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COMPLEXITY OF POSITIVSTELLENSATZPROOFS FOR THE KNAPSACKD.GrigorievAbstra
t. A lower bound is established on degrees of Positivstellen-satz 
al
ulus refutations (over a real �eld) introdu
ed in (Grigoriev &Vorobjov 1999; Grigoriev 1999), for the knapsa
k problem. The bounddepends on the values of 
oeÆ
ients of an instan
e of the knapsa
k prob-lem: for 
ertain values the lower bound is linear and for 
ertain valuesthe upper bound is 
onstant, while in the polynomial 
al
ulus the degreeis always linear (regardless of the values of 
oeÆ
ients) (Impagliazzo etal. 1997). This shows that the Positivstellensatz 
al
ulus 
an be stri
tlystronger than the polynomial 
al
ulus from the point of view of the
omplexity of the proofs.Keywords. polynomial 
al
ulus, Positivstellensatz proofs, 
omplexityof the knapsa
kSubje
t 
lassi�
ation. 68Q25Introdu
tionIn re
ent years there has been an intensive a
tivity in the resear
h of algebrai
proof systems (Beame et al. (1996); Buss et al. (1999, 1996/1997); Clegg et al.(1996); Grigoriev (1998); Impagliazzo et al. (1999); Razborov (1998) ). Theapproa
h relies on Hilbert's Nullstellensatz and treats the problem of feasibilityof a system of polynomial equationsf1 = � � � = fk = 0;where among the polynomials f1; : : : ; fk 2 F [X1; : : : ; Xn℄, there appear thepolynomials X21 � X1; : : : ; X2n � Xn (the so-
alled, Boolean 
ase). Note thatthis problem is, in general, NP -
omplete.The Nullstellensatz proof system (NS) was �rst 
onsidered in (Beame et al.1996). The aim of the system is to �nd the polynomials g1; : : : ; gk 2 F [X1; : : : ;Xn℄ su
h that 1 = g1f1+� � �+gkfk. The latter representation is sometimes 
alleda Nullstellensatz refutation. The number max1�i�kfdeg(gifi)g is 
alled theNullstellensatz degree. A linear upper bound O(n) on the Nullstellensatz degreeis evident, in (Beame et al. 1996) a non-
onstant lower bound was proved, while



2 D.Grigorievafter a series of improvements in (Grigoriev 1998) a linear (and thus sharp)lower bound was proved.In (Clegg et al. 1996) a stronger proof system | polynomial 
al
ulus (PC)was introdu
ed. Starting from axioms f1; : : : ; fk, PC allows one to derive newpolynomials from two given polynomials a; b 2 F [X1; : : : ; Xn℄, a

ording to thefollowing two rules:1. (additive) a; b ` �a+ �b, where �; � 2 F ;2. (multipli
ative) a ` Xia for 1 � i � n.The aim of a derivation is to a
hieve 1.The degree of a PC derivation is de�ned as the maximum of the degrees ofall intermediately derived polynomials. The �rst lower bound on the degrees ofPC derivations was obtained in (Razborov 1998) (see also (Impagliazzo et al.1999) and (Buss et al. 1996/1997)). A linear lower bound for PC for Tseitin'stautologies was proved in Buss et al. (1999, 2001). Note that the latter boundis sharp.In (Grigoriev & Vorobjov 2001), for the 
ase of input polynomials f1; : : : ; fk2 R[X1; : : : ; Xn℄ with real 
oeÆ
ients, derivations of inequalities as well asequalities were 
onsidered. The 
ase of linear inequalities with added 
onditionsX2i = Xi (Boolean programming) was widely studied by means of 
uttingplanes proofs, for whi
h an exponential lower bound on the length was obtained(a survey and referen
es 
an be found in (Pudl�ak 1999)). Another approa
hto systems of linear inequalities was undertaken in Lov�asz (1994); Lov�asz &S
hrijver (1991); Stephen & Tun�
el (1999), where a derivation system wasintrodu
ed whi
h, given any linear polynomial e, allows one to derive e2 � 0,given any already derived linear inequalities a1 � 0; a2 � 0, allows one to derivea1 + a2 � 0; a1a2 � 0, and, given any already derived quadrati
 inequalitiesp1 � 0; p2 � 0, allows one to derive p1 + p2 � 0. In (Pudl�ak 1999) one 
an �ndsome remarks on the 
omplexity of this (
alled Lov�asz-S
hrijver) pro
edure, inparti
ular, an upper bound for the Pigeon Hole Prin
iple (written as a systemof linear inequalities).More pre
isely, following (Grigoriev & Vorobjov 2001), let a system of equa-tions and inequalitiesf1 = � � � fk = 0; h1 � 0; : : : ; hm � 0:(0.1)be given. Dealing with systems of inequalities one 
ould get pro�t from usingthe axiom that any square is non-negative, and the rules of adding or multiply-ing inequalities. This is formalized in the following notion of the 
one (whi
h



Positivstellensatz proofs for the Knapsa
k 3repla
es the role of ideals for systems of equations) and in two proof systemsdes
ribed below for refuting systems of inequalities, they extend the systemsNS and PC, respe
tively.Definition 0.2. The 
one 
(h1; : : : ; hm) generated by polynomials h1; : : : ; hm2 R[X1; : : : ; Xn℄ is the smallest family of polynomials 
ontaining h1; : : : ; hmand satisfying the following rules:(a) e2 2 
(h1; : : : ; hm) for any e 2 R[X1; : : : ; Xn℄;if a; b 2 
(h1; : : : ; hm), then(b) a+ b 2 
(h1; : : : ; hm);(
) ab 2 
(h1; : : : ; hm).Remark 0.3. The minimal 
one 
(;) 
onsists of all sums of squares of poly-nomials.Remark 0.4. Any element of 
(h1; : : : ; hm) 
an be represented in a formXI�f1;::: ;mg Yi2I hi! Xj e2I;j!for some polynomials eI;j 2 R[X1; : : : ; Xn℄.The two proof systems introdu
ed in (Grigoriev & Vorobjov 2001) (whi
h
ould be viewed as stati
 and dynami
, respe
tively), rely on the followingPositivestellensatz (see Bo
hnak et al. (1998); Stengle (1974)).Positivstellensatz. A system (0.1) has no 
ommon solutions in Rn if andonly if for a suitable polynomial f 2 R[X1; : : : ; Xn℄ from the ideal (f1; : : : ; fk)and a polynomial h 2 
(h1; : : : ; hm) we have: f + h = �1.The �rst (stati
) proof system is stronger than NS refutations and 
ould beviewed as its Positivstellensatz analogue.Definition 0.5. A pair of polynomials(f; h) =  X1�s�k fsgs; XI�f1;::: ;mg Yi2I hi! Xj e2I;j!!



4 D.Grigorievwith f + h = �1 where gi; eI;j 2 R[X1; : : : ; Xn℄ we 
all a Positivstellensatzrefutation for (0.1) (we denote it by PS>). The degree of the refutation ismaxs;I;j fdeg(fsgs); deg(e2I;jYi2I hi)g:The se
ond (dynami
) proof system is stronger than PC and 
ould be viewedas its Positivstellensatz analogue.Definition 0.6. Let a polynomial f 2 (f1; : : : ; fk) be derived in PC from theaxioms f1; : : : ; fk, and let a polynomial h 2 
(h1; : : : ; hm) be derived, applyingthe rules (a), (b), (
) from De�nition 0.2, from the axioms h1; : : : ; hm. Supposethat f + h = �1. This pair of derivations we 
all a Positivstellensatz 
al
ulusrefutation for (0.1) (we denote it by PC>). By its degree we mean the maximumof the degrees of intermediate polynomials from both derivations. The lengthof the refutation we de�ne as the total number of steps in both derivations.In the present paper we 
onsider just the systems of equations f1 = � � � =fn = 0 (the polynomials h1; : : : ; hm are absent). In this 
ase a polynomial h isjust a sum of squares Pj h2j (
f. Remark 0.3).In (Grigoriev & Vorobjov 2001) a so-
alled teles
opi
 system of equationsdue to Lazard-Mora-Philippon is 
onsidered and an exponential lower boundon the degree of any its PS> refutation (see De�nition 0.5) is proved. Onthe other hand it is shown a linear upper bound for the teles
opi
 systemon the degree of PC, being sharp be
ause a linear lower bound is proved in(Grigoriev & Vorobjov 2001) for the stronger system of the PC> refutations(see De�nition 0.6), and for the latter one also an exponential lower bound onthe lengths of proofs is established.However, the teles
opi
 system is not Boolean, whereas the main interestin the proof theory is just in the Boolean systems. In (Grigoriev 2001) a linearlower bound on the degree of PC> refutations is established for the Tseitin'stautologies and for the parity prin
iple, the proofs extend the argument fromBuss et al. (1999, 2001) and similar lower bounds for PC.In the present paper as in (Impagliazzo et al. 1999) we 
onsider the followingsystem whi
h is a parti
ular 
ase of the knapsa
k problemfi = X2i �Xi = 0; 1 � i � n; f = X1 + � � �+Xn � r = 0(0.7)We note that throughout the paper r 2 R denotes a real number.The PS> (see De�nition 0.5) and PC> (see De�nition 0.6) degrees of (0.7)depend essentially on the value of r. If either r < 0 or r > n then the followingobvious identities



Positivstellensatz proofs for the Knapsa
k 5�f1 � � � � � fn � f +X21 + � � �+X2n = rand respe
tively,�f1 � � � � � fn + f + (X1 � 1)2 + � � �+ (Xn � 1)2 = n� rshow that both PS> and PC> degrees of (0.7) are 2. On the other hand,theorem 5.1 of Impagliazzo et al. (1999) establishes a lower bound of dn=2e+1on the PC degree of (0.7) regardless of the value of r. Thus, PC> 
an bestri
tly stronger than PC and PS> 
an be stri
tly stronger than PS. The mainresult of the present paper is the following lower bound on the PS> and PC>degrees of (0.7).Theorem. Let k be a non-negative integer and suppose that k < r < n� k.(i) When 0 � k � (n� 3)=2 the Positivstellensatz refutation degree of (0.7)is greater or equal to 2k + 4. For k � (n � 2)=2 the degree is greater orequal to n + 1;(ii) when 0 � k � dn=4e � 2 the Positivstellensatz 
al
ulus refutation degreeof (0.7) is greater or equal to 2k + 4. For k > dn=4e � 2 the degree isgreater or equal to dn=2e + 1.Remark 0.8. A
tually one 
ould rephrase the theorem invoking the followingstairs-form fun
tion Æ whi
h equals to 2 outside the interval (0; n) and whi
hequals to 2k+4 on the intervals (k; k+1) and (n�k� 1; n�k) for all integers0 � k < n=2. Then the bound in a) on the degree is minfÆ; n + 1g and thebound in b) is minfÆ; dn=2e + 1g. The values of the fun
tion Æ at the integerpoints 0; : : : ; n does not matter sin
e system (0.7) has a solution at pre
iselythese values of r. Observe also that both degrees in the theorem as fun
tionsin m are symmetri
 with respe
t to the point n=2, taking into a

ount thetransformation Xi ! 1�Xi; 1 � i � n.In se
tion 1 we show how to redu
e the proof of the theorem to the non-negativity of a relevant quadrati
 form whi
h in its turn is proved in se
tion2. In the theorem we establish lower bounds on the degrees of PS> and PC>refutations. It would be interesting to learn how 
lose are they to upper bounds(we know this for r < 0 or r > n due to the identities above and also whenk � (n� 2)=2 in 
ase (i) and when k > dn=4e � 2 in 
ase (ii)).



6 D.Grigoriev1. Redu
tion to the non-negativity of a quadrati
 formAs in Impagliazzo et al. (1999) we 
onsider a fa
tor-algebraA = R[X1; : : : ; Xn℄=(X21 �X1; : : : ; X2n �Xn)whi
h has a 
anoni
al basis of the multilinear monomials fXIg where I �f1; : : : ng. For a polynomial g 2 R[X1; : : : ; Xn℄ denote by g 2 A the multilinearpolynomial that is the 
anoni
al image of g in A.Lemma 5.2 of Impagliazzo et al. (1999) states that deg(fg) = deg(g) +1, provided that deg(g) < dn=2e. This implies (theorem 5.1 of Impagliazzoet al. (1999)) the lower bound dn=2e on the degree of PC refutations of (0.7).This bound is sharp (theorem 4.2 Impagliazzo et al. (1999)). Moreover, itis 
laimed in the proof of theorem 5.1 of Impagliazzo et al. (1999) that if apolynomial h is dedu
ible in PC from (0.7) with a degree of the refutation atmost dn=2e then h = f1g1 + � � �+ fngn + fg for suitable g1; : : : ; gn; g su
h thatg = g; deg(h) = deg(g) + 1 and deg(figi) � deg(h); 1 � i � n (this 
laim isveri�ed in Impagliazzo et al. (1999) by indu
tion along a dedu
tion of h in PCrelying on lemma 5.2 of Impagliazzo et al. (1999)). For a weaker system of NSone 
an prove a better (also sharp) lower bound (whi
h holds, in fa
t, over any�eld of 
hara
teristi
 either zero or greater than n).Proposition 1.1. The Nullstellensatz degree of (0.7) equals to n+ 1.Proof. The upper bound n+1 on the degree was established in Beame et al.(1996). Indeed, there is a polynomial g su
h that g = g and fg = 1. Thenthe polynomial fg � 1 belongs to the ideal generated by f1; : : : ; fn. Now wepro
eed to the lower bound.Denote by S = 1n!P�2Sn � the operator of symmetrization. Fix an NSrefutation 1 = f1g1 + � � � fngn + fg, one 
an assume without loss of generalitythat g = g and so deg(fg) = deg(g) + 1, provided that deg(g) < n. Afterapplying S to the NS refutation one 
ould assume that S(g) = g, indeed,S(g) is a linear 
ombination of elementary symmetri
 fun
tions s0 = 1; s1 =X1+� � �+Xn; : : : ; sn = X1 � � �Xn, assuming that k = deg(g) < n, for the highestterms in the produ
t fg we have s1sk = (k + 1)sk+1 + ksk sin
e f = s1 � r. �Now we pro
eed to the proof of the theorem. Suppose that there is aPS> refutation of (0.7) in 
ase (i) and a PC> refutation of (0.7) in 
ase (ii),respe
tively, of degree d being less than a respe
tive bound in the theorem. Notethat d � n in 
ase (i) and d � dn=2e in 
ase (ii) (see also the Remark 0.8 after



Positivstellensatz proofs for the Knapsa
k 7the theorem). De�nitions De�nition 0.5, De�nition 0.6, respe
tively, imply thatfor appropriate polynomials hj we have an equality1 +Xj h2j = f1g1 + � � �+ fngn + fg(1.2)where deg(figi); deg(fg) � d; 1 � i � n in 
ase (i), and in 
ase (ii) theright-hand side is dedu
ible in the PC within the degree d. Observe thatdeg(h2j) � deg(f1g1 + � � � + fngn + fg) � d. Indeed, 
onsider among all themonomials o

urring in all hj the highest one with respe
t to the deglex mono-mial ordering, then the 
oeÆ
ient of the square of this monomial in the sum1 +Pj h2j should be positive. In 
ase (ii) the (already mentioned at the be-ginning of the se
tion) 
laim in the proof of theorem 5.1 of Impagliazzo et al.(1999) states that deg(fg); deg(figi) � d; 1 � i � n for g; g1; : : : ; gn 
hosen ina suitable way.De�ne a linear mappingB : A! R by lettingB(XI) = Bk = r(r�1)���(r�k+1)n(n�1)���(n�k+1)for the basis elements XI of A 
orresponding to any set I with jIj = k and ex-tending linearly. Further, extend B to all of R[X1; : : : ; Xn℄ by de�ning B(g) =B(g). Observe that the mapping B is symmetri
 and that B(1) = B0 = 1.Lemma 1.3. For a polynomial g0 2 R[X1; : : : ; Xn℄ with deg(g0) < n we haveB(fg0) = 0.Proof. It suÆ
es for a multilinear monomial XI with jIj = k < n to verifythat B(fXI) = 0, whi
h is valid sin
e B(fXI) = (n� k)Bk+1 + (k � r)Bk. �Denote by Pk � A; 0 � k � n the linear hull of all the monomials XI ofdegree jIj = k. Then A = �0�k�nPk.We introdu
e a quadrati
 form Q in the spa
e �0�k�bn=2
Pk with the entryin the pla
e (XI ; XJ) being equal to B(XIXJ). By Ql; l � bn=2
 we denotethe restri
tion of Q onto the subspa
e �0�k�lPk, in parti
ular, Qbn=2
 = Q. Inthe sequel we often identify a quadrati
 form with the symmetri
 matrix of its
oeÆ
ients and we identify a polynomial with the ve
tor of its 
oeÆ
ients.Lemma 1.4. The quadrati
 form Ql is non-negative when l�1 < r < n� l+1.The proof of the Lemma 1.4 is 
ontained in the next se
tion, and now weshow how to dedu
e the theorem from the Lemma 1.4.End of the proof of the theorem. We apply the mapping B to both sidesof (1.2). In the right-hand side we obtain B(fg) = 0 due to Lemma 1.3be
ause deg(fg) � d � n in both 
ases (i), (ii). On the other hand let hj =



8 D.GrigorievPI h(I)j XI, then B(h2j) = PI;J h(I)j h(J)j B(XIXJ) = hjQbd=2
hTj � 0 a

ordingto Lemma 1.4, taking into the a

ount that deg(h2j) � d (see above) and thatin 
ase (i) when 0 � k � (n� 3)=2 or in 
ase (ii) when 0 � k � dn=4e � 2 wehave bd=2
 � k+1 by the adopted supposition that the theorem is wrong, andin 
ase (i) when k � (n� 2)=2 we have k + 1 � n=2 � d=2, and �nally in 
ase(ii) when k > dn=4e � 2 we have k + 1 � b dn=2e2 
 � bd=2
 (here hTj denotes thetransposed ve
tor of 
oeÆ
ients of hj). Sin
e B(1) = 1 we get a 
ontradi
tion.� Note that one 
an obtain another proof of the Proposition 1.1 just applyingthe mapping B to any NS refutation and making use of Lemma 1.3.2. Non-negativity of the quadrati
 form QNow we pro
eed to the proof of Lemma 1.4. The plan is to des
ribe the kernelof Ql and its eigenspa
es, and to prove that non-zero eigenvalues are positive.First observe that the ve
tor fXI; jIj � l � 1 belongs to the kernel kerQl.Indeed, the produ
t of the row of the matrix Ql whi
h 
orresponds to a mono-mial XJ by the ve
tor fXI, equals to B(fXIXJ) = B(fXI[J) whi
h vanishessin
e jJ j � l, hen
e jI[J j � 2l�1 � n�1 and we apply Lemma 1.3. A
tually,we'll show in the sequel that kerQl is the linear hull of these ve
tors.In the sequel for a ve
tor v 2 Pk we utilize a notation v = (vI) where vI isI-
omponent of v, i.e. the 
oeÆ
ient of XI in v. Consider a linear mappingCk : Pk ! Pk+1 where for a ve
tor v = (vI) 2 Pk its image (Ck(v))J =PI�J vI ,here and below I; J � f1; : : : ; ng; jJ j = k + 1; jIj = k. Also 
onsider a linearmapping Dk : Pk+1 ! Pk under whi
h the image of a ve
tor w = (wJ) 2 Pk+1is a ve
tor whose I-
omponent equals to (Dk(w))I =PJ�I wJ .Denote by P (0)k+1 � Pk+1 a subspa
e f(uJ) : 8jIj = k (PJ�I uJ = 0)g. Fort > k denote a subspa
e P (t�k)k+1 = Ct � Ct�1 � � �Ck+1(P (0)k+1) � Pt+1 and besides,for any ve
tor w = (wJ) 2 Pk+1 and any L � f1; : : : ; ng; jLj = t+ 1 we have((Ct � Ct�1 � � �Ck+1)(w))L = (t� k)!(XJ�LwJ)(2.1)For a ve
tor u 2 P (0)k+1 one 
an represent (in algebra A de�ned in se
tion 1above) the polynomial
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k 9
st1XJ uJXJ = XjKj=k+t+1(Ck+t � � �Ck+1(u))KXK +(2.2) �(k+t)k;t XjKj=k+t(XJ�K uJ)XK + � � �+ �(k+1)k;t XjKj=k+1uKXKfor appropriate 
onstants �(p)k;t , by means of opening the parenthesis in st1 andtaking into the a

ount (2.1), provided that k+ t+1 � n (in fa
t, this equalityholds for any ve
tor w 2 Pk+1). The ve
tors of 
oeÆ
ients of the polynomialss1 � r; s1(s1 � r); s21(s1 � r); : : : ; sl�11 (s1 � r) (of the degrees 1; 2; : : : ; l, respe
-tively) belong to the kerQl (see the beginning of the present se
tion), the sameholds for the polynomials (or more pre
isely, the elements of A)(s1 � r)XJ uJXJ ; s1(s1 � r)XJ uJXJ ;(2.3) s21(s1 � r)XJ uJXJ ; : : : ; sl�k�21 (s1 � r)XJ uJXJThus, using (2.2) we summarize the properties of the polynomials (2.3) inthe following proposition.Proposition 2.4. The ve
tors of 
oeÆ
ients of polynomials (2.3) belong tothe kernel kerQl and the leading homogeneous forms of (2.3) areCk+1(u); Ck+2 � Ck+1(u); : : : ; Cl�1 � � �Ck+2 � Ck+1(u)of the degrees k + 2; k + 3; : : : ; l, respe
tively. The polynomials (2.3) lie in(l � k)-dimensional subspa
e P (u) with the basisu(k+1) = (u); u(k+2) = Ck+1(u); u(k+3) = 12!Ck+2 � Ck+1(u); : : : ;(2.5) u(l) = 1(l � k � 1)!Cl�1 � � �Ck+2 � Ck+1(u) 2 Pk+1 � Pk+2 � � � � � PlDue to (2.1) for jKj = t the 
oordinate of the ve
tor (u(t))K =PJ�K uJ .For a subset T 0 � f1; : : : ; ng; jT 0j � k we have (re
all that jJ j = k + 1)



10 D.Grigoriev XJ�T 0 uJ = 0(2.6)be
ause up to a 
onstant (positive) fa
tor it equals toPI�T 0 ;jIj=kPJ�I uJ = 0.For �xed subsets K � f1; : : : ; ng; jKj = i and T � K; jT j � k + 1 we provethe following identity: XJ\K=T uJ = (�1)k+1�jT j XT�J�K uJ(2.7)The proof goes by indu
tion on k + 1 � jT j. The base when i � k + 1for jT j = k + 1 is trivial sin
e both sides of (2.7) in this 
ase equal to uT .Respe
tively, when i � k we put for the base T = K , then the both sides of(2.7) in this 
ase vanish due to (2.6). For the indu
tive step from (2.6) we get0 =XJ�T uJ = XJ\K=T uJ +XJ�T;jJ\Kj=jT j+1uJ + XJ�T;jJ\Kj=jT j+2uJ + � � �+ XJ�T;jJ\Kj=k+1uJ =(in 
ase when i � k all the sums in the latter line vanish by the indu
tivehypothesis, hen
e the sum PJ\K=T uJ = 0 vanishes as well, whi
h provesthe indu
tive step, thus we 
ontinue the 
hain of equalities assumming thati � k + 1) = XJ\K=T uJ + XH�T;jHj=jT j+1(�1)k+1�(jT j+1) XH�J�K uJ +XH�T;jHj=jT j+2(�1)k+1�(jT j+2) XH�J�K uJ + � � �+ XH�T;jHj=k+1uH =due to the indu
tive hypothesis (where in the double sums the external summa-tion ranges over H while the internal one ranges over J); in its turn 
ontinuingthe 
hain of equalities we get= XJ\K=T uJ + XT�J�K(1� �k + 1� jT j1 �+ �k + 1� jT j2 �� � � �+
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(�1)k�jT j�k + 1� jT jk � jT j �)uJ = XJ\K=T uJ � (�1)k+1�jT j XT�J�K uJthat proves (2.7).Next we prove the following proposition.Proposition 2.8. The 
omposition of the operators Dt � Ct restri
ted on thesubspa
e Ct�1 � � �Ck+1(P (0)k+1) equals to a multiple (n� t�k� 1)(t�k)E of theidentity operator E, provided that n� t� k � 1 > 0.Proof of the proposition. Let M � f1; : : : ; ng; jM j = t and u 2 P (0)k+1, weobtain the following 
hain of inequalities1(t� k)!(DtCt � � �Ck+1(u))M = XL�M;jLj=t+1XJ�LuJ =(due to (2.1))= (n� t)XJ�M uJ + XjJ\M j=kuJ = (n� t)XJ�M uJ � XI�M;jIj=k XI�J�M uJ =(see (2.7))= (n� t)XJ�M uJ � (k + 1)XJ�M uJ = (n� t� k � 1)XJ�M uJ =n� t� k � 1(t� k � 1)! (Ct�1 � � �Ck+1(u))M(again due to (2.1)). This proves Proposition 2.8. �We prove by indu
tion on t that Pt is the dire
t sum of its subspa
esP (0)t � Ct�1P (0)t�1 � Ct�1 � Ct�2P (0)t�2 � � � � � Ct�1 � Ct�2 � � �C0P (0)0(2.9)The base 
ase for t = 0 is obvious. Assuming (2.9) as the indu
tive hypoth-esis, we obtain that the image under the operator Ct of (2.9) is also a dire
t sum(due to Proposition 2.8 applied to ea
h item of the dire
t sum (2.9), observethat n� 2t� 1 > 0 sin
e t < l � bn=2
):
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CtPt = CtP (0)t �Ct�Ct�1P (0)t�1�Ct�Ct�1�Ct�2P (0)t�2�� � ��Ct�Ct�1 � � �C0P (0)0 � Pt+1and Dt � CtPt = Pt, moreover Dt � Ct is an automorphism of Pt. Apart fromthat, the kernel kerDt = P (0)t+1. Therefore, Pt+1 = P (0)t+1 � CtPt that proves theindu
tive hypothesis and (2.9).Partition the matrix Ql into the blo
ks Q(i;j) : Pj ! Pi; 0 � i; j � l.Our next purpose is to 
al
ulate the ve
tor Q(i;k+1)(u) 2 Pi, re
all that u 2P (0)k+1; jJ j = k + 1. Let jKj = i, we have using the de�nition of the mapping Bfrom se
tion 1(Q(i;k+1)(u))K = XT;T�K XJ;K\J=T B(XKXJ)uJ = XT�KBi+k+1�jT j XK\J=T uJThe latter sum vanishes when i � k sin
e PK\J=T uJ = 0 due to (2.7).Now when i � k + 1 we obtain using (2.7)(Q(i;k+1)(u))K(2.10) = Bi XJ�K uJ +Bi+1 XjJ\Kj=k uJ+Bi+2 XjJ\Kj=k�1uJ + � � �+Bi+k+1 XjJ\Kj=0uJ= Bi XJ�K uJ � Bi+1�k + 1k �XJ�K uJ +Bi+2�k + 1k � 1�XJ�K uJ � � � �+(�1)k+1Bi+k+1�k + 10 �XJ�K uJ= (Bi �Bi+1�k + 1k � +Bi+2�k + 1k � 1�� � � �+(�1)k+1Bi+k+1�k + 10 �)XJ�K uJThus, (Q(i;k+1)(u)) = �i;k+1u(i) (see (2.5)) where�i;k+1 = Xi�j�i+k+1(�1)j�i�k + 1j � i�Bj; l � i � k + 1(2.11)
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all that k + 1 is �xed for the time being). In parti
ular, for i = k + 1the ve
tor u(k+1) = u is an eigenve
tor of the operator Q(k+1;k+1).Be
ause 0 = (Q(i;k+1) Q(i;k+2)) � (s1 � r)XJ uJXJfor all i � l, taking into the a

ount Proposition 2.4, we get that Q(i;k+2) �u(k+2) = �i;k+2u(i) for appropriate 
onstant �i;k+2 when i � k + 1 and Q(i;k+2) �u(k+2) = 0 when i � k. In a similar way,0 = (Q(i;k+1) Q(i;k+2) Q(i;k+3)) � s1(s1 � r)XJ uJXJ ;this implies that Q(i;k+3) � u(k+3) = �i;k+3u(i) for appropriate 
onstants �i;k+3when i � k+1 andQ(i;k+3) �u(k+3) = 0 when i � k and so on. Thus, the operatorQl a
ts on the subspa
e P (u) (see (2.5)), in other words P (u) is invariant underQl, and (�i;j) is the matrix of its a
tion with respe
t to the basis (2.5) if inaddition we set �i;j = 0 when j < k+1. Sin
e the polynomials (2.3) belong tokerQl due to Proposition 2.4, the rank of (�i;j) is at most 1. We have already
al
ulated the �rst (possibly) non-zero 
olumn of the matrix (�i;j); 0 � i; j � l(the index of this 
olumn is k + 1).Our next purpose is to 
al
ulate the �rst (possibly) non-zero row of thismatrix (its index is also k + 1 as was just proved).So, we need to 
al
ulate the 
oordinate of the ve
tor (Q(k+1;i)u(i))J0 for a�xed jJ0j = k + 1. This 
oordinate equals toXi�j�i+k+1Bj XjK\J0j=k+1�j+iXJ�K uJ(2.12)where the se
ond summation ranges over K and the third (internal) one rangesover J .Now we transform one item of the sum (2.12):XjK\J0j=k+1�j+iXJ�K uJ =X0�t�k+1�j+i� k + 1� tk + 1� t� j + i��n� 2k � 2 + tj � 2k � 2 + t�( XjJ\J0j=t uJ)(2.13)
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oeÆ
ient � k+1�tk+1�t�j+i� 
ounts the number of possi-bilities (for �xed J; J0) to 
hoose a subset (J0 � J) \ K in the set J0 � J(note that jJ0 � J j = k + 1 � t; j(J0 � J) \ Kj = k + 1 � t � j + i); whilethe se
ond binomial 
oeÆ
ient �n�2k�2+tj�2k�2+t� 
ounts the number of possibilitiesto 
hoose a subset K � J � J0 in the set f1; : : : ; ng � J � J0 (note thatjK � J � J0j = j � 2k � 2 + t; jf1; : : : ; ng � J � J0j = n � 2k � 2 + t).Thereby, the produ
t of these two binomial 
oeÆ
ients provides the numbersof possibilities for K from the left-hand side.Be
ause of (2.7) we obtain that PjJ\J0j=t uJ = (�1)k+1�t�k+1t �uJ0. There-fore, (2.13) equals to( X0�t�k+1�j+i(�1)k+1�t�k + 1t �� k + 1� tk + 1� t� j + i��n� 2k � 2 + tn� j �)uJ0 =( X0�t�k+1�j+i(�1)k+1�t (k + 1)!t!(k + 1� t� j + i)!(j � i)!�n� 2k � 2 + tn� j �)uJ0 =�k + 1j � i�( X0�t�k+1�j+i(�1)k+1�t�k + 1� j + it ��n� 2k � 2 + tn� j �)uJ0 =(�1)j�i�k + 1j � i��n� 2k � 2i� k � 1 �uJ0.To prove the latter equality denote by �;� some sets of the 
ardinalities k +1� j + i; n� 2k � 2, respe
tively. Observe that the sum in the se
ond-to-lastline in the 
hain of the equalitiesX0�t�k+1�j+i(�1)k+1�t�k + 1� j + it ��n� 2k � 2 + tn� j �
oin
ides with the weighted sum of the number of 
hoi
es of �rst, a subset �of � of the 
ardinality t and subsequently a subset � of the 
ardinality n � jof the union � [�, taken with the weight (�1)k+1�t. On the other hand, if �does not 
ontain � the 
ontribution of � into the weighted sum vanishes sin
ethis 
ontribution equals the weighted sum of o

uran
es of �, i.e.X�\�����(�1)k+1�j�j = X0����0(�1)���0� �
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ontains �, the 
ontribution (for the unique� = �) equals (�1)j�i. In order to �nish this proof noti
e that the number ofsu
h � equals the number of subsets �\� of the 
ardinality (n�j)�(k+1�j+i)of the set �, i.e. � n�2k�2n�k�i�1�.Thus, (2.12) equals to�n� 2k � 2i� k � 1 �( Xi�j�i+k+1(�1)j�i�k + 1j � i�Bj)uJ0;hen
e �k+1;i(2.14) = �n� 2k � 2i� k � 1 �( Xi�j�i+k+1(�1)j�i�k + 1j � i�Bj) = �n� 2k � 2i� k � 1 ��i;k+1Therefore, the matrix (�i;j) (being of the rank at most 1) is non-negativeif and only if its entry �k+1;k+1 > 0, provided that �k+1;k+1 6= 0. Indeed, ea
hdiagonal entry �i;i of the matrix (�i;j) is non-negative (respe
tively, ea
h oneis non-positive) if and only if �k+1;k+1 > 0 (respe
tively, �k+1;k+1 < 0) sin
edue to (2.14) the signs of �k+1;i and �i;k+1 
oin
ide and taking into a

ountthat �i;i�k+1;k+1 = �i;k+1�k+1;i; furthermore, the only non-zero eigenvalue ofthe rank 1 matrix (�i;j) equals to its tra
e, the latter is thereby positive if andonly if �k+1;k+1 > 0.Suppose that we have proved already that the matri
es (�i;j) (let us un-derline that the matrix (�i;j) was de�ned for a �xed k + 1) are non-negativefor all 0 � k + 1 � l. This would imply that the matrix Ql is non-negativeas well sin
e (�i;j) is the a
tion of Ql on the subspa
e P (u) (see above), hen
ethe unique non-zero eigenvalue of the matrix (�i;j) is the eigenvalue of Ql aswell, a
tually, this eigenvalue depends only on k+ 1 and does not depend on aparti
ular ve
tor u 2 P (0)k+1. Moreover, these eigenvalues for all 0 � k + 1 � lexhaust all the eigenvalues of Ql. Indeed, the subspa
eP (0)k+1 � Ck+1P (0)k+1 � Ck+2Ck+1P (0)k+1 � � � � � Cl�1 � � �Ck+1P (0)k+1(2.15)equals the dire
t sum of subspa
es of the form P (u) where u ranges over theelements of an arbitrary basis of the subspa
e P (0)k+1, and on the other hand, thedire
t sum of all these subspa
es of the form (2.15) for 0 � k + 1 � l 
oin
ideswith the whole spa
e P0 � � � � � Pl due to (2.9). Thus, Ql is non-negative.



16 D.GrigorievSo, to 
omplete the proof of Lemma 1.4 it remains to verify that �k+1;k+1 > 0for all 0 � k + 1 � l.Denote B(k+1)i = �i;k+1; l � i � k + 1 where �i;k+1 is taken from (2.11). Weprove by indu
tion on k thatB(k+1)i = (Q1�j�i(r + 1� j))(Q0�t�k(n� r + t))n(n� 1) � � � (n� i� k)(2.16)For the base of indu
tion k = �1 we have B(0)i = Bi (see se
tion 1).For the indu
tive step we observe that B(k+1)i = B(k)i �B(k)i+1 and apply theindu
tive hypothesis, that proves (2.16).Finally, the diagonal entry �k+1;k+1 = B(k+1)k+1 is positive for k < r < n� kbe
ause of (2.16), that proves Lemma 1.4 sin
e k + 1 � l. �A
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