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DERANDOMIZING ARTHUR-MERLIN
GAMES USING HITTING SETS
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Abstract. We prove that AM (and hence Graph Nonisomorphism)
is in NP if for some € > 0, some language in NE N coNE requires
nondeterministic circuits of size 2°*. This improves results of Arvind
and Kobler and of Klivans and van Melkebeek who proved the same
conclusion, but under stronger hardness assumptions.

The previous results on derandomizing AM were based on pseudoran-
dom generators. In contrast, our approach is based on a strengthening
of Andreev, Clementi and Rolim’s hitting set approach to derandomiza-
tion. As a spin-off, we show that this approach is strong enough to give
an easy proof of the following implication: for some e > 0, if there is a
language in E which requires nondeterministic circuits of size 2¢"*, then
P = BPP. This differs from Impagliazzo and Wigderson’s theorem
“only” by replacing deterministic circuits with nondeterministic ones.
Keywords. Derandomization, interactive proof systems, complexity
classes, graph nonisomorphism.
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1. Introduction

Using hardness for simulating randomness has been a fundamental idea in
complexity theory. The main objective is to find nontrivial deterministic simu-
lations of an entire class of randomized algorithms (rather than just a specific
one) under certain complexity-theoretic hardness assumptions. Typically, the
assumptions are in the form of the existence of functions in a uniform com-
plexity class (for example EXP) that cannot be computed or approximated
by a certain nonuniform class (for example polynomial size circuits). An early
seminal result is the following result of Nisan and Wigderson that was proved
by constructing a pseudorandom generator.

THEOREM 1.1 (Nisan-Wigderson). Let € > 0 be any constant. If there exists
a language L in E so that for all but finitely many n, any circuit of size 2"
agrees with the characteristic function of L N {0,1}" on at most a 1/2 + 27"
fraction of {0,1}", then P = BPP.
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The hardness assumption in Theorem 1.1 is “average-case” rather than
worst case. Substantial research has been done in order to remedy this and ar-
guably the most remarkable result is a theorem due to Impagliazzo & Wigderson
(1997). They showed the following improvement of Theorem 1.1.

THEOREM 1.2 (Impagliazzo-Wigderson). Let € > 0 be any constant. If there
exists a language L in E so that for all but finitely many n, L N {0,1}" has
circuit complexity at least 2", then P = BPP.

The proof of this theorem is technical and is built on the results of many
earlier papers, including Babai et al. (1993); Blum & Micali (1984); Goldreich &
Levin (1989); Impagliazzo (1995); Nisan & Wigderson (1994); Yao (1982). This
result has been subsequently simplified and extended to get derandomization
results for a range of parameters (Impagliazzo et al. 1999, 2000; Shaltiel &
Umans 2001; Sudan et al. 2001; Umans 2003).

Although much research has gone into derandomizing BPP and RP, de-
randomization of classes like AM has received attention only recently. The
class AM was defined, by Babai (1985) and Babai & Moran (1988), as a natu-
ral randomized (and interactive) version of the class NP. A number of natural
computational problems have been shown to be in AM but are not known
to be in NP (Babai 1985, 1992; Babai & Moran 1988; Goldreich et al. 1991,
Goldwasser & Sipser 1989). Most have a group-theoretic flavor. The most cel-
ebrated one among them is the Graph Nonisomorphism problem. A complete
derandomization of AM (that is, a proof of the statement AM = NP) would
immediately give polynomial size membership proofs for positive instances of
Graph Nonisomorphism. In contrast, the lengths of the shortest proofs known,
without any assumptions, are exponential in the sizes of the graphs (Babai
et al. 1983; Babai & Luks 1983).

Arvind & Kobler (2001) showed that the construction of Nisan & Wigderson
(1994) can be extended to the nondeterministic setting to get pseudorandom
generators which can be used to completely derandomize AM. As in the case
of Nisan & Wigderson (1994), they needed an average-case hardness assumption
in order to construct the generator. To be precise, Arvind & Kéobler (2001)
showed the following theorem.

THEOREM 1.3 (Arvind-Kobler). Let € > 0 be any constant. If there exists a
language L in NE N coNE! so that for all but finitely many n any nondeter-

LArvind and Kébler only state the theorem under the assumption L € E, but their proof
easily generalizes.
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ministic circuit of size 2°" agrees with the characteristic function of L N {0, 1}"
on at most a 1/2 + 27" fraction of {0,1}", then AM = NP.

Klivans & van Melkebeek (2002) constructed generators for derandomizing
AM under a worst-case hardness assumption. The main observation they make
is that the proof of Impagliazzo & Wigderson (1997) relativizes. This leads to
the following theorem.

THEOREM 1.4 (Klivans—van Melkebeek). Let € > 0 be any constant. If there
exists a language L in NE N coNE so that for all but finitely many n, L N
{0,1}" has oracle circuit complexity at least 2°* with oracle gates for SAT, then
AM = NP.

Here, oracle circuits are Boolean circuits which contain special gates called
oracle gates. These oracle gates are of unbounded fan-in (but a gate of fan-
in 7 contributes size r to the circuit) and can be used for oracle access to a
language, in this case SAT. The output of the gate on a string x is 1 if x € SAT.
Otherwise the output is 0.

Arvind & Koébler (2001) and van Melkebeek (1998) asked whether AM =
NP follows from the existence of a language in NE N coNE which does not
have subexponential nondeterministic circuit complexity. In this paper, we an-
swer this question affirmatively, proving the following theorem which improves
Theorem 1.3 as well as Theorem 1.4.

THEOREM 1.5. Let € > 0 be any constant. If there exists a language L in NE
N coNE so that for all but finitely many n, LN{0,1}" has SV-nondeterministic
circuit complexity at least 2", then AM = NP.

Here an SV (single-valued) nondeterministic circuit is a restriction of the
notion of a nondeterministic circuit: in an SV-nondeterministic circuit, there
are two output bits, the real output bit, and a flag, indicating whether the
computation has been correctly performed. On both positive and negative
instances, if the flag is on, the output bit should be correct. Additionally, for
all instances, there should be some setting of the nondeterministic choice bits
that make the flag turn on.

To see the difference between our result and the result of Klivans and
van Melkebeek, we can informally say that SV-nondeterministic circuits of the
stated size form a nonuniform and exponential analogue of NP N coNP, while
oracle circuits with SAT as an oracle form a nonuniform and exponential ana-
logue of PN (see Section 7 for a more detailed discussion on this issue).
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Our approach to proving Theorem 1.5 is completely different from the tech-
niques of Arvind & Kobler (2001) and of Klivans & van Melkebeek (2002). In-
stead of using pseudorandom generators, we use a strengthened version of the
hitting set generator approach to derandomization, due to Andreev, Clementi
& Rolim (1997a). They gave, independently and almost simultaneously to
Impagliazzo and Wigderson’s work, two different conditions, each implying
P = BPP. The conditions were much stronger than the hardness assumption
in the Impagliazzo—Wigderson theorem; one of them essentially stating that
there should be an algorithm operating in time polynomial in the size of its
output, which on input n, m outputs the truth table of a Boolean function f
from {0,1}" to {0,1}™ with circuit complexity within a certain additive low
order term of the maximum possible.

Their proof had two parts. First it is shown that the stated condition
implies the existence of a certain hitting set generator (for definition of hitting
set, see Section 2). Then it is shown that the existence of such a generator
implies P = BPP (it is easy to show that it implies P = RP). The latter
part of the proof, i.e., the fact that the existence of the hitting set generator
is enough to show P = BPP was proved already by Andreev, Clementi &
Rolim (1996b, 1998). Since then, the proof of this implication was simplified
enormously (Andreev et al. 1997b; Buhrman & Fortnow 1999; Goldreich et al.
2000).

It was not (and is still not) clear if the hitting set approach to derandom-
ization can be pushed to yield the Impagliazzo—Wigderson theorem. However,
in this paper, we show, by strengthening the first part of their proof, that it
can be pushed to yield the following statement.

THEOREM 1.6. Let ¢ > 0 be any constant. If there exists a language L in E
so that for all but finitely many n, L N{0,1}" has SV-nondeterministic circuit
complexity at least 2¢", then P = BPP.

Note that this differs from the Impagliazzo-Wigderson theorem “only” in
the assumption being about SV-nondeterministic circuits, rather than about
deterministic ones.

Our main technical result is the following theorem, describing a procedure
for turning the truth table of a Boolean function with big circuit complexity
into a hitting set for circuits with very high acceptance probability (for precise
definitions of the terms in the theorem, we refer the reader to Section 2).

THEOREM 1.7. For any ¢ > 0 and ¢ > 1, there is a polynomial time procedure
P with the following properties. Let f : {0,1}™ — {0,1} be a function that
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cannot be computed by SV-nondeterministic circuits of size less than 2" for
almost all m. Then there are constants 6 = §(e) < € and k > ¢ such that,
given the truth table of f : {0,1}* — {0,1} as input, P outputs a hitting
set Hy C {0,1}" for co-nondeterministic circuits of size n? with threshold
1— 27"t where n = (21)22.

The main ingredient we add to the techniques of Andreev, Clementi &
Rolim (1997a) to prove Theorem 1.7 is to first replace the truth table of f by
a multidimensional encoding of f using an appropriate error-correcting code.
An intuitive reason why this turns out to be useful is as follows. The tech-
nique of Andreev et al. (1997a) is based on compression in the form of hashing.
As was previously noted by Miltersen (1998), hashing becomes a much eas-
ier and cleaner operation when applied to data encoded in an error-correcting
code. This essentially enables us to compress a multidimensional object along
all dimensions, rather than just compressing a two-dimensional object along
one dimension, as done in Andreev et al. (1997a). We use low degree exten-
sion (Babai et al. 1991) of f for encoding purposes.

While the above intuition was useful for coming up with the proof of Theo-
rem 1.7, the self-contained proof we present in Section 3 is quite short and the
above intuition should not be necessary for understanding it.

Having proven Theorem 1.7, we combine it with a variation of a lemma
from Andreev et al. (1996a) (Lemma 2.4 of the present paper), and prove the
following.

COROLLARY 1.8. For any constant ¢ > 0, there is a constant 7 > 0 so that
the following holds. There is a deterministic polynomial time procedure which,
given as input the truth table of a Boolean function f : {0,1}™ — {0,1} (i.e.,
2™ bits) with SV-nondeterministic circuit complexity at least 2™, outputs a
hitting set in {0,1}" with threshold 1/2 for co-nondeterministic circuits of
size n, where n = [27"].

This corollary then immediately implies Theorem 1.5. To prove Theo-
rem 1.6, we use the result of Andreev et al. (1998), stating that the hitting
set generator of Corollary 1.8 derandomizes BPP.

The existence of explicit dispersers is the main technical tool that we have
to employ in order to prove Corollary 1.8. But we would like to point out that
any relativizable proof of Corollary 1.8 (such as ours) has to use the existence
of explicit dispersers. More precisely, we note that any relativizable worst
case hardness-based hitting set generator defines a disperser. The truth of this
statement can be seen by arguing along the lines given by Trevisan (2001) where
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an analogous statement for extractors is implicitly established. We formally
state this hitting set/disperser correspondence as Theorem 4.2 in Section 4.

In Section 5, we note that the techniques used in this paper to prove our
main derandomization result can be used to show other hardness-randomness
tradeoffs for AM. More precisely, we show the following theorem.

THEOREM 1.9. Let ¢ > 0 be any constant. If there exists a language L in
NEXP N coNEXP so that for all but finitely many n, L N {0,1}" has SV-
nondeterministic circuit complexity at least 2"1/”6, then AM C NQuasiP.

Most of the results in this paper were first published in Miltersen & Vinod-
chandran (1999). Since then there has been significant progress in derandom-
izing AM. In Section 7, we briefly discuss these results.

2. Terminology and preliminary results

Lower case Greek letters denote rational constants between 0 and 1. The
symbol log denotes log,.

Complexity classes. We assume standard complexity-theoretic notations
and definitions such as the definitions of standard complexity classes P, NP,
E, NE, NEXP and BPP. Please refer to the textbooks Balcazar et al. (1995);
Papadimitriou (1994) for these. Here we only give the definition of the class
AM.

A language L is defined? to be in AM if there is a language L' € P and a
polynomial p so that for all z € {0,1}",

rel = Pr (F2e{0, 1™ (z,y,2) e L) =1,

ye{0,1}p(n)

gL = Pr (32€{0,1}™ (2,y,2) € ') <
ye{0,1}P()

N | —

An SVNP-procedure (SV meaning Single- Valued (Selman 1996)) computing
a function f is a polynomial time nondeterministic procedure so that every
computation path on input z either produces f(x) or rejects. Furthermore, at
least one computation path must produce f(x).

2The original definition in Babai (1985) of AM is a two-sided error version. But it is
shown in Fiirer et al. (1989) that this definition is equivalent to the one-sided error version,
which we give here.
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Circuits. A nondeterministic Boolean circuit C' contains, in addition to the
standard AND, OR and NOT gates, choice gates of fan-in 0. The circuit
evaluates to 1 on an input x, and we say that C(z) = 1, if there is some
assignment of truth values to the choice gates that makes the circuit evaluate
to 1. Otherwise C'(x) = 0. A co-nondeterministic circuit C' is defined similarly:
the circuit evaluates to 0 on an input =, and we say that C(z) = 0, if there
is some assignment of truth values to the choice gates that makes the circuit
evaluate to 0. Otherwise C'(x) = 1.

Similarly, an SV-nondeterministic circuit C' computing a function f has,
in addition to its usual output, an extra output bit called the flag. For any
input x and any setting of the choice gates, if the flag is on, the circuit should
output the correct value of f(x). Furthermore, for any x, there should be some
setting of the choice gates that turn the flag on. It is easy to see that a Boolean
function f has an SV-nondeterministic circuit of size O(s(n)) if and only if f
has a nondeterministic circuit of size O(s(n)) and a co-nondeterministic circuit
of size O(s(n)).

Oracle circuits (Wilson 1985) are Boolean circuits with special gates called
oracle gates. These oracle gates can be of arbitrary fan-in, though a gate
of fan-in r contributes size r to the circuit and can be used for oracle ac-
cess to a fixed language, say L. The output of the gate on a string = is 1 if
x € L, otherwise the output is 0. Nondeterministic and SV-nondeterministic
oracle circuits are defined by combining the above definitions in the obvious
way.

Dispersers. For the purposes of this paper (there are more parameters in
the general definition), a disperser with threshold ¢ is a bipartite graph G =
(U, V, E) such that, for any subset S C U with |[S| > ¢, more than half the
vertices of V' are adjacent to .S.

Also for the purposes of this paper, for constants 9,7 > 0 and & > 1,
an eaplicit (n®, n")-disperser is a family of dispersers G,, = (Uy, Vy,, E,), n =
1,2,..., with |U,| = {0,1}", |V,| = {0,1}/""] and threshold ¢, = 2" 5o that
there is a deterministic polynomial time algorithm which on input z € U,
enumerates the vertices in V,, adjacent to x (in particular, the outdegree of
every x € U, must be polynomial).

The first construction of explicit dispersers with these parameters was given
by Saks, Srinivasan & Zhou (1998). Their construction was subsequently sim-
plified and improved in several papers including Ta-Shma (2002); Ta-Shma
et al. (2001); Trevisan (2001). For an excellent exposition on recent devel-
opments in the construction of explicit extractors and dispersers we refer the
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reader to the survey paper by Shaltiel (2002). For the theorem below, the
original result by Saks, Srinivasan and Zhou suffices.

THEOREM 2.1 (Saks—Srinivasan—Zhou). For any § > 0, there is a v > 0 so
that an explicit (n’, n")-disperser exists.

Hitting sets. A hitting set with threshold d(n) for co-nondeterministic cir-
cuits of size s(n) is a subset H of {0,1}" so that for any co-nondeterministic
circuit C' of size s(n), taking n inputs and producing one output, the following
holds: if Pryeqo,132[C(2) = 1] > 6(n), then Jz € H,C(x) = 1. (The more usual
definition of hitting sets for deterministic circuits is analogous).

With this definition, the following proposition is easy to prove.

PROPOSITION 2.2. If there is an SVNP-procedure which on input 1™ outputs

a hitting set in {0,1}" with threshold 1/2 for co-nondeterministic circuits of
size n, then AM = NP.

Now we state a lemma from Andreev et al. (1996a)®. Actually, the lemma
is already implicit in Sipser (1988). It shows that in fact it is sufficient to
construct hitting sets with threshold much bigger than 1/2. This lemma is a
consequence of the existence of explicit dispersers. Indeed, in Sipser (1988), it
was Sipser’s motivation for defining the notion of a disperser.

LEMMA 2.3 (Sipser, Andreev—Clementi-Rolim). For any constant § > 0, there
are constants ¢ > 1 and v > 0 so that the following holds. There is a polynomial
time procedure which, on input H where H is a hitting set in {0,1}" with
threshold 1 — 2"+ for circuits of size n?, outputs a hitting set in {0, 1} with
threshold 1/2 for circuits of size n’, where n’ = [n7].

What we actually need is the analogous lemma for co-nondeterministic cir-
cuits. This lemma is proved exactly as Lemma 2.3 using explicit dispersers. To
make the paper self-contained, we give the proof. In the proof, for a circuit C,
let Z(C') denote the set of instances for which C' evaluates to 0.

LEMMA 2.4. For any constant § > 0, there are constants ¢ > 1 and v > 0
so that the following holds. There is a polynomial time procedure which, on
input H where H is a hitting set in {0,1}" with threshold 1 — 2-"*"" for
co-nondeterministic circuits of size n?, outputs a hitting set in {0,1}" with
threshold 1/2 for co-nondeterministic circuits of size n', where n’ = [n”].

3The reader should note that the lemma can only be found in the revised version of the
cited ECCC technical report.
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PrROOF. Let § > 0 be fixed. According to Theorem 2.1, there is a 7 so that
an explicit (n?, nY)-disperser exists. Let G, = (U,,V,, E,) be this disperser,
ie., with n' = [n7], U, = {0,1}", V,, = {0,1}", and for all subsets S of U, of
size at least 2”6, more than half the vertices of V' are adjacent to S.

Let H C {0,1}" be a hitting set with threshold 1 — 27" for co-non-
deterministic circuits of size n?, where the constant ¢ will be determined below.

Note that H is a subset of U,. Let H' be the set of vertices in V,, adja-
cent to H. As the disperser is explicit, H' can be generated in polynomial
time from H. We claim that it is a hitting set with threshold 1/2 for co-
nondeterministic circuits of size n’. Once we show this claim, we are done.

Indeed, take any co-nondeterministic circuit C” of size n’ with n’ inputs
so that |Z(C")] < 2"'/2. We have to show that H’ is not a subset of Z(C").
For this, construct a co-nondeterministic circuit C' with n inputs as follows:
C(z)=1iff y, (z,y) € E, NC'(y). As the disperser is explicit, the size of this
circuit can be made polynomial. We fix the constant ¢, so that n? is an upper
bound on its size. We claim |Z(C)| < 2"°: Otherwise, as G,, is a disperser, the
neighbours in V,, of Z(C') are more than half of V,, and thus the neighbours
must intersect V,, — Z(C"), i.e., for some y adjacent to z € Z(C), C'(y) is 1.
But this implies C(z) = 1, contradicting z € Z(C). As |Z(C)| < 2", the
acceptance probability of C' is at least 1 — g—n+n’ Thus, as H is a hitting set,
for some value © € H, C(x) = 1. This means that for some y € V,,, adjacent
to some x € H, C’'(y) = 1. But such a y is by definition in H’, i.e., H' hits C"
as was to be shown. [l

3. Simulating AM in NP

In this section we prove Theorem 1.5. We first prove Theorem 1.7 (stated in
the Introduction) which shows how to construct a hitting set from the truth
table of a hard function. We restate this theorem below.

THEOREM 1.7. Foranye > 0 and g > 1, there is a polynomial time procedure
P with the following properties. Let f : {0,1}™ — {0,1} be a function that
cannot be computed by SV-nondeterministic circuits of size less than 2™ for
almost all m. Then there are constants 6 = 6(€) < € and k > q such that, given
the truth table of f : {0,1}* — {0,1} as input, P outputs a hitting set Hy C

{0,1}™ for co-nondeterministic circuits of size n? with threshold 1 — g-nin’

where n = (21)2%.

PrOOF.  We first show how to efficiently generate the set Hy C {0,1}" from
the truth table for f and then argue that it has the right property. In the
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following, the values of k and d, which depend on ¢ and ¢, will be fixed later.
We assume, without loss of generality, that [ is sufficiently large.

View f as a map f: ({0,1}))* — {0,1}. Now let F be the finite field with
22 elements. Identify F with {0, 1}% in any way that makes arithmetic efficient
and embed {0,1}! in F by padding with zeros. Let the low degree extension
(Babai et al. 1991) f : F¥ — F of f be the unique polynomial with individual
degree in each variable at most 2! — 1, agreeing with f on ({0, 1}}).

Informally speaking, we define H; as the set of tabulations of the restric-
tions of f to every axis-parallel line in F*¥. More precisely, for i € {1,...,k}
and ay,...,a;_1, Gjt1,...,a; € F let v(ay,...,a;-1,a:41,...,a;) be the vector
(wj)jer in F?* with wj = f(al, ey i1,y Qg1 - - ax). As we have identified
F with {0,1}?, we can also view v;(ay,...,a;_1,a:1,...,a;) as a bit string in
{0,130 — 10, 1}".

With this in mind, now define H; C {0, 1}" as follows:

Hi = {Ui(al,. ..,ai,l,aiﬂ,. ..7ak) ’ ar,...,0 € F}7

and let Hy be the union of all the H;s, that is,

First note that generating Hy from the truth table of f is a polynomial time
procedure.

The structure of the proof that H is a hitting set with the desired properties
is the following. We will suppose to the contrary that H; is not such a hitting
set, i.e., that it does not hit some circuit C. We will then show that f has
a smaller SV-nondeterministic circuit than it is assumed to have. This will
be done by making a compressed representation of f which will have enough
information to efficiently evaluate f (and hence f) at any given point. The
compressed representation is a table of the restriction of f to S*, for a small
subset S of F. The set S is carefully chosen, depending on the circuit C. Using
the circuit C, we will be able to reconstruct f at any desired point in F* from
its values in S*.

Now we give a formal proof. Let S C F be a set of indices. Let mg denote
the projection function from any set of vectors in FIFl to F¥.

We need to find a subset S C F so that the restriction of f to S* can be
used to reconstruct f at any desired point. The following lemma is used to find
such a set. The proof of the lemma uses the error-correcting properties of low
degree polynomials.
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LEMMA 3.1. Let F be a finite field of size greater than 2. For any polynomial p,
let L, denote the vector (p(i))icr in F'¥l. Let £ = {L, | p is a polynomial
of degree < |F|'/?}. Then for any set Z C F¥l there is a set of indices
S c{1,...,|F|} with |S| < [log|Z|] such that the projection 7s : LNZ — F*
is 1-1.

PROOF.  Any distinct x, y € £ are the same on less than |F|'/2 indices. Since
|F| > 2, this is less than 1/4 fraction of all the indices. Let r = [log|Z]].
We can construct S = {j1,..., .} in a greedy manner. Having chosen indices
S; = {J1,....Ji}, we construct S;11 = {ji+1} U S; as follows.

Let Y; be the set of distinct pairs (z,y) such that z and y coincide on S;.
That is, Y; = {(z,y) | z,y € LN Z, x # y, and 7g,(x) = 7g,(y)}. For any fixed
(xz,y) € Y;, the probability that z and y are different on a random index j in
{1,...,|F|} =S, is at least 3/4. Hence, the expected number of pairs (z,y) € Y;
so that x; # y; is at least 3|Y;|/4. So, by an averaging argument, we can find an
index j;41 such that |Y;] <|Y;|/4. Since (‘gl)/élr < 1, the lemma follows. O

Now assume Hy is not a hitting set with the desired properties. Let C' be
a co-nondeterministic circuit establishing this, i.e., C' maps {0, 1}" to {0, 1}, it
has size n?, and if we denote by Z the set {z € {0,1}" | Ci(x) = 0}, i.e., those
x for which there is some setting of the nondeterministic choice gates making
C evaluate to 0 on z, then |Z| < 2"" and H; C Z.

Let £ C F2* be the vectors of the form (p(i))ier for some univariate poly-
nomial of degree less than 2!. We can also view L as a subset of {0,1}". By
construction, Hy C L. Also by assumption H; C Z. Hence by Lemma 3.1,
there is a set S of indices of size < n’ so that 7g : LN Z — F* is 1-1. Fix this
set S.

We will now construct a small SV-nondeterministic circuit for f. In fact,
we will exhibit an efficient SV-nondeterministic procedure computing f (and
hence f) with the following nonuniform advice: the circuit C, the set S, and a
table of the restriction of f to S*.

An overview of the procedure is the following. We need to compute f on an
arbitrary input (a1, ...,a). This is done in k stages. Let T; denote the table

of values f(ay,...,a;, Sk=%). Then T}, = f(ay,...,az) is the value we want to
compute and Ty = f(S*) is the table of the restriction of f to S* which is given
as part of nonuniform advice. In the i*" stage, table T; = f(ay,...,a;, S*%)

is reconstructed. This reconstruction procedure uses table T;_q, the circuit C
and the set of indices S as input. The procedure (RECONSTRUCT) is described
more formally below.
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REcONSTRUCT((ay, ..., ax), T;—1,C, S)

1 Forallu € S¥ do
Guess v € F? /* A guess for the vector (f(ai,...,a; 1,7, u));cr*/
3 Verify the following
a v€L /* is the table of a polynomial of low degree */
b C(v)=0 /* By guessing a setting of the choice bits
of C' making the circuit evaluate to 0 on v */

¢ 7s(v) =ms(f(ar,...,ai1,j,u))jer /* By looking up Tiy */
4 If all the verifications are correct, then include v,, as the value of

f(ala"'aaiau) lnﬂ

Let v be a vector satisfying the conditions in Step 3 of the procedure. The
verifications done in (a) and (b) guarantee that v is a vector in £ N Z. By
Lemma 3.1, for all vectors v' € £ N Z other than v, their projection to the set
of indices S is different. That is, mg(v) # 7g(v'). Also, by the construction of
the hitting set, (f(a1,. .., ai_1, 7, u))jer € LNZ. Hence verification done in (c)
ensures that v = (f(al, .., Qi-1,J,u))jer and hence v,, = f(ay, ... , Ay W),

Let us estimate the size of the circuit for f that can be built from the above
procedure. In order to compute f(al, ...,ay), the procedure is called k times.
For each such call, the time complexity of the above procedure is bounded by
the time required to do less than |S|*~! verifications of a v-value. Each of these
verifications takes the time of evaluating a circuit of size n9, the time required
to check that a table of size n is a low degree polynomial (which is bounded
by n?) and comparing |S| values in F (which is bounded by n). Thus, building
in the advice, we can convert the overall procedure into an SV-nondeterministic
circuit. The size of the circuit is upper bounded by O((n°)*n?).

Now we can choose § and k such that

O((n°)*n?) < 2k,

It is very easily seen that choosing § = €/4 allows us to choose a constant
k = 12q/e, so that the above inequality is satisfied. O

Remark. It is not essential to use the low degree extension for our construc-
tion. What we essentially use is the fact that the error-correcting code we
get from low degree multivariate polynomials is the tensor product of the low
degree univariate polynomial codes. Therefore in our construction we can use
the tensor product of any systematic code (codes which have the original mes-
sage as part of the codeword) with parameters comparable to the low degree
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polynomial codes. See the survey paper by Miltersen (2001) for a construction
based on tensor products of codes.
We can combine the above theorem with Lemma 2.4 to get Corollary 1.8.

COROLLARY 1.8. For any constant € > 0, there is a constant T > 0 so that
the following holds. There is a deterministic polynomial time procedure which,
given as input the truth table of a Boolean function f :{0,1}"™ — {0,1} (i.e.,
2™ bits) with SV-nondeterministic circuit complezity at least 2™, outputs a hit-
ting set in {0, 1}™ with threshold 1/2 for co-nondeterministic circuits of size n,
where n = [27™].

PROOF. Let € > 0 be given. Assume m is sufficiently large. Given a truth
table on m inputs with SV-nondeterministic circuit complexity at least 2,
pad this truth table with zeros to obtain a truth table on m’ inputs so that m’
is divisible by k. Since k is a constant (to be chosen later), m’ is at most 2m
for sufficiently large m. Hence the circuit complexity of the new truth table is
at least 2(¢/2m",

Applying Theorem 1.7 (with parameters 6 = €/8 and k = 24q/¢), we have
an efficient procedure for transforming this truth table into a hitting set in
{0, 1}" with threshold 1—2"""*+"" for co-nondeterministic circuits of size (n')?,
where n' = (2m’/k)22™'/¥,

For the chosen value of §, let v be the constant in Lemma 2.4. Now choose
7 = ~/k and apply Lemma 2.4 and deterministically convert this hitting set
into a hitting set in {0,1}"" with threshold 1/2 for co-nondeterministic circuits
of size n” with

' = (2 k2 )] 2 2Bl > [,

Take this hitting set and remove the last n” — n bits in each string in it. This
is the desired hitting set in {0, 1}". O

Implications

COROLLARY 3.2. For any constant € > 0, the following holds. If there exists
a language L in NE N coNE so that for all but finitely many n, LN{0,1}" re-
quires SV-nondeterministic circuits of size 2", then there is an SVNP-procedure
which on input 1" generates a hitting set H C {0,1}" with threshold 1/2 for
co-nondeterministic circuits of size n.

PROOF. Given ¢, let 7 be the corresponding constant of Corollary 1.8 and
n be sufficiently large. On input 1", the SVNP-procedure computes m =
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[77'logn] and enumerates the truth table of the characteristic function of L on
{0,1}™. Having found the truth table, it applies the procedure of Corollary 1.8
to it, yielding a hitting set in {0,1}", where n/ = [27™] = [27[7 "12n1]  Take
this hitting set and remove the last n’ — n bits in each string in it. This is the
desired hitting set in {0, 1}". O

From Proposition 2.2 and Corollary 3.2 we have the derandomization result
for AM.

THEOREM 1.5. Let € > 0 be any constant. If there exists a language L in
NE N coNE so that for all but finitely many n, L N{0,1}" has SV-nondeter-
ministic circuit complexity at least 2, then AM = NP.

As Graph Nonisomorphism is in AM (Goldreich et al. 1991) (and trivially
in coNP), we have in particular the following corollary.

COROLLARY 3.3. If for some € > 0, there exists a language L. € NE N coNE
so that for all but finitely many n, L N {0,1}" requires SV-nondeterministic
circuits of size 2", then Graph Isomorphism is in NP N coNP.

Corollary 1.8 also implies a derandomization of the class BPP, stated in
Theorem 1.6. It is easy to see that, by a proof completely analogous to the
proof of Corollary 3.2, we can get the following corollary.

COROLLARY 3.4. For any constant € > 0, the following holds. If there is a
language L in E so that the SV-nondeterministic circuit complexity of L N
{0,1}™ is at least 2" for all but finitely many n, then there is a polynomial
time procedure which on input 1" generates a hitting set H C {0,1}" with
threshold 1/2 for circuits of size n.

The following result of Andreev et al. (1998) (simplified by Andreev et al.
1997b; Buhrman & Fortnow 1999) gives a method to derandomize BPP using
hitting sets.

THEOREM 3.5 (Andreev-Clementi-Rolim). If there is a polynomial time pro-
cedure which on input 1" outputs a hitting set in {0,1}" with threshold 1/2
for deterministic circuits of size n then BPP = P.

Hence we obtain Theorem 1.6.
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4. Relativizable hitting set generators are dispersers

The explicit construction of disperser with necessary parameters is a major
technical tool that we employ in constructing our hitting set. In this section,
we note that any similar construction of hitting sets has to appeal to the
existence of explicit dispersers or itself provide such dispersers. More precisely,
we note that any relativizable, hardness-based hitting sets are also dispersers
with matching parameters.

We make it more formal for certain settings of parameters. Note that Corol-
lary 1.8 and its proof relativize, i.e., the following statement has been proved.

COROLLARY 4.1. For any € > 0, there is a § > 0 so that the following holds.
There is a deterministic polynomial time procedure which, for any oracle A, has
the following property. Given as input the truth table of a Boolean function
f:{0,1}™ — {0,1} (i.e.,, 2™ bits) with SV-nondeterministic oracle circuit
complexity with oracle gates for A at least 2°™, outputs a hitting set in {0,1}"
with threshold 1/2 for co-nondeterministic oracle circuits of size n with oracle
gates for A, where n = [20™].

The hardest part of a self-contained proof of Corollary 4.1 is the existence of
explicit dispersers. We now note that any proof of Corollary 4.1 has to appeal
to the existence of explicit dispersers or itself provide such dispersers.

THEOREM 4.2. Let a procedure with the property of Corollary 4.1 be given.
Let n = 2™ be sufficiently large. Define the bipartite graph G,, = (Uy,, Vy,, E,,)
with U, = {0,1}", V,, = {0,1}""1, and an edge between x and y if and only if
y Is a member of the hitting set produced by the procedure on input x. Then
G, is a disperser with threshold on*,

PROOF. We need to prove that, given any subset S of U, with |S| > 27,
more than half the vertices of V,, are adjacent to S. Suppose not. Let S be
a set for which this is not the case, and let A be the non-neighbours of S, so
we have |A| > [V,|/2. Viewed as a subset of {0,1}/"’], we can use A as an
oracle and consider circuit complexity relative to A. By Shannon’s counting
argument, viewed as truth tables for Boolean functions on n variables, at least
one of the members of S must have SV-nondeterministic oracle circuit com-
plexity with oracle gates for A at least 3log|S|/loglog|S| > n® = 2. Let
this element of S be denoted a. Thus, as the procedure has the property of
Corollary 4.1, the vertices in V,, adjacent to a will intersect every set in V,,
which
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1. is the characteristic (accepted) set of an oracle circuit with oracle gates
for A of size at most n and

2. has size at least |V,|/2.

But then consider the oracle circuit defined by © — A(z). It has size n,
its characteristic set has size at least |V,|/2, and the neighbours of a do not
intersect its characteristic set, as this set is the non-neighbours of S and a € S.
A contradiction.

0

5. Simulating AM in nondeterministic
quasi-polynomial time

In this section we sketch how the techniques used to prove Theorem 1.5 can be
directly applied to get other hardness-randomness tradeoffs for the class AM.
In particular we show that if there are languages in NEXP N coNEXP that
require SV-nondeterministic circuit complexity 27" ** for some € > 0, then
AM is in nondeterministic quasi-polynomial time.

Let NQuasiP denote the class of problems that can be decided in non-
deterministic quasi-polynomial time. That is, L € NQuasiP if there exists
a nondeterministic machine accepting L which runs in time 2'°¢°" for some
constant ¢. By SVNQuasiP-procedure we mean a single-valued nondetermin-
istic procedure (defined formally in Section 2) running in time 2'°°" for some
constant c.

We will show the following derandomization of AM.

THEOREM 1.9. Let € > 0 be any constant. If there exists a language L in
NEXP N coNEXP so that for all but finitely many n, L N {0,1}" has SV-

nondeterministic circuit complexity at least 2"1/2+5, then AM C NQuasiP.

As in the proof of Theorem 1.5, we first construct a hitting set with very high
threshold, and convert this into a hitting set of threshold 1/2 using explicitly
constructed dispersers. The main difference from the proof of Theorem 1.5 is
the choice of parameters for the dispersers. Here we need dispersers with much
smaller threshold than those used in proving Lemma 2.4. In particular, we
need, for any d, explicit dispersers with threshold 92" Gince the proofs of
most of the results required to prove Theorem 1.9 are very similar to the proofs
of analogous statements that are given in previous sections, we only sketch
them here.

Analogous to Proposition 2.2, we have the following proposition.
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PROPOSITION 5.1. If there is an SVNQuasiP-procedure which on input 1™ out-
puts a hitting set in {0, 1}" for co-nondeterministic circuits with threshold 1/2,
then AM C NQuasiP.

An explicit construction of dispersers with parameters necessary for us is
given by Ta-Shma (2002).

THEOREM 5.2 (Ta-Shma). For any constant 6 > 0 there is a v > 0 such that
an explicit (218" ™ 2°6" ") _disperser exists.

Using the disperser with the above-mentioned parameters, it is easy to
rework the proof of Lemma 2.3 to prove the following.

LEMMA 5.3. For any constant § > 0, there are constants v > 0 and ¢ > 1 such
that the following holds. There is a polynomial time procedure which takes
input H, where H C {0,1}" is a hitting set for co-nondeterministic circuits of
e} 8 n . . ’ .
size n? with threshold 1—2-"t2°* " and outputs a hitting set H' C {0,1}" with
threshold 1/2 for co-nondeterministic circuits of size n', where n' = [21°8" "],

Now we state the main theorem of this section which is analogous to The-
orem 1.7.

THEOREM 5.4. For any € > 1/2 and q > 1, there is a polynomial time proce-
dure P with the following properties. Let f : {0,1}™ — {0,1} be a function
that cannot be computed by SV-nondeterministic circuits of size less than 2™
for almost every m. Then there is a constant § = d(¢) < € and a k = k(l) such
that, given the truth table of f : {0,1}* — {0,1} as input, P outputs a hit-
ting set Hy C {0, 1}" for co-nondeterministic circuits of size n? with threshold

5
1— 272" where n = (21)22.

PROOF (sketch). The construction of the hitting set is identical to the con-
struction given in Theorem 1.7. We have to choose k and ¢ appropriately.
Now suppose the set H; produced is not a hitting set for co-nondeterministic
circuits of size n? with threshold 1 — 2-"*2°'" Then as in the proof of The-
orem 1.7, we can construct an SV-nondeterministic circuit for f where the
size of the circuit is O((2'°"")¥(n%)). We will now choose § and k such that
O((2°5'm)k(n7)) < 2)°. An easy calculation shows that for large enough I,
choosing § = %(6 — %) allows us to choose k = [ so as to satisfy the inequality. (]

The above result implies Theorem 1.9. We sketch the proof here.
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PROOF OF THEOREM 1.9 (sketch). We give an SVNQuasiP-procedure (say M)
which, on input 1™, outputs a hitting set in {0, 1}™ with threshold 1/2 for co-
nondeterministic circuits of size m. Let f be the characteristic function of L.

For ¢, let § be the constant given by Theorem 5.4. For this J, let v be the
constant given by Lemma 5.3. Let [ = [log"/” m].

The SVQNP-procedure, on input 1™, first enumerates the truth table of f
on inputs of length (2. Now M, viewing this as a truth table of f : {0, 1} —
{0,1} (with k =), simulates the deterministic procedure of Theorem 5.4 and
produces a hitting set H; in {0,1}" for co-deterministic circuits of size (n’)?

with threshold 1 — 277+ " where n' = (20)2%. Then M deterministically
converts this hitting set H; into a hitting set H C {0,1}"" with threshold 1/2
for co-nondeterministic circuits of size n”, where n” = [21°8" "] > m. Finally,
M removes the last n” — m bits from each string in H to produce the required
hitting set. Since 12 = log®Y m, and L € NEXP N coNEXP, it follows that
M is an SVQNP-procedure.

6. Final remarks

In addition to the derandomization of AM, Klivans & van Melkebeek (2002)
gave several other applications of the fact that the Impagliazzo—Wigderson con-
struction relativizes. Each of the applications showed that a hardness assump-
tion involving oracle circuits implies a “derandomization” (in a loose sense).

For one of these extra applications we can combine their reasoning with
Corollary 1.8 and obtain an improvement. Specifically, we can prove the fol-
lowing theorem relating two circuit lower bounds, which is identical to The-
orem 5.15 in Klivans & van Melkebeek (2002), except that there the phrase,
“SV-nondeterministic circuit complexity” is replaced with “oracle circuit com-
plexity with oracle gates for SAT”.

THEOREM 6.1. Ifthere is a language L in E so that L. has SV-nondeterministic
circuit complexity at least 22" then there exists a polynomially bounded
function p(n) and a polynomial time computable family of matrices M, where
M, is an n x n matrix over Zy (x| such that the linear transformation defined
by the family M, cannot be computed by log-depth linear size circuits which
have special gates that can compute binary linear operators over Zy[x].

We omit the proof which is a straightforward combination of the proof of
Theorem 5.15 in Klivans & van Melkebeek (2002) and Corollary 1.8 of the
present paper.
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7. Recent progress

Techniques in this paper work for functions in NEXP N coNEXP with SV-
nondeterministic circuit complexity at least 2"° where § > 1 /2. Derandomizing
AM under weaker hardness assumptions was open. Shaltiel & Umans (2001)
gave a construction which works for all ranges of parameters. In particular, they
showed the “low-end” derandomization of AM: under the assumption that
NEXP N coNEXP has functions with super-polynomial SV-nondeterministic
circuit complexity, AM C NSUBEXP. Later, Umans gave optimal construc-
tions for all ranges of hardness parameters (Umans 2003). It is interesting to
note that, like our construction, the constructions given in Shaltiel & Umans
(2001) and Umans (2003) do not use Nisan—Wigderson designs which have been
an important ingredient in most of the earlier derandomization results.

This paper uses nonuniform assumptions for derandomizing AM. Many
derandomization results based on uniform assumptions have been obtained
recently. Lu, using the terminology of pseudo-classes introduced by Kabanets
(2001), established a certain kind of uniform derandomization for AM (Lu
2001). Impagliazzo, Kabanets & Wigderson (2002), under the assumption that
NEXP +# EXP, showed that AM can be simulated in nondeterministic sub-
exponential time with sublinear advice. Gutfreund, Shaltiel & Ta-Shma (2003)
observed a certain resilience property of our hitting set construction to prove
a uniform “high-end” derandomization result for AM.

There are essentially three circuit models that have been used in the lit-
erature for derandomizing AM under nonuniform assumptions: SAT-oracle
circuits (Klivans & van Melkebeek 2002), nondeterministic circuits (Arvind &
Kobler 2001; Shaltiel & Umans 2001), and SV-nondeterministic circuits (used
in this paper). It is clear from the definitions (given in Section 2) that an
SV-nondeterministic circuit of size s that computes a function f can be easily
converted into a nondeterministic circuit of size O(s) that computes the same
function. On the other hand, if complexity classes such as NE N coNE or E
which are closed under complement have nondeterministic circuits of size s,
then they also have SV-nondeterministic circuits of size O(s). A nondetermin-
istic circuit can easily be seen as a restriction of a SAT-oracle circuit.

From the definitions it appears that the hardness assumption against SV-
nondeterministic circuits is weaker than the corresponding hardness assumption
against SAT-oracle circuits. A very recent work by Shaltiel & Umans (2004)
showed that these hardness assumptions are essentially equivalent. In particu-
lar, they established a surprising result that if NENcoNE has oracle circuits of
size s which make nonadaptive oracle queries to SAT then NENcoNE also has
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SV-nondeterministic circuits of size s°). Since the proof of Theorem 1.4 given

by Klivans & van Melkebeek (2002) goes through even under the assumption
that there is a function in NE NcoNE that is hard against SAT-oracle circuits
which make only nonadaptive queries, this result implies that the hardness as-
sumption used by Klivans & van Melkebeek (2002) and the one used in this
paper are essentially equivalent.

Finally, it is worth mentioning that in addition to results in Gutfreund et al.
(2003) which use our construction, Barak, Ong & Vadhan (2003) applied our
main result to obtain certain results in cryptography.
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