj � 0 aordingto Lemma 1.4, taking into the aount that deg(h2j) � d (see above) and thatin ase (i) when 0 � k � (n� 3)=2 or in ase (ii) when 0 � k � dn=4e � 2 wehave bd=2 � k+1 by the adopted supposition that the theorem is wrong, andin ase (i) when k � (n� 2)=2 we have k + 1 � n=2 � d=2, and �nally in ase(ii) when k > dn=4e � 2 we have k + 1 � b dn=2e2  � bd=2 (here hTj denotes thetransposed vetor of oeÆients of hj). Sine B(1) = 1 we get a ontradition.� Note that one an obtain another proof of the Proposition 1.1 just applyingthe mapping B to any NS refutation and making use of Lemma 1.3.2. Non-negativity of the quadrati form QNow we proeed to the proof of Lemma 1.4. The plan is to desribe the kernelof Ql and its eigenspaes, and to prove that non-zero eigenvalues are positive.First observe that the vetor fXI; jIj � l � 1 belongs to the kernel kerQl.Indeed, the produt of the row of the matrix Ql whih orresponds to a mono-mial XJ by the vetor fXI, equals to B(fXIXJ) = B(fXI[J) whih vanishessine jJ j � l, hene jI[J j � 2l�1 � n�1 and we apply Lemma 1.3. Atually,we'll show in the sequel that kerQl is the linear hull of these vetors.In the sequel for a vetor v 2 Pk we utilize a notation v = (vI) where vI isI-omponent of v, i.e. the oeÆient of XI in v. Consider a linear mappingCk : Pk ! Pk+1 where for a vetor v = (vI) 2 Pk its image (Ck(v))J =PI�J vI ,here and below I; J � f1; : : : ; ng; jJ j = k + 1; jIj = k. Also onsider a linearmapping Dk : Pk+1 ! Pk under whih the image of a vetor w = (wJ) 2 Pk+1is a vetor whose I-omponent equals to (Dk(w))I =PJ�I wJ .Denote by P (0)k+1 � Pk+1 a subspae f(uJ) : 8jIj = k (PJ�I uJ = 0)g. Fort > k denote a subspae P (t�k)k+1 = Ct � Ct�1 � � �Ck+1(P (0)k+1) � Pt+1 and besides,for any vetor w = (wJ) 2 Pk+1 and any L � f1; : : : ; ng; jLj = t+ 1 we have((Ct � Ct�1 � � �Ck+1)(w))L = (t� k)!(XJ�LwJ)(2.1)For a vetor u 2 P (0)k+1 one an represent (in algebra A de�ned in setion 1above) the polynomial



Positivstellensatz proofs for the Knapsak 9
st1XJ uJXJ = XjKj=k+t+1(Ck+t � � �Ck+1(u))KXK +(2.2) �(k+t)k;t XjKj=k+t(XJ�K uJ)XK + � � �+ �(k+1)k;t XjKj=k+1uKXKfor appropriate onstants �(p)k;t , by means of opening the parenthesis in st1 andtaking into the aount (2.1), provided that k+ t+1 � n (in fat, this equalityholds for any vetor w 2 Pk+1). The vetors of oeÆients of the polynomialss1 � r; s1(s1 � r); s21(s1 � r); : : : ; sl�11 (s1 � r) (of the degrees 1; 2; : : : ; l, respe-tively) belong to the kerQl (see the beginning of the present setion), the sameholds for the polynomials (or more preisely, the elements of A)(s1 � r)XJ uJXJ ; s1(s1 � r)XJ uJXJ ;(2.3) s21(s1 � r)XJ uJXJ ; : : : ; sl�k�21 (s1 � r)XJ uJXJThus, using (2.2) we summarize the properties of the polynomials (2.3) inthe following proposition.Proposition 2.4. The vetors of oeÆients of polynomials (2.3) belong tothe kernel kerQl and the leading homogeneous forms of (2.3) areCk+1(u); Ck+2 � Ck+1(u); : : : ; Cl�1 � � �Ck+2 � Ck+1(u)of the degrees k + 2; k + 3; : : : ; l, respetively. The polynomials (2.3) lie in(l � k)-dimensional subspae P (u) with the basisu(k+1) = (u); u(k+2) = Ck+1(u); u(k+3) = 12!Ck+2 � Ck+1(u); : : : ;(2.5) u(l) = 1(l � k � 1)!Cl�1 � � �Ck+2 � Ck+1(u) 2 Pk+1 � Pk+2 � � � � � PlDue to (2.1) for jKj = t the oordinate of the vetor (u(t))K =PJ�K uJ .For a subset T 0 � f1; : : : ; ng; jT 0j � k we have (reall that jJ j = k + 1)



10 D.Grigoriev XJ�T 0 uJ = 0(2.6)beause up to a onstant (positive) fator it equals toPI�T 0 ;jIj=kPJ�I uJ = 0.For �xed subsets K � f1; : : : ; ng; jKj = i and T � K; jT j � k + 1 we provethe following identity: XJ\K=T uJ = (�1)k+1�jT j XT�J�K uJ(2.7)The proof goes by indution on k + 1 � jT j. The base when i � k + 1for jT j = k + 1 is trivial sine both sides of (2.7) in this ase equal to uT .Respetively, when i � k we put for the base T = K , then the both sides of(2.7) in this ase vanish due to (2.6). For the indutive step from (2.6) we get0 =XJ�T uJ = XJ\K=T uJ +XJ�T;jJ\Kj=jT j+1uJ + XJ�T;jJ\Kj=jT j+2uJ + � � �+ XJ�T;jJ\Kj=k+1uJ =(in ase when i � k all the sums in the latter line vanish by the indutivehypothesis, hene the sum PJ\K=T uJ = 0 vanishes as well, whih provesthe indutive step, thus we ontinue the hain of equalities assumming thati � k + 1) = XJ\K=T uJ + XH�T;jHj=jT j+1(�1)k+1�(jT j+1) XH�J�K uJ +XH�T;jHj=jT j+2(�1)k+1�(jT j+2) XH�J�K uJ + � � �+ XH�T;jHj=k+1uH =due to the indutive hypothesis (where in the double sums the external summa-tion ranges over H while the internal one ranges over J); in its turn ontinuingthe hain of equalities we get= XJ\K=T uJ + XT�J�K(1� �k + 1� jT j1 �+ �k + 1� jT j2 �� � � �+



Positivstellensatz proofs for the Knapsak 11
(�1)k�jT j�k + 1� jT jk � jT j �)uJ = XJ\K=T uJ � (�1)k+1�jT j XT�J�K uJthat proves (2.7).Next we prove the following proposition.Proposition 2.8. The omposition of the operators Dt � Ct restrited on thesubspae Ct�1 � � �Ck+1(P (0)k+1) equals to a multiple (n� t�k� 1)(t�k)E of theidentity operator E, provided that n� t� k � 1 > 0.Proof of the proposition. Let M � f1; : : : ; ng; jM j = t and u 2 P (0)k+1, weobtain the following hain of inequalities1(t� k)!(DtCt � � �Ck+1(u))M = XL�M;jLj=t+1XJ�LuJ =(due to (2.1))= (n� t)XJ�M uJ + XjJ\M j=kuJ = (n� t)XJ�M uJ � XI�M;jIj=k XI�J�M uJ =(see (2.7))= (n� t)XJ�M uJ � (k + 1)XJ�M uJ = (n� t� k � 1)XJ�M uJ =n� t� k � 1(t� k � 1)! (Ct�1 � � �Ck+1(u))M(again due to (2.1)). This proves Proposition 2.8. �We prove by indution on t that Pt is the diret sum of its subspaesP (0)t � Ct�1P (0)t�1 � Ct�1 � Ct�2P (0)t�2 � � � � � Ct�1 � Ct�2 � � �C0P (0)0(2.9)The base ase for t = 0 is obvious. Assuming (2.9) as the indutive hypoth-esis, we obtain that the image under the operator Ct of (2.9) is also a diret sum(due to Proposition 2.8 applied to eah item of the diret sum (2.9), observethat n� 2t� 1 > 0 sine t < l � bn=2):
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CtPt = CtP (0)t �Ct�Ct�1P (0)t�1�Ct�Ct�1�Ct�2P (0)t�2�� � ��Ct�Ct�1 � � �C0P (0)0 � Pt+1and Dt � CtPt = Pt, moreover Dt � Ct is an automorphism of Pt. Apart fromthat, the kernel kerDt = P (0)t+1. Therefore, Pt+1 = P (0)t+1 � CtPt that proves theindutive hypothesis and (2.9).Partition the matrix Ql into the bloks Q(i;j) : Pj ! Pi; 0 � i; j � l.Our next purpose is to alulate the vetor Q(i;k+1)(u) 2 Pi, reall that u 2P (0)k+1; jJ j = k + 1. Let jKj = i, we have using the de�nition of the mapping Bfrom setion 1(Q(i;k+1)(u))K = XT;T�K XJ;K\J=T B(XKXJ)uJ = XT�KBi+k+1�jT j XK\J=T uJThe latter sum vanishes when i � k sine PK\J=T uJ = 0 due to (2.7).Now when i � k + 1 we obtain using (2.7)(Q(i;k+1)(u))K(2.10) = Bi XJ�K uJ +Bi+1 XjJ\Kj=k uJ+Bi+2 XjJ\Kj=k�1uJ + � � �+Bi+k+1 XjJ\Kj=0uJ= Bi XJ�K uJ � Bi+1�k + 1k �XJ�K uJ +Bi+2�k + 1k � 1�XJ�K uJ � � � �+(�1)k+1Bi+k+1�k + 10 �XJ�K uJ= (Bi �Bi+1�k + 1k � +Bi+2�k + 1k � 1�� � � �+(�1)k+1Bi+k+1�k + 10 �)XJ�K uJThus, (Q(i;k+1)(u)) = �i;k+1u(i) (see (2.5)) where�i;k+1 = Xi�j�i+k+1(�1)j�i�k + 1j � i�Bj; l � i � k + 1(2.11)



Positivstellensatz proofs for the Knapsak 13(we reall that k + 1 is �xed for the time being). In partiular, for i = k + 1the vetor u(k+1) = u is an eigenvetor of the operator Q(k+1;k+1).Beause 0 = (Q(i;k+1) Q(i;k+2)) � (s1 � r)XJ uJXJfor all i � l, taking into the aount Proposition 2.4, we get that Q(i;k+2) �u(k+2) = �i;k+2u(i) for appropriate onstant �i;k+2 when i � k + 1 and Q(i;k+2) �u(k+2) = 0 when i � k. In a similar way,0 = (Q(i;k+1) Q(i;k+2) Q(i;k+3)) � s1(s1 � r)XJ uJXJ ;this implies that Q(i;k+3) � u(k+3) = �i;k+3u(i) for appropriate onstants �i;k+3when i � k+1 andQ(i;k+3) �u(k+3) = 0 when i � k and so on. Thus, the operatorQl ats on the subspae P (u) (see (2.5)), in other words P (u) is invariant underQl, and (�i;j) is the matrix of its ation with respet to the basis (2.5) if inaddition we set �i;j = 0 when j < k+1. Sine the polynomials (2.3) belong tokerQl due to Proposition 2.4, the rank of (�i;j) is at most 1. We have alreadyalulated the �rst (possibly) non-zero olumn of the matrix (�i;j); 0 � i; j � l(the index of this olumn is k + 1).Our next purpose is to alulate the �rst (possibly) non-zero row of thismatrix (its index is also k + 1 as was just proved).So, we need to alulate the oordinate of the vetor (Q(k+1;i)u(i))J0 for a�xed jJ0j = k + 1. This oordinate equals toXi�j�i+k+1Bj XjK\J0j=k+1�j+iXJ�K uJ(2.12)where the seond summation ranges over K and the third (internal) one rangesover J .Now we transform one item of the sum (2.12):XjK\J0j=k+1�j+iXJ�K uJ =X0�t�k+1�j+i� k + 1� tk + 1� t� j + i��n� 2k � 2 + tj � 2k � 2 + t�( XjJ\J0j=t uJ)(2.13)



14 D.Grigorievwhere the �rst binomial oeÆient � k+1�tk+1�t�j+i� ounts the number of possi-bilities (for �xed J; J0) to hoose a subset (J0 � J) \ K in the set J0 � J(note that jJ0 � J j = k + 1 � t; j(J0 � J) \ Kj = k + 1 � t � j + i); whilethe seond binomial oeÆient �n�2k�2+tj�2k�2+t� ounts the number of possibilitiesto hoose a subset K � J � J0 in the set f1; : : : ; ng � J � J0 (note thatjK � J � J0j = j � 2k � 2 + t; jf1; : : : ; ng � J � J0j = n � 2k � 2 + t).Thereby, the produt of these two binomial oeÆients provides the numbersof possibilities for K from the left-hand side.Beause of (2.7) we obtain that PjJ\J0j=t uJ = (�1)k+1�t�k+1t �uJ0. There-fore, (2.13) equals to( X0�t�k+1�j+i(�1)k+1�t�k + 1t �� k + 1� tk + 1� t� j + i��n� 2k � 2 + tn� j �)uJ0 =( X0�t�k+1�j+i(�1)k+1�t (k + 1)!t!(k + 1� t� j + i)!(j � i)!�n� 2k � 2 + tn� j �)uJ0 =�k + 1j � i�( X0�t�k+1�j+i(�1)k+1�t�k + 1� j + it ��n� 2k � 2 + tn� j �)uJ0 =(�1)j�i�k + 1j � i��n� 2k � 2i� k � 1 �uJ0.To prove the latter equality denote by �;� some sets of the ardinalities k +1� j + i; n� 2k � 2, respetively. Observe that the sum in the seond-to-lastline in the hain of the equalitiesX0�t�k+1�j+i(�1)k+1�t�k + 1� j + it ��n� 2k � 2 + tn� j �oinides with the weighted sum of the number of hoies of �rst, a subset �of � of the ardinality t and subsequently a subset � of the ardinality n � jof the union � [�, taken with the weight (�1)k+1�t. On the other hand, if �does not ontain � the ontribution of � into the weighted sum vanishes sinethis ontribution equals the weighted sum of ouranes of �, i.e.X�\�����(�1)k+1�j�j = X0����0(�1)���0� �



Positivstellensatz proofs for the Knapsak 15where �0 = j���j. Else when � ontains �, the ontribution (for the unique� = �) equals (�1)j�i. In order to �nish this proof notie that the number ofsuh � equals the number of subsets �\� of the ardinality (n�j)�(k+1�j+i)of the set �, i.e. � n�2k�2n�k�i�1�.Thus, (2.12) equals to�n� 2k � 2i� k � 1 �( Xi�j�i+k+1(�1)j�i�k + 1j � i�Bj)uJ0;hene �k+1;i(2.14) = �n� 2k � 2i� k � 1 �( Xi�j�i+k+1(�1)j�i�k + 1j � i�Bj) = �n� 2k � 2i� k � 1 ��i;k+1Therefore, the matrix (�i;j) (being of the rank at most 1) is non-negativeif and only if its entry �k+1;k+1 > 0, provided that �k+1;k+1 6= 0. Indeed, eahdiagonal entry �i;i of the matrix (�i;j) is non-negative (respetively, eah oneis non-positive) if and only if �k+1;k+1 > 0 (respetively, �k+1;k+1 < 0) sinedue to (2.14) the signs of �k+1;i and �i;k+1 oinide and taking into aountthat �i;i�k+1;k+1 = �i;k+1�k+1;i; furthermore, the only non-zero eigenvalue ofthe rank 1 matrix (�i;j) equals to its trae, the latter is thereby positive if andonly if �k+1;k+1 > 0.Suppose that we have proved already that the matries (�i;j) (let us un-derline that the matrix (�i;j) was de�ned for a �xed k + 1) are non-negativefor all 0 � k + 1 � l. This would imply that the matrix Ql is non-negativeas well sine (�i;j) is the ation of Ql on the subspae P (u) (see above), henethe unique non-zero eigenvalue of the matrix (�i;j) is the eigenvalue of Ql aswell, atually, this eigenvalue depends only on k+ 1 and does not depend on apartiular vetor u 2 P (0)k+1. Moreover, these eigenvalues for all 0 � k + 1 � lexhaust all the eigenvalues of Ql. Indeed, the subspaeP (0)k+1 � Ck+1P (0)k+1 � Ck+2Ck+1P (0)k+1 � � � � � Cl�1 � � �Ck+1P (0)k+1(2.15)equals the diret sum of subspaes of the form P (u) where u ranges over theelements of an arbitrary basis of the subspae P (0)k+1, and on the other hand, thediret sum of all these subspaes of the form (2.15) for 0 � k + 1 � l oinideswith the whole spae P0 � � � � � Pl due to (2.9). Thus, Ql is non-negative.
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