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Abstract. We prove a parameterized analog of Schaefer’s Dichotomy
Theorem: we show that for every finite boolean constraint family F ,
deciding whether a formula containing constraints from F has a satis-
fying assignment of weight exactly k is either fixed-parameter tractable
(FPT) or W[1]-complete. We give a simple characterization of those con-
straints that make the problem fixed-parameter tractable. The special
cases when the formula is restricted to be bounded occurrence, bounded
treewidth, or planar are also considered: it turns out that in these cases
the problem is in FPT for every constraint family F .
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1. Introduction

A dichotomy theorem in computational complexity shows that a certain fam-
ily of problems can be separated into two distinct classes: every problem is
either “easy” or “hard” (e.g., every problem is either polynomial-time solv-
able or NP-complete). The first such result is Schaefer’s Dichotomy Theorem
(Schaefer 1978), which concerns boolean constraint satisfaction. Let F be a
finite set of boolean constraints, each constraint being a boolean relation of
some finite arity. In the F -Sat problem we are given a formula that consists
of a conjunction of clauses, where each clause is a constraint from F on the
variables. Our task is to decide whether the given formula has a satisfying
assignment. For example, if F = {(x∨y∨z), (x̄∨y∨z), (x̄∨ ȳ∨z), (x̄∨ ȳ∨ z̄)},
then F -Sat is equivalent to 3-Sat, as every 3CNF formula is a conjunction of
such clauses. For every constraint family F , the F -Sat problem is a separate
problem. Schaefer (1978) determined the complexity of each of these infinitely
many problems: it turns out that for every finite constraint family F , the
F -Sat problem is either polynomial-time solvable or NP-complete.

There are several extensions of Schaefer’s theorem in the literature. Bulatov
(2002) proved a dichotomy theorem similar to Schaefer’s, but his result clas-
sifies the complexity of the satisfiability problem with three-valued variables.
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However, extending Schaefer’s theorem to variables with arbitrary domain is an
important open problem (see Bulatov 2002 and Feder & Vardi 1999 for partial
results).

Optimization variants of the boolean constraint satisfaction problem were
also considered in the literature. First, Creignou (1995) classified the approx-
imability of the F -Max-Sat problem, where the goal is to maximize the num-
ber of clauses satisfied. Khanna et al. (2001) classified three other families of
problems: F -Min-Sat (minimize the number of unsatisfied clauses), F -Max-
Ones (find a satisfying assignment with maximum number of true variables),
F -Min-Ones (minimize the number of true variables). Notice that F -Max-
Sat and F -Min-Sat are the same problem, but due to their different formu-
lations, their approximability might be different.

In parameterized complexity we are dealing with problems where each prob-
lem instance has a distinguished part called the parameter. For example, in
the parameterized maximum clique problem the parameter k is the size of the
clique to be found. A parameterized problem is fixed-parameter tractable (FPT)
if it can be solved in polynomial time for every fixed value of the problem pa-
rameter k, and moreover, the degree of the polynomial in the time bound does
not depend on k. That is, a problem is in FPT if it has an f(k)nc time algo-
rithm, where c is independent of k and n. Such an algorithm is called uniformly
polynomial. It turns out that the parameterized versions of several NP-hard
problems are fixed-parameter tractable: for example, there are uniformly poly-
nomial algorithms for the parameterized Minimum Vertex Cover, Longest
Path, and Minimum Feedback Vertex Set problems. In some cases, these
algorithms are highly nontrivial.

By showing that a problem is NP-complete, we give strong evidence that
it does not have a polynomial-time algorithm. There is a similar completeness
program in parameterized complexity that allows us to show that certain prob-
lems are unlikely to be in FPT. A parameterized reduction from problem A to
problem B transforms an instance x of A with parameter k to an instance x′ of
B with parameter k′ such that x is a yes instance of A if and only if y is a yes
instance of B. The reduction has to be computed in time f(k)|x|c (for some
function f and constant c) and the new parameter k′ has to be a function of
k only. It is easy to see that if A is reducible to B, and B is in FPT, then it
follows that A is in FPT as well. The class W[1] contains the parameterized
problems that can be reduced to the problem “Does the given nondeterministic
Turing machine accept input x in at most k steps?” It is believed that W[1]-
complete problems are not fixed-parameter tractable. For more background on
parameterized complexity theory, the reader is referred to the monograph of
Downey & Fellows (1999).
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In this paper we investigate the parameterized complexity of boolean con-
straint satisfaction problems. The parameterized satisfiability problem corre-
sponding to 3-Sat is Weighted 3-Sat. Here we are given a 3CNF formula
φ together with an integer parameter k, and it has to be determined whether
φ has a satisfying assignment with exactly k true variables. Clearly, the prob-
lem is polynomial-time solvable for fixed k, since we have to consider at most
O(nk) possible solutions. However, Weighted 3-Sat is one of the first prob-
lems that were proved to be W[1]-complete, which means that it is unlikely
that there is a uniformly polynomial-time algorithm for this problem. In fact,
even Weighted 2-Sat is W[1]-complete, showing that for this version of the
satisfiability problem, the easy and hard cases are different from the easy and
hard cases of the classical problem.

The main result of the paper is a parameterized complexity analog of Schae-
fer’s Dichotomy Theorem. For every constraint family F , we determine the
parameterized complexity of the Weighted F -Sat problem. In Weighted
F -Sat we are given a formula with constraints from F , and it has to be
decided whether the formula has a satisfying assignment with exactly k true
variables. We prove that Weighted F -Sat is either in FPT or W[1]-complete
for every constraint family F . The precise statement can be found in Theo-
rem 3.2. Moreover, as in Schaefer’s theorem, the class of FPT constraints has a
simple characterization. We note here that in this theorem the class of “easy”
constraint families does not even remotely resemble the class of polynomial-time
solvable families in Schaefer’s theorem. It seems that very different properties
are required to make Weighted F -Sat easy.

The paper is organized as follows. In Section 2 we introduce a new property
called weak separability. Section 3 states our main theorem (Theorem 3.2). Sec-
tion 4 handles 0-invalid constraints. Section 5 gives an algorithm for bounded
occurrence formulae. The positive results (uniformly polynomial-time algo-
rithms) are presented in Section 6. In Section 7 we introduce a W[1]-complete
problem, which is used in Section 8 to obtain further hardness results. Sec-
tion 9 deals with the special case where the formula has bounded treewidth,
while Section 10 considers the case of planar formulae.

2. Weakly separable constraints

A boolean constraint is a function f : {0, 1}r → {0, 1}, where r is called the
arity of f . The r-tuple s ∈ {0, 1}r satisfies f if f(s) = 1. There are exactly
22r different constraints of arity r, hence if a constraint family F contains only
constraints with arity at most r, then |F | ≤ r22r . We will call the i-th variable
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of a constraint f the i-th position in f (the word “variable” will be reserved
for the variables appearing in a formula).

An r-tuple s ∈ {0, 1}r can be thought of as a subset of {1, 2, . . . , r}: let i be
in the subset if and only if the i-th component of s is 1. Therefore, we can apply
standard set-theoretic notations (such as union, disjointness, and symmetric
difference) to the assignments of a constraint. Moreover, a constraint f can be
expressed as a set system over {1, . . . , r} that contains exactly those sets that
correspond to satisfying assignments of the constraint.

We introduce a new property that (to the best of our knowledge) has not
been investigated in the literature. It turns out that this property plays a
crucial role in the parameterized complexity of Weighted F -Sat.

Definition 2.1 (Weak separability). A constraint R is weakly separable if

(i) whenever x1 and x2 are two satisfying assignments of R such that their
intersection is satisfying, then their union is also satisfying, and

(ii) whenever x1 ⊂ x2 ⊂ x3 are satisfying assignments of R, then (x3\x2)∪x1

(= x1 ⊕ x2 ⊕ x3) is also satisfying.

Here ⊕ means symmetric difference. In the rest of the section, we show some
properties of weak separability, and present examples of such constraints.

A constraint is 0-valid (resp. 0-invalid) if it is satisfied (resp. not satisfied)
by the all-zero assignment. 1-valid and 1-invalid are defined similarly. In most
of the paper we consider only 0-valid constraints. If R is 0-valid, then the
requirements of Definition 2.1 can be made somewhat simpler:

Lemma 2.2. A 0-valid constraint R is weakly separable if and only if

(i) whenever x1 and x2 are two disjoint satisfying assignments of R, then
their union is also satisfying, and

(ii) whenever x1 and x2 are satisfying assignments of R such that x1 is a
proper subset of x2, then their difference is also satisfying.

Proof. The necessity of these two requirements follows directly from Defi-
nition 2.1, since the all-zero assignment satisfies R.

Now assume that these two requirements hold. To see that the first re-
quirement of Definition 2.1 holds for R, assume that x1, x2, and x1 ∩ x2 sat-
isfy R. If x1 ⊆ x2 or x2 ⊆ x1, then there is nothing to prove. Otherwise
x1 \ (x1 ∩x2) = x1 \x2 is a satisfying assignment by the second requirement of
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the lemma being proved. The assignments x1 \ x2 and x2 are disjoint, hence
their union x1 ∪ x2 is also satisfying by the first requirement.

To see that the second requirement of Definition 2.1 holds, let x1 ⊂ x2 ⊂ x3

be satisfying assignments. Now x3 \x2 is also satisfying, and since it is disjoint
from x1, it follows that (x3 \ x2) ∪ x1 is satisfying, as required. �

The proof shows that the two requirements of Lemma 2.2 are always suf-
ficient for weak separability, but they are necessary only if the constraint is
0-valid.

Another way of stating Lemma 2.2 is the following. If we consider two
satisfying assignments as 0-1 vectors in Zr, and their sum (in Zr) is also a 0-1
vector, then the first property says that the sum is also satisfying. The second
property says that the difference of two satisfying vectors is also satisfying if
it is a 0-1 vector. Thus Lemma 2.2 says that whenever the sum (difference) of
the satisfying assignments is also a 0-1 vector, then the sum (difference) is also
satisfying.

Definition 2.1 might seem to be a bit artificial, but as the following examples
show, this class contains several interesting constraints.

Example 2.3 (Intersecting clutters). Consider the set system corresponding
to the satisfying assignments of some constraint R. We say that the constraint
is intersecting if any two nonempty sets in the system intersect each other.
The constraint is a clutter if neither of the nonempty satisfying assignments is
the proper subset of any other satisfying assignment.1 If a 0-valid constraint
R is an intersecting clutter, then it is weakly separable. Both requirements of
Lemma 2.2 vacuously hold: there are no disjoint satisfying assignments and a
satisfying assignment cannot be a subset of another satisfying assignment. For
example, R = {00000, 11100, 00111, 01110} is weakly separable. Moreover, for
every r and t > r/2, the r-ary constraint that contains the all-zero assignment
and all the assignments of weight exactly t is also weakly separable. ♦

Example 2.4 (Affine constraints). A constraint of arity r is called affine if
the subset of {0, 1}r that corresponds to the satisfying assignments is an affine
subspace of the r-dimensional space over the two-element field GF[2]. It can
be shown that a constraint is affine if and only if for any three satisfying
assignments x1, x2, x3, the assignment x1⊕x2⊕x3 also satisfies the constraint.

An affine constraint of arity r can be characterized by the equation Ax = b
over GF[2], where A is a matrix with r columns. If there are two satisfying

1Note that we use the notions of intersecting and clutter in a slightly nonstandard way.
Here the empty set is allowed to be a member of a clutter or an intersecting set system.
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assignments x1 and x2 such that their intersection z is also satisfying, then this
means that x1, x2 can be written as x1 = x′1 + z, x2 = x′2 + z, where x′1 and
x′2 are disjoint, and

Ax1 = A(x′1 + z) = b,

Ax2 = A(x′2 + z) = b,

Az = b.

(Here Az = b follows from the fact that the intersection z is also a satisfying
assignment.) Therefore, the union of x1 and x2 is x′1 + x′2 + z, which is also
satisfying since

A(x′1 + x′2 + z) = A(x′1 + z) + A(x′1 + z)−Az = b + b− b = b.

Moreover, if x1 ⊂ x2 ⊂ x3 are three satisfying assignments, then by a similar
argument it can be shown that x3−x2+x1 is also a satisfying assignment. Thus
we have shown that every affine constraint is weakly separable. In particular,
the r-ary constraint EVENr that requires that an even number of its variables
are set to 1 is also weakly separable. ♦

Example 2.5 (Integer lattices). An integer lattice L is a subset of Zr that
is generated by the integer linear combinations of a finite number of vectors
a1, . . . , ak ∈ Zr, that is, L = {α1a1 + · · · + αkak : α1, . . . , αk ∈ Z}. An
alternative definition is that L is an integer lattice if and only if for any two
vectors in L their sum and their difference are also in L. This immediately
implies that if we consider only the 0-1 vectors in L (the intersection of L with
the hypercube {0, 1}r), then this yields a weakly separable constraint. Indeed,
the sum and difference of any two satisfying assignments are in L, and if they
happen to be 0-1 vectors, then they are also satisfying assignments.

The converse is not true: not every weakly separable constraint arises from
an integer lattice this way. For example, consider the constraint R given in
Example 2.3. If R is part of an integer lattice, then 11100 + 00111− 01110 =
10101 has to be in the lattice as well. ♦

If R(x1, . . . , xr) is a constraint of arity r, then for every 1 ≤ i ≤ r we define
R|(i,0)(x1, . . . , xr−1) = R(x1, . . . , xi−1, 0, xi, . . . , xr−1) to be a constraint of arity
r− 1. That is, R|(i,0) is obtained by restricting the i-th position of R to 0. The
constraint R|(i,1) is defined similarly. Applying these two operations repeatedly
to R we can obtain 3r (not necessarily distinct) constraints: each position can
be forced to be 0, forced to be 1, or left unchanged. These constraints will be
called the restrictions of R. Given a constraint family F , we denote by F ∗

the set of constraints that can be obtained from a member of F by repeated
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application of these two operations. Clearly, if every constraint in F has arity
at most r, then |F ∗| ≤ 3r|F |.

Weak separability is a hereditary property with respect to taking restric-
tions:

Lemma 2.6. If R is weakly separable, then so is every restriction of R.

Proof. Assume that R has a non-weakly separable restriction R′. Without

loss of generality, let R′(x1, . . . , xr′) = R(x1, . . . , xr′ ,

r1︷ ︸︸ ︷
0, . . . , 0,

r2︷ ︸︸ ︷
1, . . . , 1). Abusing

notation, if x is an r′-ary assignment of R′, then we also consider x to be an
r-ary assignment of R that assigns 0 to the last r1 + r2 positions. Let z be
the r-ary assignment that assigns 1 to the last r2 positions. An assignment x
satisfies R′ if and only if x ∪ z satisfies R.

If R′ violates the first requirement of Definition 2.1, then there are assign-
ments x1, x2, x1 ∩ x2 that satisfy R′, but x1 ∪ x2 is not satisfying. Therefore,
x1 ∪ z, x2 ∪ z, and their intersection (x1 ∩ x2)∪ z satisfy R. Since R is weakly
separable, (x1∪z)∪(x2∪z) = (x1∪x2)∪z also satisfies R, showing that x1∪x2

satisfies R′, a contradiction. The case when R′ violates the second requirement
can be handled similarly. �

Later we will need the following observation:

Lemma 2.7. If R is a 0-invalid non-weakly separable constraint, then R has a
0-valid non-weakly separable restriction.

Proof. If R violates the first requirement of Definition 2.1, then there are
assignments x1, x2, x1∩x2 that satisfy R, but x1∪x2 is not satisfying. Consider
the restriction R′ of R where the positions that receive 1 in x1 ∩ x2 are forced
to be 1. Clearly, R′ is 0-valid, and based on x1 and x2 we can get two disjoint
satisfying assignments whose union is not satisfying. If R violates the second
requirement, then we force to be 1 those positions that receive 1 in x1. Based
on x2 and x3, we obtain two satisfying assignments such that one is a subset
of the other, but their difference is not satisfying. �

3. Weighted SAT

A clause representing the constraint f is a pair 〈f, (x1, . . . , xr)〉, where r is
the arity of f and x1, . . . , xr are variables. A 0-1 assignment of the variables
satisfies this clause if f(x1, . . . , xr) = 1. If F is a finite family of constraints,
then an F -formula φ is a conjunction of clauses C1 ∧ C2 ∧ · · · ∧ Cm where
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each clause Ci represents some constraint f from F . A variable assignment
satisfies φ if it satisfies every clause of φ. A formula is satisfiable if it has at
least one satisfying assignment. The weight of an assignment is the number of
variables that are set to 1. Usually we denote by n the number of variables in
the formula, and by m the number of clauses.

When defining constraint satisfaction problems, some authors allow that a
variable appears several times in a clause, while some others forbid this. In par-
ticular, Schaefer (1978) allowed multiple variables, while Khanna et al. (2001)
did not. Disallowing multiple variables makes the constraint satisfaction prob-
lem less general, hence it makes obtaining hardness results more difficult. We
present our results in the strongest possible form: we allow multiple variables
when giving positive results, while on the negative side hardness is proved for
the case when multiple variables are not allowed.

Formally, we will investigate the parameterized complexity of the following
problem:

Weighted F -Sat

Input: An F -formula φ (each variable can appear at
most once in a clause) and an integer k.

Parameters: k

Task: Is there an assignment of weight exactly k that
satisfies φ?

It can be shown that the Weighted F -Sat problem is in W[1] for every
family F (because each clause can be represented by a constant size circuit).

In the rest of the paper we consider only parameterized problems, hence we
will write F -Sat instead of Weighted F -Sat for brevity. F -Sat∗ denotes
the more general problem where a variable can appear several times in a clause.
If F contains only a single constraint R, then we abuse notation by writing
R-Sat instead of {R}-Sat.

In some cases we allow that not only variables, but also the constants 0
and 1 can appear in the formula. This extension of the problem will be called
F -Sat01. In F -Sat0 only the constant 0 is allowed. F -Sat∗01 and F -Sat∗0
are defined similarly.

It is easy to see that F -Sat01 is essentially the same as F ∗-Sat (recall
that F ∗ contains all the restrictions of F ).

Proposition 3.1. For every constraint family F , F -Sat01 and F ∗-Sat have
the same complexity.
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Proof. If a clause of the formula in F -Sat01 contains constants, then the
clause can be replaced by an appropriate constraint from F ∗. If a formula
in F ∗-Sat contains a constraint from F ∗ \ F , then this constraint can be
simulated by a constraint from F , with some constants plugged into it. �

Although Definition 2.1 is somewhat technical and not very intuitive, weak
separability is precisely the property that separates the easy and hard cases of
the F -Sat problem:

Theorem 3.2 (Main). Let F be a finite set of constraints. If every constraint
in F is weakly separable, then F -Sat is in FPT, otherwise F -Sat is W[1]-
complete.

We prove Theorem 3.2 the following way. The special case when the formula is
not satisfied by the all-zero assignment can be taken care of easily (Lemma 4.1).
The next step is to prove that the problem is in FPT for every F if the for-
mula is bounded occurrence, that is, if every variable occurs at most d (con-
stant) times. Theorem 5.3 gives a uniformly polynomial-time algorithm for the
bounded occurrence case. The algorithm first collects a set of solutions that are
“local” in some sense, then uses color coding to put together these assignments
to obtain a solution of exactly the required weight.

If a variable occurs many times in the formula and every member of F is
weakly separable, then we can use the sunflower lemma of Erdős and Rado
to find a certain special structure in the formula. This structure allows us to
reduce the problem to a shorter but equivalent form (Theorem 6.5). Repeating
these reductions, eventually we arrive at a formula where each variable occurs
a bounded number of times, proving the positive side of Theorem 3.2.

On the negative side, we use two hardness results as basis for our reductions.
First, the parameterized maximum independent set problem is well known to
be W[1]-complete. Notice that the maximum independent set problem is in
fact the same as F -Sat with F = {(x̄ ∨ ȳ)}: the constraint (x̄ ∨ ȳ) (that
is, NAND) expresses the requirement that either x or y should not be selected
into the independent set. Moreover, we prove in Lemma 7.2 that the constraint
(x → y) also makes weighted satisfiability W[1]-complete. It turns out that if
a constraint is not weakly separable, then it can simulate one of (x̄ ∨ ȳ) and
(x→ y), making the satisfiability problem W[1]-hard (Lemma 8.1). This proves
the negative side of Theorem 3.2.

Besides bounding the number of occurrences, we investigate the effect of
other structural restrictions on the formula. The incidence graph of a formula
is a bipartite graph having the variables and clauses as vertices, where the edges
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represent the incidence relation. We prove that F -Sat is in FPT for every F
if the incidence graph of the formula has bounded treewidth (Theorem 9.4)
or is planar (Theorem 10.2). These results follow from standard algorithmic
techniques of bounded treewidth graphs.

4. 0-invalid constraints

The case when the formula contains 0-invalid constraints can be taken care of
easily: the problem can be reduced to a constant number of 0-valid formulae.
In Sections 5 and 6, we will assume that the formula is 0-valid.

Lemma 4.1. Let F be a family of constraints with arity at most r. The
F -Sat problem can be reduced to at most rk instances of the F ∗-Sat (or
F -Sat01) problem such that the constructed instances contain only 0-valid
constraints. Moreover, the reduction does not increase the number of occur-
rences for any of the variables, and the parameter k′ for the generated F ∗-Sat
instances is not greater than the parameter k.

Proof. We use the method of bounded search trees. If the formula φ con-
tains a 0-invalid clause Ci, then one of the variables in Ci has to be 1. Therefore,
the algorithm selects a variable in Ci and sets it to 1. Since there are at most r
variables in Ci, we branch into at most r directions. Now there are constants in
the formula, but we can get rid of them by replacing the clauses containing the
constants with appropriate constraints from F ∗ (Proposition 3.1). We repeat
this procedure until there are no 0-invalid clauses. If we set k variables to 1 and
there are still 0-invalid clauses, then this branch of the algorithm is unsuccessful
and we stop. If the formula becomes 0-valid after setting c variables to 1, then
we check whether it has a satisfying assignment of weight k′ := k − c. If there
is such an assignment, then it gives a satisfying assignment of weight k for the
original formula. The search tree of the algorithm has height at most k, hence
it has at most rk leaves, implying that we generate at most rk 0-valid formulae
to check. �

5. Bounded occurrences

In this section we give a uniformly polynomial-time algorithm for F -Sat in the
special case when every variable appears in a bounded number of clauses. The
main idea is that we can generate a linear number of satisfying assignments
such that every satisfying assignment of weight at most k can be obtained as
the disjoint union of some of these assignments. Now an algorithm based on
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color coding can be used to decide whether a satisfying assignment of weight
exactly k can be put together from these selected assignments.

The vertex set of the primal graph G(φ) of formula φ is the set of variables
in φ, and two variables are connected by an edge if they appear in a common
clause. We say that a set of variables is connected in φ if they induce a connected
subgraph of G(φ). A set of variables is satisfying in φ if setting these variables
to 1 and all the other variables to 0 gives a satisfying assignment. The following
lemma bounds the number of connected satisfying sets:

Lemma 5.1. Let r be the maximum arity of the clauses in the 0-valid formula
φ, and assume that every variable occurs at most d times in φ. There are at
most (rd)k

2 · n connected satisfying sets of variables having size at most k.
Moreover, we can enumerate all such sets in 2O(k2 log rd) · n time.

Proof. In G(φ) every vertex has degree at most (r− 1)d. We give an upper
bound on the number of connected subsets that contain variable xi and have
size at most k. If variable xi and at most k− 1 other vertices form a connected
subgraph, then all these vertices are at distance at most k − 1 from xi. There
are fewer than ((r − 1)d)k < (rd)k vertices at distance less than k from xi,
therefore we have to consider only those vertices. One can form fewer than
(rd)k

2
different sets of size at most k from these vertices; this bounds the

number of sets containing xi. Considering all the n variables, we obtain the
upper bound (rd)k

2 · n.
It is not difficult to show that we can generate all these sets in time polyno-

mial in d, r, and k per set (with appropriate data structures). Therefore, the
total time can be bounded by 2O(k2 log rd) · n. Moreover, selecting the satisfying
sets can also be done within this time bound: for each set, we have to check
at most kd clauses (those clauses that do not contain selected variables are
automatically satisfied since the formula is 0-valid). �

Two sets of variables V ′ and V ′′ are nonadjacent if there is no clause that
contains variables from both V ′ and V ′′. The union of pairwise nonadjacent
satisfying sets is also satisfying:

Lemma 5.2. If V1, . . . , V` are pairwise nonadjacent satisfying sets of variables
for the 0-valid formula φ, then V1 ∪ · · · ∪ V` also satisfies φ.

Proof. Assume that a clause Cj is not satisfied by V1 ∪ · · · ∪ V`. Since φ is
0-valid, Cj must contain one or more variables set to 1; denote these variables
by V ′. Since the sets V1, . . . , V` are pairwise nonadjacent, V ′ is contained in
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one of these sets, say Vi. Therefore, Cj receives the same assignment as in Vi,
contradicting the assumption that Vi is satisfying. �

Now we are ready to present the algorithm for bounded occurrence formulae:

Theorem 5.3. Let r be the maximum arity of the clauses in a formula φ, and
assume that every variable occurs at most d times in φ. It can be decided in
2O(k2d log r) · n log n time whether φ has a satisfying assignment of weight k.

Proof. If the formula is not 0-valid, then Lemma 4.1 can be used to reduce
the problem to at most rk 0-valid instances. Therefore, in the following we
assume that the formula is 0-valid. For 0-invalid formulae, the running time
obtained below has to be multiplied by rk, which is dominated by the exponent.

Every satisfying assignment can be partitioned into pairwise nonadjacent
connected satisfying assignments by taking its connected components in the
primal graph. Conversely, if we have pairwise nonadjacent connected satisfying
assignments, then by Lemma 5.2, their union is also a satisfying assignment.
Therefore, φ has a satisfying assignment of weight k if and only if there are
pairwise nonadjacent connected satisfying assignments whose total size is k.
Our algorithm tries to find such sets.

By Lemma 5.1, we can enumerate all the connected satisfying sets of size
at most k; call these sets V1, . . . , Vt. To each Vi there corresponds a set C[Vi]
of clauses where the variables of Vi appear. Associate a weight to each C[Vi];
denote the weight by |Vi|; clearly the size of C[Vi] is at most d times its weight.
Notice that Vi and Vj are nonadjacent if and only if C[Vi] and C[Vj] are disjoint.
Therefore, the observation of the previous paragraph can be restated as follows:
φ has a satisfying assignment of weight k if and only if there are pairwise
disjoint sets C[Vi1 ], . . . , C[Vi` ] whose total weight is k. We use the method of
color coding to decide whether such sets exist.

First we present the randomized version of the algorithm. Select a random
coloring of the clauses using a set C of c := kd colors. The algorithm uses
dynamic programming to find a solution where the clauses covered by the sets
C[Vi1 ], . . . , C[Vi` ] have distinct colors. For every subset C ′ ⊆ C of colors, every
0 ≤ i ≤ t and 0 ≤ k′ ≤ k, we set the subproblem S[C ′, i, k′] to true if one can
select pairwise disjoint sets from C[V1], . . . , C[Vi] such that their total weight
is k′, the clauses covered by them have distinct colors, and they cover only
clauses with color from C ′. We are interested in S[C, t, k]; if it is true, then
there is a weight k satisfying assignment.

It is trivial to solve the subproblems for i = 0: the subproblem S[∅, 0, 0] is
true, and any other subproblem is false. We can move from i to i+1 as follows.
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If S[C ′, i, k′] is true, then S[C ′, i+ 1, k′] is also true, since any solution for i can
be used for i+ 1 as well. Moreover, let Ci be the set of colors appearing on the
clauses of C[Vi] (we assume that these colors are distinct, otherwise C[Vi] cannot
appear in a solution with this coloring). If S[C ′ \Ci, i, k′−|Vi|] is true, then we
can set S[C ′, i+ 1, k′] to true as well: a solution to S[C ′ \Ci, i, k′− |Vi|] can be
extended by the weight |Vi| set C[Vi] to obtain a solution that covers clauses
only with color C ′. Using these two rules, we can solve all the subproblems.

If there are pairwise disjoint sets C[Vi1 ], . . . , C[Vi` ] whose total weight is k,
then they cover at most c = kd clauses (recall that the size of C[Vi] is at
most d times its weight). There are at most cc different ways of coloring these
clauses with c colors. Therefore, with probability at least c−c, the clauses
covered by C[Vi1 ], . . . , C[Vi` ] have distinct colors, and the algorithm finds a
solution. This means that if there is a weight k satisfying assignment, then on
average we have to choose at most cc random colorings to find a solution. We
can derandomize the algorithm by using the standard technique of k-perfect
hash functions (see Alon et al. 1997; Downey & Fellows 1999). If there are m
elements, then one can construct a family of 2O(c) logm c-colorings such that for
each c-element subset X of these elements there is a coloring in the family where
each element in X receives a different color. It is clear that the algorithm will
work correctly if we modify it so that instead of repeatedly choosing random
colorings we enumerate all the colorings in the family: eventually we select a
coloring where all the at most c clauses covered by the solution are colored
differently. Thus the algorithm considers 2O(c) logm ≤ 2O(c) log nd colorings.
For each coloring, the dynamic programming algorithm solves at most 2ckt ≤
2ck(rd)k

2 · n subproblems. Each subproblem requires time polynomial in r, d,
and k. Therefore, the total running time is 2O(k2d log r) · n log n. �

6. Fixed-parameter tractable cases

In this section we prove the positive part of Theorem 3.2: we show that if
every constraint is weakly separable, then F -Sat is in FPT. In fact, we show
that even the more general problem F -Sat∗01 is fixed-parameter tractable. By
Lemma 4.1, the 0-invalid clauses can be easily taken care of, therefore we
assume that the formula is 0-valid. If every variable occurs at most d times
(where d is a constant to be defined later), then the algorithm of Theorem 5.3
can be used. On the other hand, if a variable occurs more than d times, then
we can find a large sunflower of weakly separable clauses, which allows us to
simplify the formula.

The sunflower was defined in the context of set systems:
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Definition 6.1 (Sunflower). A sunflower with p petals is a collection of p sets
S1, . . . , Sp such that the intersection Si ∩ Sj is the same for every i 6= j.

In particular, p pairwise disjoint sets form a sunflower with p petals. The
intersection of the sets will be called the center of the sunflower. The following
lemma states that a sufficiently large set system necessarily contains a sunflower
of given size:

Lemma 6.2 (Erdős & Rado 1960). If a set system has more than (p − 1)``!
members and the size of each member is at most `, then the set system contains
a sunflower with p petals.

We will use the notion of sunflower for clauses instead of sets. For clauses,
we define the sunflower the following way:

Definition 6.3 (Sunflower). A sunflower with p petals is a collection of p
clauses C1, . . . , Cp such that every clause represents the same constraint R of
arity r, and for every j = 1, . . . , r,

◦ either the same variable appears at the j-th position of every clause, or

◦ for every i = 1, . . . , p, the variable at the j-th position of clause Ci appears
only in Ci.

For example, the clauses R(x1, x2, x3, x4), R(x1, x2, x5, x5), R(x1, x2, x6, x7)
form a sunflower with 3 petals. Here variables x1 and x2 form the center.
It turns out that if a variable appears in many clauses, then there is a large
sunflower in the formula:

Lemma 6.4. Let F be a family of constraints with maximum arity r contain-
ing c constraints. If a variable xi appears in more than (rrk)r · r! · rr · c clauses
of an F -formula φ, then φ contains a sunflower with nonempty center and at
least k + 1 petals.

Proof. Among the clauses that contain variable xi, more than (rrk)r · r! · rr
have to represent the same constraint R ∈ F . For each such clause, consider
the set of variables contained in it. This way we obtain a family of more than
(rrk)r · r! · rr sets, but a set can appear several times in the family. As a very
rough estimate, there can be at most rr different clauses on the same set of at
most r variables (taking into account that a variable can appear several times in
a clause); therefore, if we retain only one copy of each set, then there remains
more than (rrk)r · r! sets. By Lemma 6.2, this collection of sets contains a
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sunflower with rrk+1 petals. The center C of the sunflower is not empty, since
it contains variable xi. The clauses corresponding to the sets in the sunflower
all use the variables in C, but these variables may appear in these clauses at
different positions. We say that two clauses use the center C the same way if
whenever the variable at the j-th position of one clause is a variable in C, then
the same variable appears in the other clause at the j-th position. It is clear
that there are at most rr (rough upper bound) different ways of using C, so
there have to be more than k sets in the sunflower such that the corresponding
clauses use the center C the same way. These clauses form a sunflower of size
at least k + 1: if the variable at the j-th position of a clause is in C, then it
appears in all the clauses at the j-th position; if it is not in C, then it appears
only in that clause. �

The key idea of the algorithm for weakly separable constraints is to find a
sunflower and reduce the formula by “plucking” the petals of the sunflower.

Theorem 6.5. If every constraint in F is weakly separable, then F -Sat∗01 is
fixed-parameter tractable.

Proof. By Proposition 3.1, F -Sat∗01 and F ∗-Sat∗ are equivalent; we give
an algorithm for the latter problem. Note that by Lemma 2.6, every constraint
in F ∗ is weakly separable. If the given F ∗-formula φ is not 0-valid, then we use
Lemma 4.1 to reduce the problem to at most rk 0-valid instances of F ∗-Sat∗.
Therefore, in the following we can assume that the formula is 0-valid and every
constraint is weakly separable.

Let r be the maximum arity of the constraints in F , and set c := |F ∗| ≤
3r|F | ≤ 3r · 22rr and d := r · (rrk)r · r! · rr · c. If every variable occurs at most
d times in the 0-valid formula φ, then Lemma 5.3 can be used to solve the

problem in 2O(k2d log r) · n log n = 2k
r+2·22O(r)

· n log n time. Otherwise there is a
variable that occurs more than d times. This means that this variable appears
in more than d/r clauses, hence the formula contains a sunflower with k + 1
petals (Lemma 6.4). Let C1, . . . , Ck+1 be the clauses of the sunflower and let C
be its center. The clauses of the sunflower represent the same constraint R of
arity r′ ≤ r; it can be assumed without loss of generality that in each of these
clauses, the first ` ≥ 1 variables are taken from C, and the remaining r ′ − `
variables are outside C.

We reduce the problem to a shorter formula by “plucking” the sunflower. In
each clause C1, . . . , Ck+1 the variables of the center C are replaced by the con-
stant 0; call these modified clauses C ′i. Furthermore, a new clause C ′0 is added
to the formula: C ′0 can be obtained from any of the clauses Ci (i = 1, . . . , k + 1)
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by replacing the variables not in C by the constant 0. (Observe that by the
definition of the sunflower, this gives the same clause C ′0 starting from any Ci.)
For example, plucking the sunflower

C1 = R(x1, x2, x3, x4),

C2 = R(x1, x2, x5, x5),

C3 = R(x1, x2, x6, x7)

gives

C ′0 = R(x1, x2, 0, 0),

C ′1 = R(0, 0, x3, x4),

C ′2 = R(0, 0, x5, x5),

C ′3 = R(0, 0, x6, x7).

We claim that this operation does not change the solvability of the instance
with respect to weight k solutions.

Assume that the new formula φ′ has a satisfying assignment x of weight k,
but this assignment does not satisfy φ. This is only possible if one of the
clauses Ci (i = 1, . . . , k + 1) is not satisfied, since all the other clauses of φ
are present in φ′ as well. Assume that clause Ci is not satisfied, so x and Ci
give an r′-tuple (α1, . . . , αr′) that does not satisfy the constraint R. However,
x satisfies C ′i, hence (0, . . . , 0, α`+1, . . . , αr′) does satisfy R. Moreover, x sat-
isfies C ′0, hence (α1, . . . , α`, 0, . . . , 0) also satisfies R. Therefore, we have two
disjoint assignments satisfying R and since constraint R is 0-valid and weakly
separable, the union of the assignments (α1, . . . , α`, α`+1, . . . , αr′) also satisfies
R (Lemma 2.2), a contradiction.

Now assume that φ has a satisfying assignment x of weight k that does not
satisfy φ′. There are at most k true variables outside C and by the definition
of the sunflower, each such variable appears in at most one of the clauses
C1, . . . , Ck+1. Thus there has to be a clause Ci that does not contain true
variables outside C. Therefore, the r′-tuple (α1, . . . , α`, 0, . . . , 0) assigned by
x to Ci satisfies the constraint R. This means that the clause C ′0 is satisfied
in φ′. Assume therefore that for some clause C ′j (1 ≤ j ≤ k + 1) the r′-
tuple (0, . . . , 0, α`+1, . . . , αr′) assigned to C ′j does not satisfy R. However, x
assigns the r′-tuple (α1, . . . , α`, α`+1, . . . , αr′) to Cj (observe that Ci and Cj use
the variables of the center the same way), so this r′-tuple satisfies R. Now
from the weak separability of R (see also Lemma 2.2) and from the facts that
(α1, . . . , α`, 0, . . . , 0) and (α1, . . . , α`, α`+1, . . . , αr′) satisfy R it follows that the
difference (0, . . . , 0, α`+1, . . . , αr′) also satisfies R, a contradiction.



cc 14 (2005) Parameterized complexity of CSP 169

Thus the formula φ′ is equivalent to the original formula φ if we are only
interested in weight k solutions. Formula φ′ contains some constant zeros,
but we can get rid of the constants by replacing the affected constraints with
appropriate constraints from F ∗ (see Proposition 3.1; here we also need the fact
that the transformation does not increase the length of the formula). Notice
that plucking the sunflower strictly decreases the total number of occurrences
of the variables. Therefore, by repeating this operation at most as many times
as the number of literals in the original formula (≤ mr), we eventually obtain
a formula where every variable occurs at most d times. As noted above, in
this case Lemma 5.3 can be used to solve the problem in uniformly polynomial
time. �

7. Hardness of implication

The negative part of Theorem 3.2 requires proving the W[1]-completeness of
certain problems. All our completeness proofs are by reduction from two prob-
lems, Maximum Independent Set and Implications, where Implications
is F -Sat for F = {(x→ y)}. Maximum Independent Set (which can also
be thought of as F -Sat for F = {(x̄∨ȳ)}) is a well known W[1]-complete prob-
lem (Downey & Fellows 1999). In this section we show that it is W[1]-complete
to find a satisfying assignment of weight exactly k for a formula containing only
implications of the form (x→ y).

Notice that if F = {(x̄ ∨ ȳ)}, then F -Sat remains W[1]-hard even if we
look for satisfying assignments of weight at least k instead of exactly k. On the
other hand, the constraint (x→ y) is 1-valid, so it is trivial to find a satisfying
assignment of weight at least k. Therefore, the hardness of Implications has
to rely on the fact that the weight of the satisfying assignment to be found is
exactly k.

First we show that Implications is W[1]-hard with nonuniform weights.
This means that each variable xi has a positive integer weight w(xi), and one
has to find a satisfying assignment where the sum of the weights of the true
variables is exactly k. The original version of the problem corresponds to the
special case where w(xi) = 1 for every variable xi.

Lemma 7.1. Implications is W[1]-hard with nonuniform weights.

Proof. The proof is by a parameterized reduction from the Maximum In-
dependent Set problem. Let G(V,E) be a graph, and let k be the number
of independent vertices to be found. Set k′ = k +

(
k
2

)
. We construct a formula

where the variables are partitioned into k′ sets X1, . . . , Xk′ . Each variable
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in Xi has weight wi = 2i−1 + 22k′−i. The required weight of the solution is
k′′ =

∑k′

i=1 wi = 22k′ − 1.
We claim that any assignment with weight k′′ sets to 1 exactly one variable

from each set Xi. Suppose that i is the smallest index such that the claim does
not hold. There are two cases to consider. If there is no variable in Xi with
value 1, then consider the weight of the assignment modulo 2i. The weight wi′ is
2i
′−1 modulo 2i for i′ < i, and it is 0 modulo 2i for i′ > i. By assumption, there is

exactly one true variable in each Xi for i′ < i, hence the weight is
∑i−1

i′=1 2i
′−1 =

2i−1−1 modulo 2i. However, k′′ is 2i−1 modulo 2i, a contradiction. Now assume
that Xi contains at least two true variables. In this case the weight of the
assignment is at least

∑i−1
i′=1 wi′+2wi ≥

∑i−1
i′=1 22k′−i′+2 ·22k′−i > 22k′−1 = k′′,

again a contradiction.
In the following, we will rename the k′ = k+

(
k
2

)
sets Xi as Yi for 1 ≤ i ≤ k

and Yi,j for 1 ≤ i < j ≤ k. Each set Yi contains |V | variables: there is a

variable yi,v for each v ∈ V . Each Yi,j contains
(|V |

2

)
− |E| variables, that is,

there is a variable yi,j,u,v for each nonedge uv 6∈ E, u 6= v of the graph. Clauses
are defined as follows: for every 1 ≤ i < j ≤ k and every nonedge uv 6∈ E,
u 6= v, we add the two clauses (yi,j,u,v → yi,u) and (yi,j,u,v → yj,v).

Assume that there is a solution of weight exactly k′′. We have seen that
in such a solution, each set Yi and Yi,j contains exactly one true variable. We
construct an independent set of size k based on this solution: if variable yi,v is
true, then let v be the i-th vertex of the independent set. We claim that this
results in k distinct independent vertices. To see that the i-th and j-th ver-
tices are not the same and not connected by an edge, assume that yi,j,u,v is the
unique true variable in Yi,j. The clauses imply that variables yi,u and yj,v are
true, hence the i-th vertex is u, and the j-th vertex is v. By construction, uv is
a nonedge in G, hence u and v are distinct vertices not connected by an edge.

To see the other direction, assume that v1, . . . , vk is an independent set of
size k. It is easy to see that setting to 1 the variables yi,vi (1 ≤ i ≤ k) and
yi,j,vi,vj (1 ≤ i < j ≤ k) yields a satisfying assignment of weight exactly k ′′. �

Notice that in the proof of Lemma 7.1, every weight is at most 22k+2(k2) in
the constructed instance. This fact is used in the following proof, where it is
needed that Lemma 7.1 holds even if the weights are bounded by a function of
the parameter k.

Lemma 7.2. Implications is W[1]-complete.

Proof. Implications is in W[1], since it is a special case of F -Sat. To
prove W[1]-hardness, we show that Implications with nonuniform weights
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can be reduced to the case where every weight is 1. For each variable xi, we
add w(xi)−1 new variables xi,1, . . . , xi,w(xi)−1, and the clauses xi → xi,1, xi,1 →
xi,2, . . . , xi,w(xi)−1 → xi. These clauses form a cycle of implications, hence
either all or none of these variables are true in a satisfying assignment. Thus
these variables effectively act as one variable with weight w(xi), completing
the reduction. We can assume that the weight of each variable is bounded by
a function of the parameter k, hence the reduction can be done in uniformly
polynomial time. �

8. Hardness results

In this section we prove the negative side of Theorem 3.2: if F contains a
non-weakly separable constraint, then F -Sat is W[1]-complete. The follow-
ing lemma shows a weaker claim: it needs a slightly stronger assumption (F
contains a 0-valid non-weakly separable constraint) and it proves hardness for
the more general problem F -Sat∗0. The proof of this lemma contains all the
important ideas, it shows what role (the lack of) weak separability plays in the
complexity of the problem. A couple of technical tricks are required to prove
hardness for the more restricted problem F -Sat (Lemmas 8.2, 8.3, and 8.4).

Lemma 8.1. Let F be a finite constraint family. If F contains a 0-valid
constraint that is not weakly separable, then F -Sat∗0 is W[1]-complete.

Proof. Assume that R ∈ F is a 0-valid constraint of arity r that is not
weakly separable. Since R is 0-valid, it violates one of the requirements of
Lemma 2.2. We consider two cases depending on which requirement is violated.
If there are two disjoint satisfying assignments of R whose union does not satisfy
R, then we reduce the Maximum Independent Set problem to R-Sat∗0 as

follows. Without loss of generality, it can be assumed that (

`1︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)

and (

`1︷ ︸︸ ︷
0, . . . , 0,

`2︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) satisfy R but (

`1︷ ︸︸ ︷
1, . . . , 1,

`2︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) does

not. Now a clause (x̄i ∨ x̄j) of the maximum independent set problem can be

simulated as R(

`1︷ ︸︸ ︷
xi, . . . , xi,

`2︷ ︸︸ ︷
xj, . . . , xj, 0, . . . , 0). It is clear that this clause forbids

xi and xj to be true at the same time, but the clause is satisfied if at most one
of them is true.

If R violates the second requirement of weak separability, then we re-
duce Implications to R-Sat∗0. In Lemma 7.2 we have shown that Impli-
cations is W[1]-complete. Without loss of generality, it can be assumed that
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(

`1︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) and (

`1︷ ︸︸ ︷
1, . . . , 1,

`2︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) satisfy R but the difference

(

`1︷ ︸︸ ︷
0, . . . , 0,

`2︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) does not. In this case a clause (xi → xj) of Implica-

tions can be replaced by the clause R(

`1︷ ︸︸ ︷
xj, . . . , xj,

`2︷ ︸︸ ︷
xi, . . . , xi, 0, . . . , 0). Clearly,

xi cannot be true without xj being true as well, but any other combination of
values is allowed. �

A constraint R is monotone if whenever an assignment x satisfies R, then
replacing any 0 in x by a 1 also gives a satisfying assignment. The following
lemma states that a 0-invalid nonmonotone constraint allows us to simulate
constants.

Lemma 8.2. If a constraint family F contains a 0-invalid nonmonotone con-
straint R of arity r, then F -Sat01 can be reduced to F -Sat.

Proof. Let rmax be the maximum arity in F . Given an F -formula φ and
an integer k, we construct a constant-free F -formula φ′ such that φ has a
satisfying assignment of weight k if and only if φ′ has a satisfying assignment
of weight k′ := k+ rmax. We introduce rmax new variables X = {x1, . . . , xrmax},
and rmax + k′ new variables Y = {y1, . . . , yrmax+k′}. With some new clauses we
ensure that if a satisfying assignment of φ′ has weight k′, then it assigns 1 to all
the variables x1, . . . , xrmax , and 0 to y1, . . . , yrmax+k′ . Therefore, the constants in
the formula can be replaced by these variables. This gives a correct reduction,
since a weight k′ satisfying assignment of φ′ sets to 1 exactly k original variables.

First we add clauses to ensure that every variable in X is set to 1. The new
clauses are added as follows. Consider a minimum weight satisfying assignment
of R having weight 0 < ` ≤ r. Without loss of generality, it can be assumed

that (

`︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) satisfies R. We add clauses R(xi1 , . . . , xi` , yj1 , . . . , yjr−`)

where i1, . . . , i` are distinct integers in {1, . . . , rmax}, and j1, . . . , jr−` are dis-
tinct integers in {1, . . . , rmax + k′}. Considering all possibilities, there are
(rmax!/(rmax−`)!) ·((rmax +k′)!/(rmax +k′−r+`)!) such clauses. We claim that
these clauses ensure that the variables xi are true in every weight k′ satisfying
assignment. Notice first that among the rmax + k′ variables yj, at least rmax

(say yj1 , . . . , yjrmax
) are 0 in a weight k′ assignment. Assume that some variable

xi1 is 0; then the clause R(xi1 , xi2 , . . . , xi` , yj1 , . . . , yjr−`) (where xi2 , . . . , xi` are
arbitrary distinct variables different from xi1) has an assignment of weight less
than `. But R has no satisfying assignment with weight less than `, so this
clause is not satisfied, a contradiction.
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Since the constraint R is not monotone, there is a satisfying assignment
α of weight 0 < `′ < r such that setting the p-th position to 1 (for some
p) makes this assignment not satisfying. We add new clauses to φ′ based on
assignment α: replace every 1 in α with a distinct variable from X, and replace
every 0 with a distinct variable from Y . Selecting the variables in every possible
way gives (rmax!/(rmax − `′)!) · ((rmax + k′)!/(rmax + k′ − r + `′)!) clauses. We
have seen in the previous paragraph that in a satisfying assignment of weight
k′, each variable of X is 1, and at least r variables of Y are 0. Assume that a
variable yj has value 1. There has to be a clause where yj appears at the p-th
position, but any other variable from Y in the clause has value 0. Thus this
clause receives the assignment α, but with the p-th position set to 1, which
does not satisfy the constraint R. �

We say that the p-th position of a constraint is useful if there is a satisfying
assignment that sets this position to 1. The p-th position is satisfying if the
weight 1 assignment that sets to 1 only the p-th position is satisfying. We con-
sider two cases depending on whether every useful position is satisfying or not.
If every useful position is satisfying, then we can prove W[1]-completeness by a
direct reduction from Maximum Independent Set (Lemma 8.3). Otherwise
we show that F -Sat∗0 can be reduced to F -Sat (Lemma 8.4), that is, allowing
variables occurring several times in a clause does not make the problem harder.

Lemma 8.3. Let R be a 0-valid constraint of arity r such that every useful
position is satisfying. If R is not weakly separable, then the R-Sat problem is
W[1]-complete.

Proof. The first observation is that R violates the first requirement of weak
separability in Lemma 2.2. Otherwise R would be satisfied by every assignment
that has value 1 only at useful positions, since these assignments can be ob-
tained as the disjoint union of weight 1 satisfying assignments. Therefore, the
second requirement of weak separability would also be satisfied, contradicting
the assumption that R is not weakly separable. Consider the counterexample
to the first requirement where the weight ` of the union of the two disjoint sets
is minimal. Without loss of generality, it can be assumed that the first ` ≥ 2

positions are useful, (

`︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) does not satisfy R, but every subset of

this assignment is satisfying.
We reduce the Maximum Independent Set problem to R-Sat as follows.

There is a variable xv for each vertex v, and additionally there is a set Y of
r + k variables y1, . . . , yr+k. Set k′ := k; we assume that k ≥ r. First we add
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clauses to ensure that the variables in Y are 0 in every satisfying assignment
of weight k′. We add the clause R(z1, . . . , zr) where the variables are distinct,
at least one of z1, . . . , z` is in Y , and all of z`+1, . . . , zr are from Y . Considering
all possibilities gives O((n+k+ r)r) clauses. Assume that variable yi is true in
a weight k′ satisfying assignment. Let q1, . . . , q`−1 be `− 1 other true variables
(we can assume that k ≥ `); they can be in Y or not in Y . Since at most k ′

variables are set to 1 in Y , there are variables yi1 , . . . , yir−` in Y with value 0.
Now the clause R(yi, q1, . . . , q`−1, yi1 , . . . , yir−`) is not satisfied, since there is 1
on the first ` positions and 0 after that, a contradiction. On the other hand,
note that if every variable in Y is set to 0, then all the clauses are satisfied:
each of them receives an assignment of weight at most ` − 1 that is a proper

subset of (

`︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0).

If there is an edge between vertices u and v, then we add the clauses
R(xu, xv, xi1 , . . . , xi`−2

, y1, . . . , yr−`) where xi1 , . . . , xi`−2
are distinct variables

not in Y . If one of xu and xv is 0 in a weight k′ assignment, then all of these
clauses are satisfied since they receive an assignment with weight less than `,
and 1 appears only on the first ` positions. On the other hand, if both xu and
xv are 1, then one of these clauses is not satisfied: if we take xi1 , . . . , xi`−2

to
be variables with value 1, then the clause R(xu, xv, xi1 , . . . , xi`−2

, y1, . . . , yr−`)
is not satisfied. Therefore, the constructed R-formula has a satisfying assign-
ment of weight k′ if and only if the graph has an independent set of size k,
proving the correctness of the reduction. We note that r and ` are constants
independent of k and n, hence the reduction is a uniformly polynomial-time
parameterized reduction. �

Lemma 8.4. Assume that F contains a 0-valid constraint R of arity r such
that the p-th position is useful but not satisfying. In this case F -Sat∗0 can be
reduced to F -Sat.

Proof. Let rmax be the maximum arity in F . Given an F -formula φ and an
integer k, we construct an F -formula φ′ such that every clause of φ′ contains
every variable at most once and φ has a satisfying assignment of weight k if
and only if φ′ has a satisfying assignment of weight k′ := krmax. Each variable
xi of φ is replaced by rmax new variables xi,1, . . . , xi,rmax . We also create a set Y
of rmax + k′ new variables y1, . . . , yrmax+k′ . We add clauses to the formula to
ensure that in every weight k′ satisfying assignment of φ′ the rmax variables
xi,1, . . . , xi,rmax have the same value, and the variables y1, . . . , yrmax+k′ are set
to 0. Now each clause of φ can be modified so that if the clause contains a
variable xi more than once, then we can use the variables xi,1, . . . , xi,rmax to
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assign distinct variables to each occurrence of xi in the clause. A constant 0
can be replaced by an arbitrary variable from Y . Clearly, there is a one-to-
one correspondence between the weight k satisfying assignments of φ and the
weight k′ satisfying assignments of φ′, proving the correctness of the reduction.

The new clauses are added as follows. Without loss of generality, it can be

assumed that (1, 0, . . . , 0) does not satisfy R, but (

`︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) satisfies R,

and the latter assignment has minimal weight among the satisfying assignments
that have 1 at the first position. Add to the formula in every possible way a
clause whose variables are taken from Y ; there are (rmax + k′)!/(rmax + k′ − r)!
such clauses. We claim that in every satisfying weight k ′ assignment the vari-
ables in Y have value 0. Assume that yj is 1. Since only k′ variables are set
to 1, there have to be rmax variables yj1 , . . . , yjrmax

in Y with value 0, implying
that the clause R(yj, yj1 , . . . , yjr−1) is not satisfied, a contradiction.

For each variable xi of φ, we add clausesR(xi,h1 , . . . , xi,h` , y1, . . . , yr−`) where
xi,h1 , . . . , xi,h` are distinct variables. Considering all possibilities, this results in
rmax!/(rmax − `)! clauses for a variable xi. We show that these clauses ensure
that the variables xi,1, . . . , xi,rmax have the same value. Assume without loss
of generality that xi,1 is 1 and xi,2 is 0 in a weight k′ satisfying assignment of
φ′. We have seen that every variable in Y is 0 in such an assignment, so at
most `− 1 variables are set to 1 in the clause R(xi,1, xi,2, . . . , xi,`, y1, . . . , yr−`).
However, there is 1 at the first position, and we assumed that every satisfying
assignment with 1 at the first position has weight at least `, a contradiction.
Therefore, the variables xi,1, . . . , xi,r have the same value, as required. �

Now we are ready to put together the previous results and prove the negative
side of Theorem 3.2.

Theorem 8.5. Let F be a finite constraint family. If F contains a constraint
that is not weakly separable, then F -Sat is W[1]-complete.

Proof. Assume first that F contains a 0-valid constraint R1 that is not
weakly separable. We consider two cases depending on whether every useful
position of R1 is satisfying or not. If every useful position in R1 is satisfying,
then R1-Sat is W[1]-complete by Lemma 8.3. On the other hand, if R1 has a
useful but not satisfying position, then by Lemma 8.4, R1-Sat∗0 can be reduced
to R1-Sat. By Lemma 8.1, R1-Sat∗0 is W[1]-complete, hence R-Sat is W[1]-
complete in this case as well.

Assume now that F contains a 0-invalid non-weakly separable constraint
R2. By Lemma 2.7, R2 has a 0-valid non-weakly separable restriction R′2.
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We have seen in the previous paragraph that in this case R′2-Sat is W[1]-
complete. Furthermore, the constraint R2 cannot be monotone: the restriction
of a monotone constraint is also monotone, and a 0-valid monotone constraint
is trivially weakly separable. Therefore, Lemma 8.2 can be used to reduce
F -Sat01 to F -Sat. By Proposition 3.1, F -Sat01 is equivalent to F ∗-Sat,
and F ∗ contains R′2, so the following series of reductions shows that F -Sat is
W[1]-complete as well:

R′2-Sat � F ∗-Sat
Prop. 3.1

� F -Sat01

Lemma 8.2

� F -Sat. �

9. Bounded treewidth

The incidence graph I(φ) of formula φ is a bipartite graph whose vertices are
the variables and clauses of φ, and a clause is connected to those variables
that appear in the clause. We show that certain structural assumptions on the
incidence graph allow us to solve the F -Sat problem in uniformly polynomial
time for every constraint family F .

Treewidth is a well-studied parameter of graphs. It is important from the
algorithmic point of view, since a large number of hard problems become easy
on bounded treewidth graphs (cf. Kloks 1994).

Definition 9.1 (Tree decomposition). A tree decomposition of a graph
G(V,E) is a rooted tree T (U, F ) together with a set Bx ⊆ V for each node
x ∈ U such that

(i) For every v ∈ V , the set of nodes in T that contain v induce a connected
subgraph of T (a subtree of T ).

(ii) For every edge e = uv of G, there is a node x of T such that u, v ∈ Bx.

Definition 9.2 (Treewidth). The treewidth of a tree decomposition T (U, F )
is maxx∈U |Bx| − 1. The treewidth w(G) of a graph G is the smallest treewidth
that its tree decomposition can have.

The only reason for the −1 in the definition of treewidth is to ensure that
graphs with treewidth 1 are exactly the forests.

A useful algorithmic trick is to consider only tree decompositions that have
some nice properties (Kloks 1994). Working with such tree decompositions
makes the presentation of the algorithm considerably simpler (see Kloks 1994).
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Definition 9.3 (Nice tree decomposition). A tree decomposition is a nice
tree decomposition of G(V,E) if every node x of T has at most two children
and it satisfies the following requirements:

(i) If x has no children (x is a leaf node), then Bx = ∅.

(ii) If x has one child y, then either Bx = By ∪ {v} (x is an introduce node)
or Bx = By \ {v} (x is a forget node) for some v ∈ V .

(iii) If x has two children y and z, then Bx = By = Bz (x is a join node).

It turns out that bounded treewidth makes the problem easy in our case as
well. Using the standard dynamic programming technique of tree decomposi-
tions, we can solve F -Sat in uniformly polynomial time for every constraint
family F if the incidence graph of the formula has bounded treewidth.

Theorem 9.4. For every finite constraint family F , the F -Sat problem can
be solved in f(F , w)k2(n + m) time if the incidence graph of the formula has
n variables, m clauses and treewidth at most w.

Proof. Consider a width w nice tree decomposition of G. For a node x ∈ U
of the tree decomposition, denote by Cx the set of clauses that appear in Bx (the
set of x) or in the set of a descendant of x. Similarly, Vx denotes the variables
that appear in the set of x or a descendant of x. We say that a variable is active
at x if either it is contained in Bx, or it appears in a clause contained in Bx.
For each node x, there can be at most r(w+ 1) active variables, where r is the
maximum arity of the constraints in F . Denote by Ax the active variables at
x and set V ′x := Vx ∪Ax. Clearly, a variable is in V ′x if and only if it appears in
a clause of Cx.

We solve several subproblems for each node x of the tree. Each subproblem
is characterized by an integer 0 ≤ k′ ≤ k and an assignment to the active
variables of x. Thus there are at most k2r(w+1) subproblems per node. For
each subproblem we determine whether this assignment can be extended to an
assignment of V ′x that has weight exactly k′ and satisfies all the clauses in Cx.
The problems are solved by bottom up dynamic programming: we start with
the leaf nodes, and when we consider a nonleaf node, it is assumed that the
subproblems are already solved for all its children. Below we describe what has
to be done for the different types of nodes.

Leaf node x. Since Bx is empty, the problem is trivial.
Introduce node x. Given an assignment α of Ax and an integer k′, we solve

the problem as follows. Notice that if y is the child of x, then Ay ⊆ Ax,
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V ′y ⊆ V ′x and Ax \Ay = V ′x \ V ′y . Assignment α induces an assignment β of Ay.
Denote by c the number of variables in Ax \ Ay that receive 1 in α. Now
α can be extended to a weight k′ assignment of V ′x satisfying Cy if and only
if β can be extended to a weight k′ − c assignment of V ′y also satisfying Cy.
The answer to the latter problem was already determined when we considered
node y. However, what we have to determine is whether α can be extended to
an assignment that satisfies every clause in Cx, not only those in Cy. The set
Cx can be larger than Cy only if the vertex added by the introduce node x is a
clause. In this case all the variables of this new clause are in Ax, hence α itself
determines whether this clause is satisfied or not.

Forget node x. If the child of x is y, then V ′x = V ′y , Cx = Cy and Ax ⊆ Ay.
Therefore, if α is an assignment of Ax, then it can be extended to a weight
k′ assignment of V ′x that satisfies the clauses in Cx if and only if α can be
extended to an assignment β of Ay such that β can be extended to a weight k′

assignment of V ′y that satisfies the clauses in Cy. The existence of such a β can
be easily determined if all the subproblems for node y are already solved. We
enumerate all the assignments β for Ay, and check whether there is a β that
induces α on Ax, and has the required extension.

Join node x. Let y and z be the children of x. It is easy to see that
Ax = Ay = Az, Cx = Cy ∪Cz, V ′x = V ′y ∪ V ′z , and V ′y ∩ V ′z = Ax. An assignment
α of Ax can be extended to an assignment of V ′x satisfying Cx if and only if α
can be extended to an assignment of V ′y satisfying Cy, and to an assignment of
V ′z satisfying Cz. Having solved the subproblems for y and z, we can determine
whether α has such extensions, hence we can answer whether it can be extended
to V ′x. However, we have to find an extension of weight exactly k′. Assume
that α has weight c on Ax. If α has a weight k1 extension to V ′y and a weight
k2 extension to V ′z , then this gives a weight k1 + k2 − c extension of α to V ′x.
Therefore, it is not enough to check whether α can be extended to V ′y and V ′z ;
we have to find two extensions such that the sum of their weights is exactly
k′ + c. For each α and k′, at most k different values of k1 have to be tried: for
each k1 it has to be checked whether α has a weight k1 extension to V ′y and a
weight k2 = k′+c−k1 extension to V ′z . Given the solutions to the subproblems
of y and z, this can be done without any difficulty.

Time complexity. The incidence graph has n + m vertices, hence a tree
decomposition of width w can be found in f1(w)(n + m) time (Bodlaender
1996). Furthermore, the tree decomposition can be transformed into a nice
tree decomposition in linear time.

For each node we solve at most k2r(w+1) subproblems. We can store the
solutions to the subproblems in a lookup table, so they can be accessed in
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constant time. As noted above, if x is an introduce node, then a subproblem
for x can be solved in constant time if the subproblems for the child of x are
already solved. If x is a forget node, the solutions for x can be easily obtained
by enumerating the solutions for the child of x. If x is a join node, then a
subproblem can be solved by checking at most k cases. Therefore, the time
spent at a node is k2 times a constant (assuming that w and r are constants).
Thus the total number of steps required by the algorithm is f(w)k2(n + m),
for an appropriate function f(w) independent of n and m. �

10. Planar formulae

A formula is planar if its incidence graph is a planar graph. The complexity
of the satisfiability problem restricted to planar formulae was investigated by
Lichtenstein (1982): it was shown that the problem remains NP-complete even
with this restriction. The NP-completeness of planar Sat was used to deter-
mine the complexity of several planar and geometric problems. It turns out
that for problems like Maximum Independent Set, Minimum Dominat-
ing Set, Minimum Vertex Cover, etc., the planar version is as hard as the
general problem.

However, in the world of parameterized complexity the situation is very
different. The planar versions of Maximum Independent Set and Mini-
mum Dominating Set are fixed-parameter tractable while the unrestricted
problems are W[1]-hard (Alber et al. 2004). In general, we show that F -Sat
is in FPT for every constraint family F . The proof uses standard techniques:
applying the layering method of Baker (1994), we can reduce the problem to
bounded outerplanarity instances. Graphs with bounded outerplanarity have
bounded treewidth, hence the algorithm of Theorem 9.4 can be used. This
technique is widely used in designing approximation schemes; see for example
Khanna & Motwani (1996).

Definition 10.1 (t-outerplanar). A planar embedding of a graph G(V,E) is
1-outerplanar (or simply outerplanar) if it is planar, and all vertices lie on the
exterior face. For t ≥ 2, an embedding of a graph G(V,E) is t-outerplanar
if it is planar, and whenever all vertices on the outer face are deleted, then a
(t − 1)-outerplanar embedding of the resulting graph is obtained. A graph is
t-outerplanar if it has a t-outerplanar embedding. A t-outerplanar embedding
divides the vertices into t layers : layer L1 contains the vertices on the outer
face, while for i ≥ 2, layer Li contains those vertices that are on the outer face
after deleting layers L1, . . . , Li−1.
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Theorem 10.2. For every finite constraint family F , the F -Sat problem can
be solved in time f(F , k)(n+m) if the formula has n variables, m clauses, and
a planar incidence graph.

Proof. A planar embedding of I(φ) can be found in linear time (Hopcroft
& Tarjan 1974). The embedding is t-outerplanar for some integer t, and we can
determine the layers L1, . . . , Lt. The variables are partitioned into k + 1 sets:
let Xi (0 ≤ i ≤ k) contain the variables in layer L3(k+1)j+3i+` for j = 0, 1, . . .
and ` = 1, 2, 3. Clearly, every variable belongs to exactly one of these sets.
Given a weight k satisfying assignment, in at least one of the k+ 1 sets all the
variables are set to 0. For i = 0, 1, . . . , k, we check whether there is a weight
k assignment where every variable in Xi is set to 0. If there is a weight k
satisfying assignment, then we eventually find one for some i.

For a given i we proceed as follows. Replace every variable in Xi with the
constant 0, and delete the corresponding vertices from the graph. Now all the
vertices in layer L3(k+1)j+3i+2 represent clauses. Moreover, since the variables
appearing in such a clause have to be in layer L3(k+1)j+3i+1, L3(k+1)j+3i+2, or
L3(k+1)j+3i+3, all these variables were replaced by 0. If this assignment does
not satisfy the clause (it is not 0-valid), then there is no satisfying assignment
where the variables in Xi are zero. On the other hand, if the clause is 0-
valid, then it is automatically satisfied in every such assignment, hence we can
delete it from the formula and the graph. Thus for every j = 0, 1, . . . , all
the vertices in layer L3(k+1)j+3i+2 are deleted, which means that the remaining
graph is the disjoint union of (3(k + 1) − 1)-outerplanar graphs, which is also
(3(k + 1) − 1)-outerplanar. From (Bodlaender 1998, Theorem 83), it follows
that a t-outerplanar graph has treewidth at most 3t− 1, therefore we have to
solve the problem on a graph with treewidth at most 9(k + 1) − 4, which can
be done in linear time by Theorem 9.4. �

11. Conclusions

The main result of the paper is a dichotomy theorem for a parameterized sat-
isfiability problem. We believe that the most important contribution of the
paper is recognizing and defining the class of weakly separable constraints. As
opposed to Schaefer’s Dichotomy Theorem, in the parameterized version there
is only one class of easy constraints: those that are weakly separable. By con-
trast, in Schaefer’s theorem, there are six easy classes, and the problem is easy
if the allowed constraints form a subset of one of them. Therefore, it is pos-
sible that the union of two easy constraint sets is hard. This cannot happen in
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the parameterized problem: the set of constraints is easy if and only if every
constraint is weakly separable.

Let us enumerate all the interesting constraints of arity 2, and see whether
they are easy or hard (by “interesting,” we mean that it cannot be factored
into two constraints of arity 1):

◦ x ∨ y: FPT (= Minimum Vertex Cover)

◦ x̄ ∨ ȳ: W[1]-complete (= Maximum Independent Set)

◦ x→ y: W[1]-complete (= Implications)

◦ x = y: P (= finding a set of components with total size exactly k)

◦ x 6= y: P (= finding a bipartition with exactly k vertices on one side)

We can consider the variant of the problem where the task is to find a
satisfying assignment of weight at most k. In this case, the problem is fixed-
parameter tractable for every set of constraints: if the formula is 0-valid, then
we are done; otherwise, with a technique similar to Lemma 4.1, the problem
can be reduced to the 0-valid case. Much more interesting is the variant where
we are looking for a satisfying assignment of weight at least k. Here it is not
even clear whether the problem belongs to W[1] or not. For example, for Horn
formulae it is W[1]-hard to find a satisfying assignment of weight at least k,
but it would be an interesting question to investigate whether this problem is
in W[1] or is W[P]-complete.

Another natural question is to generalize the result to nonboolean con-
straints. Although the nonboolean generalization of Schaefer’s Dichotomy The-
orem is a difficult open question, it seems that the parameterized version is very
different, so there might be hope for a simpler proof in this case.
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