
comput. complex. 16 (2007), 180–209
1016-3328/07/020180-30
DOI 10.1007/s00037-007-0228-7

c© Birkhäuser Verlag, Basel 2007

computational complexity

EVERY LINEAR THRESHOLD FUNCTION

HAS A LOW-WEIGHT APPROXIMATOR

Rocco A. Servedio

Abstract. Given any linear threshold function f on n Boolean vari-
ables, we construct a linear threshold function g which disagrees with f
on at most an ε fraction of inputs and has integer weights each of magni-
tude at most

√
n · 2Õ(1/ε2). We show that the construction is optimal in

terms of its dependence on n by proving a lower bound of Ω(
√

n) on the
weights required to approximate a particular linear threshold function.
We give two applications. The first is a deterministic algorithm for
approximately counting the fraction of satisfying assignments to an in-
stance of the zero-one knapsack problem to within an additive ±ε. The
algorithm runs in time polynomial in n (but exponential in 1/ε2). In
our second application, we show that any linear threshold function f is
specified to within error ε by estimates of its Chow parameters (degree
0 and 1 Fourier coefficients) which are accurate to within an additive
±1/(n · 2Õ(1/ε2)). This is the first such accuracy bound which is inverse
polynomial in n, and gives the first polynomial bound (in terms of n) on
the number of examples required for learning linear threshold functions
in the “restricted focus of attention” framework.
Keywords. Boolean functions, linear threshold functions, Chow pa-
rameters, computational learning theory.
Subject classification. 06E30, 52C07, 52C35, 68Q15, 68Q32.

1. Introduction

A linear threshold function, or LTF, is a Boolean function f : {−1, 1}n →
{−1, 1} for which there exist w = (w1, . . . , wn) ∈ Rn and θ ∈ R such that

f(x) = sgn

(
n∑

i=1

wixi − θ

)
for all x ∈ {−1, 1}n .

Here the sgn function is defined as sgn(x) = 1 for x ≥ 0, sgn(x) = −1 for
x < 0. Linear threshold functions (sometimes referred to in the literature as
“threshold gates” or “weighted threshold gates”) have been extensively studied

cc 16 (2007) Every LTF has a low-weight approximator 181

since the 1960s, see Dertouzos (1965); Hu (1965); Muroga (1971), and cur-
rently play an important role in many areas of theoretical computer science.
In complexity theory, complexity classes of fundamental interest such as TC0

are defined in terms of linear threshold functions, and much effort has been
expended on understanding the computational power of single linear thresh-
old gates and shallow circuits composed of these gates, see, e.g., Goldmann
et al. (1992); Goldmann & Karpinski (1998); Hajnal et al. (1993); Hofmeister
(1996); Orponen (1992); Razborov (1992). Linear threshold functions also play
a central role in computational learning theory and machine learning; many of
the most widely used and successful learning techniques such as support vec-
tor machines (Shawe-Taylor & Cristianini 2000), various boosting algorithms
(Freund 1995; Freund & Schapire 1997), and fundamental algorithms such as
Perceptron (Block 1962; Novikoff 1962) and Winnow (Littlestone 1988, 1991)
are based on linear threshold functions in an essential way. Algorithms which
learn linear threshold functions have also proved instrumental in the design of
the fastest known learning algorithms for various expressive classes of Boolean
functions (see, e.g., Klivans et al. 2004; Klivans & Servedio 2001; Maass &
Turan 1994).

It is not hard to see that any linear threshold function f : {−1, 1}n →
{−1, 1} has some representation – in fact infinitely many – in which all the
weights wi are integers. It is of considerable interest in both learning theory
and complexity theory (see the references cited above) to understand how large
these integer weights must be. Easy counting arguments show that most linear
threshold functions over {−1, 1}n require integer weights of magnitude 2Ω(n). A
classic result of Muroga et al. (1961) shows that any linear threshold function f
over {−1, 1}n can be expressed using integer weights w1, . . . , wn each satisfying
|wi| ≤ 2O(n log n). (This result has since been rediscovered many times, see, e.g.,
Hong 1987; Raghavan 1988.) H̊astad (1994) gave a matching lower bound by
exhibiting a particular linear threshold function and proving that any integer
representation for it must have weights of magnitude 2Ω(n log n). Thus the size
of weights that are required to (exactly) compute linear threshold functions is
now rather well understood.

In this paper we are interested in the size of weights that are required to
approximately compute linear threshold functions. Let us say that a Boolean
function g is an ε-approximator for f if Pr[g(x) �= f(x)] ≤ ε, where the proba-
bility is over a uniform choice of x from {−1, 1}n. We consider the following:

Question: Let f be an arbitrary linear threshold function. If g is an LTF
which ε-approximates f and has integer weights, how large do the weights of g
need to be?

182 Servedio cc 16 (2007)

We feel that this is a natural question to investigate on its own merits;
further motivation is given by the applications described in Section 1.2. As a
first indication that the landscape can change dramatically when we switch
from exact to approximate computation, consider the comparison function
COMP (x, y) on 2n bits which outputs 1 iff x ≥ y (viewing x and y as n-
bit binary numbers). It is not hard to show that COMP (x, y) is a linear
threshold function which requires integer weights of magnitude 2Ω(n), but it
is also easy to see that COMP (x, y) is ε-approximated by a linear threshold
function which has only 2 log(1/ε) many relevant variables and integer weights
each at most O(1/ε).

1.1. Our results: approximating linear threshold functions using
small weights. We give a fairly complete answer to the above question. In
Section 3 we prove a lower bound by exhibiting a simple linear threshold func-
tion f and showing that any ε-approximating linear threshold function for f
must have some weight of magnitude Ω(

√
n). Perhaps surprisingly, we also

show that O(
√

n) is an upper bound on the weights required to approximate
any linear threshold function to any constant accuracy ε > 0. Our main result
is the following, proved in Section 4:

Theorem 1.1. Let f : {−1, 1}n → {−1, 1} be any linear threshold function.
For any ε > 0 there is a ε-approximating LTF g with integer weights u1, . . . , un

which satisfy
n∑

i=1

u2
i ≤ n · 2Õ(1/ε2) .

Theorem 1.1 immediately implies that each individual weight ui is at most√
n · 2Õ(1/ε2) in magnitude. It also implies that the sum of the magnitudes of

all n weights is at most n · 2Õ(1/ε2).
In terms of the dependence on ε, the “right” answer is somewhere between

(1/ε)ω(1) (see Section 7) and our upper bound of 2Õ(1/ε2) from Theorem 1.1;
narrowing this gap is an interesting direction for future work.

1.2. Applications. We give two main applications of Theorem 1.1. The
first, in Section 5, is a deterministic algorithm for approximately counting the
fraction of satisfying assignments to any linear threshold function (or equiva-
lently, counting the number of solutions to a zero-one knapsack problem) to

within additive accuracy ±ε. The algorithm runs in time Õ(n2/ε) + 2Õ(1/ε2).
The second application is to the problem of reconstructing a linear threshold

function from (approximations to) its low-degree Fourier coefficients. Various

cc 16 (2007) Every LTF has a low-weight approximator 183

forms of this problem have been studied since the 1960s (see Birkendorf et al.
1998; Bruck 1990; Chow 1961; Goldberg 2001; Kaszerman 1963; Winder 1971;
we give a detailed description of prior work in Section 6). We show that for
any constant ε > 0, any linear threshold function f is information-theoretically
specified to within error ε by estimates of its degree-0 and degree-1 Fourier
coefficients (sometimes known as its Chow parameters) which are accurate to
within an additive ±1/O(n):

Theorem 1.2. Let f : {−1, 1}n → {−1, 1} be any linear threshold function.
Let g : {−1, 1}n → {−1, 1} be any Boolean function which satisfies

|ĝ(S) − f̂(S)| ≤ 1
/(

n · 2Õ(1/ε2)
)

for each S = ∅, {1}, {2}, . . . , {n}. Then Pr[f(x) �= g(x)] ≤ ε.

This is the first known accuracy bound which is inverse polynomial in n;
previous work of Goldberg (2001) gave a 1/quasipoly(n) bound. We also ob-
serve that there is an easy 1/Ω(

√
n) lower bound on the accuracy required.

Theorem 1.2 directly yields the first polynomial bound (in terms of n) on the
number of examples required for learning linear threshold functions in the “re-
stricted focus of attention” learning framework of Ben-David & Dichterman
(1998).

1.3. Related work. To the best of our knowledge, ours is the first work to
explicitly address the question of what weights are required to approximate
linear threshold functions over the n-dimensional Boolean cube. A somewhat
related problem was addressed in Servedio (2004), where it was shown that any
monotone linear threshold function over the Boolean cube can be approximated
to any constant accuracy by a monotone Boolean formula of polynomial size.
Our proof of Theorem 1.1 proceeds by considering the same three cases that
were considered in the proof of the main result of Servedio (2004) but the
details are significantly different; see Section 4.1 for a detailed discussion.

2. Preliminaries

For v ∈ Rn we write ‖v‖ to denote
√

v2
1 + · · · + v2

n. We write u · v to denote
the inner product

∑n
i=1 uivi of two vectors u, v ∈ Rn.

We will use standard tail bounds on sums of independent random variables,
in particular the following form of the Hoeffding bound in which the deviation
is bounded in terms of ‖w‖.

184 Servedio cc 16 (2007)

Theorem 2.1. Fix any 0 �= w ∈ Rn. For any γ > 0, we have

Pr
x∈{−1,1}n

[
w · x ≥ γ‖w‖] ≤ e−γ2/2 and Pr

x∈{−1,1}n

[
w · x ≤ −γ‖w‖] ≤ e−γ2/2 .

Another useful tool from probability theory is the following theorem, which
upper bounds the probability mass that certain sums of independent random
variables can have on any small region. The result can be derived from The-
orem 2.14 in Petrov (1995); a short self-contained proof is given in Servedio
(2004).

Theorem 2.2. Fix any w ∈ Rn with |wi| ≤ 1 for each i. Then for every λ ≥ 1
and θ ∈ R, we have

Pr
x∈{−1,1}n

[|w · x − θ| ≤ λ
] ≤ 6λ/‖w‖ .

We use Õ(·) notation to hide polylogarithmic dependence on the argument
of Õ(·); for instance, if g(n) = n2 log3 n we may write g(n) = Õ(n2).

3. The lower bound

In this section we exhibit a linear threshold function f and show that any
representation with integer weights which computes a good approximator for f
must have some weight of magnitude Ω(

√
n).

Let f : {−1, 1}n+1 → {−1, 1} be defined as

f(x1, . . . , xn+1) = sgn(x1 + · · ·+ xn + nxn+1 − n) .

Note that f(x1, . . . , xn, 1) = Maj(x1, . . . , xn) and f(x1, . . . , xn,−1) = −1 for
all x. For convenience we assume that n ≡ 2 mod 4, but it will be clear that
this assumption can be removed without loss of generality.

Our main result of this section is:

Theorem 3.1. Let h : {−1, 1}n+1 → {−1, 1} be any LTF which 1/10-approxi-
mates f , and let sgn(v1x1 + · · · + vn+1xn+1 − θ) be any integer representation
for h. Then |vi| = Ω(

√
n) for some i.

A straightforward application of the Hoeffding bound shows that for any
ε = Θ(1), there is indeed an ε-approximating LTF sgn(x1+· · ·+xn+Nxn+1−N)
for f in which N = Θ(

√
n).

cc 16 (2007) Every LTF has a low-weight approximator 185

Proof of Theorem 3.1. Let h1 denote the function h(x1, . . . , xn, 1) =
sgn(v1x1 + · · · + vnxn + vn+1 − θ). Since h is an 1/10-approximator for f , we
have that Prx1,...,xn[h1(x) �= Maj(x)] ≤ 1/5.

The following claim will be useful. (Stronger bounds could be given with
more effort, but the n/2 bound is good enough for our purposes and admits a
very simple proof.)

Claim 3.2. The function h1 must depend on at least n/2 variables.

Proof. Suppose h1 has r < n/2 relevant variables; we will show that then
Prx1,...,xn[h1 �= Maj] > 1/5. For each � = 1, . . . , n let g� : {−1, 1}� → {−1, 1} be
the Boolean function on variables x1, . . . , x� which is the closest approximator
to Maj(x1, . . . , xn). It follows that

Pr[h1 �= Maj] ≥ Pr[gr �= Maj] ≥ Pr[gn/2 �= Maj] .

It is easy to see that each function g� is simply Maj(x1, . . . , x�). (On each input
x = (x1, . . . , x�), the value of g� is the bit b ∈ {−1, 1} such that the majority
of the 2n−� extensions (x1, . . . , xn) of x have Maj(x1, . . . , xn) = b; it is easy to
check that this bit b is Maj(x1, . . . , x�).) We thus have

Pr[gn/2 �= Maj] = Pr
[
Maj(x1, . . . , xn/2) �= Maj(x1, . . . , xn)

]
≥ Pr

[
sgn(xn/2+1 + · · ·+ xn) �= sgn(x1 + · · · + xn/2)

& |xn/2+1 + · · · + xn| > |x1 + · · ·+ xn/2|
]

= Pr
[
sgn(xn/2+1 + · · · + xn) �= sgn(x1 + · · ·+ xn/2)

]
× Pr

[|xn/2+1 + · · ·+ xn| > |x1 + · · · + xn/2|
]

≥ (1/2)
(
1/2 − o(1)

)
> 1/5

where the second equality holds because the signs and magnitudes of the sums
are independent (since n/2 is odd, each sign is achieved with probability exactly
1/2). �

By Claim 3.2 we may assume without any loss of generality that each of
x1, . . . , xn/2 is a relevant variable for h1. Since each vi is an integer, it follows
that each of |v1|, . . . , |vn/2| is at least 1. Letting v′ denote the n-dimensional

vector (v1, . . . , vn), we have that ‖v′‖ ≥ √
n/2.

Since h1 is a 1/5-approximator to Maj(x1, . . . , xn) and Pr[Maj(x) = 1] =
1/2−o(1), we have that Prx1,...,xn[v1x1+· · ·+vnxn+vn+1 ≥ θ] ≥ 0.295. Similarly,

since h−1(x)
def
= sgn(v1x1 + · · ·+ vnxn − vn+1 − θ) is a 1/5-approximator to the

186 Servedio cc 16 (2007)

constant function −1, it must be the case that Prx1,...,xn[v1x1+· · ·+vnxn−vn+1 ≥
θ] ≤ 0.2. These two inequalities imply that vn+1 > 0 and that

(3.3) Pr
x1,...,xn

[|v1x1 + · · · + vnxn − θ| ≤ vn+1

] ≥ 0.095 .

Let vmax denote maxi=1,...,n |vi|, let ui = vi/vmax for i = 1, . . . , n, and let
λ = vn+1/vmax. Suppose first that λ ≥ 1. In this case we can apply Theorem 2.2
to obtain

0.095 ≤ (3.3) = Pr
[|u · x − θ/vmax| ≤ λ

] ≤ 6λ

‖u‖ =
6λvmax

‖v′‖ =
6vn+1

‖v′‖

which implies that vn+1 = Ω(
√

n). On the other hand, if λ < 1 then vn+1 is
not the largest weight; it is not difficult to show that such a linear threshold
function must have large error with respect to f . Alternately, we can observe
that if λ < 1 then again by Theorem 2.2, we have

0.095 ≤ (3.3) = Pr[|u·x−θ/vmax| ≤ λ] ≤ Pr[|u·x−θ/vmax| ≤ 1] ≤ 6

‖u‖ =
6vmax

‖v′‖

which implies vmax = Ω(
√

n). So in each case some weight is Ω(
√

n), and
Theorem 3.1 is proved. �

4. Proof of Theorem 1.1

Let ε > 0 be given and let f : {−1, 1}n → {−1, 1} be any linear threshold func-
tion. Without loss of generality we may suppose that f(x)=sgn (

∑n
i=1 wixi−θ)

where we have 1 = |w1| ≥ |w2| ≥ · · · ≥ |wn| > 0.
As in the argument of Servedio (2004) we consider different cases depending

on the value of ‖w‖. In each case we show how to construct an ε-approximating
LTF with integer weights that satisfy the claimed bound.

Case I: ‖w‖ ≥ 12/ε. Very roughly speaking, the idea of this case is that many
of the weights are “large” compared with the largest weight w1. (For intuition,
consider the majority function in which 1 = w1 = · · · = wn; this function
has the largest possible value of ‖w‖.) In this case the construction works by
rounding the weights to a carefully chosen granularity and showing that this
only incurs small error. We actually prove a stronger version of Theorem 1.1
in this case by showing that the sum of squared weights for the ε-approximator
is at most O(n ln(1/ε)/ε2) rather than n · 2Õ(1/ε2).

cc 16 (2007) Every LTF has a low-weight approximator 187

Let

α =
ε‖w‖

6
√

2n ln(4/ε)
.

For each i = 1, . . . , n let ui be the value obtained by rounding wi to the nearest
integer multiple of α. Let g(x) = sgn(

∑n
i=1 uixi − θ), or equivalently g(x) =

sgn(
∑n

i=1(ui/α)xi − θ/α). We will prove the following lemma:

Lemma 4.1. The linear threshold function g(x) = sgn(
∑n

i=1(ui/α)xi− θ/α) is

an ε-approximator for f with integer weights each at most O(
√

n ln(1/ε)) in
magnitude. Moreover, the sum of squares of weights is O(n ln(1/ε)/ε2).

Proof. For i = 1, . . . , n let ei = wi − ui, so u · x = w · x − e · x. Let λ ≥ 1
be such that

ε

2
=

6λ

‖w‖ .

We have that sgn(u·x−θ) �= sgn(w·x−θ) only if either |e·x| ≥ λ or |w·x−θ| ≤ λ.
We will show that each of these two events occurs with probability at most ε/2
for a random x, and consequently Pr[g(x) �= f(x)] ≤ ε.

First we bound Pr[|e · x| ≥ λ]. We have that |ei| ≤ 1
2
α for each i, so the

vector e = (e1, . . . , en) has ‖e‖ ≤ 1
2
α
√

n. Observing that λ =
√

2 ln(4/ε)· 1
2
α
√

n,
the Hoeffding bound (Theorem 2.1) gives

Pr
[|e · x| ≥ λ

] ≤ Pr[|e · x| ≥
√

2 ln(4/ε) · ‖e‖] ≤ 2e−(
√

2 ln(4/ε))2/2 = ε/2 .

To bound Pr[|w · x − θ| ≤ λ] we simply apply Theorem 2.2; this gives us
Pr[|w · x − θ| ≤ λ] ≤ 6λ/‖w‖, which equals ε/2 by our original condition on w
in Case I.

Thus far we have shown that g is an ε-approximating LTF for f . It is
clear that g has a representation with integer weights each at most 1/α =

O
(√

n ln(1/ε)

‖w‖ε

)
= O(

√
n ln(1/ε)), where the second equality uses ε‖w‖ ≥ 12. In

fact we can bound the magnitude of the sum of squares of these integer weights.
Let

vi = ui/α ,

so each vi is an integer and g(x) = sgn(v · x − θ/α). Rounding each weight wi

to obtain ui is easily seen to increase its magnitude by at most a factor of two.
Consequently we have that each |vi| ≤ 2|wi|/α, and so we have

(4.2)

n∑
i=1

v2
i ≤ 4

(
n∑

i=1

w2
i

)
/α2 = 4‖w‖2 · 72n ln(4/ε)

ε2‖w‖2
= O

(
n ln(1/ε)/ε2

)
. �

188 Servedio cc 16 (2007)

Case II: ‖w‖ < 12/ε. Note that since |w1| = 1, this inequality can be rewritten
as w2

1/(
∑n

j=1 w2
j) > ε2/144.

Let us set up some notation. We let

C1 = 4 ln(4/ε) , C2 = 72 ln(2C1/ε) , τ = ε2/144 , and � =
3

τ
ln(C2/τ) ln(4/ε) .

Note that � = Õ(1/ε2). We assume that � ≤ n; observe that if this is not the
case, then n = Õ(1/ε2), hence Theorem 1.1 follows trivially from the standard
2O(n log n) weight upper bound of Muroga et al..

As in Servedio (2004), we consider two subcases.

Case IIa: w2
k/(

∑n
j=k w2

j) > ε2/144 for all k = 1, . . . , �. This case can be
thought of as capturing those w’s for which the first � weights decrease quite
rapidly, e.g., in geometric progression. (For intuition one can consider the
ODDMAXBIT function, i.e., a decision list with alternating output bits; it is
straightforward to check that for the standard linear threshold function repre-
sentation of this function, the value of ‖w‖ is an absolute constant independent
of n, and a bound on successive weights similar to that of Case IIa indeed holds.)

In this case, instead of rounding the weights wi as we did in Case I, we
will simply truncate the linear threshold function after the first � variables and
show that the resulting LTF is an ε-approximator for f . Since this truncated
LTF depends on only � variables, the standard upper bound of Muroga et al.
implies that it has an integer representation with each weight at most 2O(� log �)

and hence sum of squared weights also 2O(� log �) = 2Õ(1/ε2).
Let g(x) = sgn(w1x1 + · · · + w�x� − θ). Let

W = w2
�+1 + · · ·+ w2

n ,

and let
η =

√
2W ln(4/ε) .

We have that g(x) �= f(x) only if either |w�+1x�+1 + · · ·+wnxn| ≥ η or |w1x1 +
· · · + w�x� − θ| ≤ η. We will show that these events each have probability at
most ε/2 and thus obtain Pr[g(x) �= f(x)] ≤ ε.

Bounding the first probability is easy; by our choice of η, the Hoeffding
bound gives

(4.3) Pr
[|w�+1x�+1 + · · ·+ wnxn| ≥ η

] ≤ 2e−2 ln(4/ε)/2 = ε/2 .

We now show that Pr[|w1x1 + · · ·+w�x� −θ| ≤ η] ≤ ε/2. Note that since we
are in Case IIa, we have w2

� > (ε2/144)
∑n

j=�+1 w2
j and thus w� > (ε/12)

√
W =

cc 16 (2007) Every LTF has a low-weight approximator 189

(ε/12)(η/
√

2 ln(4/ε)). It therefore suffices to show that

(4.4) Pr[|w1x1 + · · ·+ w�x� − θ| ≤ (12/ε)
√

2 ln(4/ε)w�] ≤ ε/2 .

For i = 1, . . . , n we will write Wi to denote
∑n

j=i w
2
j ; note that Wi =

w2
i + Wi+1. The following lemma will be useful (recall that τ = ε2/144):

Lemma 4.5. For a < b ≤ �, we have Wb < (1 − τ)b−aWa < (1−τ)b−a

τ
w2

a.

Proof. Since we are in Case IIa we have w2
a > τWa = τw2

a + τWa+1, or
equivalently (1 − τ)w2

a > τWa+1. Adding (1 − τ)Wa+1 to both sides gives (1 −
τ)(w2

a +Wa+1) = (1− τ)Wa > Wa+1. This implies that Wb < (1− τ)b−aWa; the
second inequality follows from w2

a > τWa. �

We divide the weights w1, . . . , w� into blocks of consecutive weights as fol-
lows. The first block B1 is {w1, . . . , wk1} where k1 is the first index such that
Wk1+1 < w2

1/C2. (Recall that C2 = 72 ln(2C1/ε).) Similarly, the i-th block Bi

is {wki−1+1, . . . , wki
} where ki is the first index such that Wki+1 < w2

ki−1+1/C2.

Corollary 4.6. Each block Bi is of length at most 1
τ

ln(C2/τ).

Proof. By Lemma 4.5, the length |Bi| of the i-th block must satisfy 1/C2 ≤
(1 − τ)|Bi|/τ ; the corollary follows from this. �

Recalling that � = 3
τ

ln(C2/τ) ln(4/ε), we have that there are at least
3 ln(4/ε) many blocks of weights in w1, . . . , w�.

Let us view the choice of a uniform (x1, . . . , x�) ∈ {−1, 1}� as taking place
in successive stages, where in the i-th stage the variables corresponding to the
i-th block Bi are chosen. The rest of our analysis in Case IIa will only deal with
the first ln(4/ε) blocks so for the rest of Case IIa we assume that i ≤ ln(4/ε).

Immediately after the i-th stage, some value – call it ξi – has been deter-
mined for w1x1 + · · · + wki

xki
. The following lemma shows that if ξi is too

far from θ, then it is unlikely that the remaining variables xki+1, . . . , x� will
come out in such a way as to make the final sum sufficiently close to θ. (In the
following lemma, recall that C1 = 4 ln(4/ε).)

Lemma 4.7. If |ξi − θ| ≥ 2
√

Wki+1

√
2 ln(2C1/ε), then we have

(4.8) Pr
xki+1,...,x�

[
|w1x1 + · · ·+ w�x� − θ| ≤ (12/ε)

√
2 ln(4/ε)w�

]
≤ ε/C1 .

190 Servedio cc 16 (2007)

Proof. By the lower bound on |ξi − θ| in the hypothesis of the lemma, it
can only be the case that |w1x1 + · · · + w�x� − θ| ≤ (12/ε)

√
2 ln(4/ε)w� if

(4.9) |wki+1xki+1 + · · ·+w�x�| ≥ 2
√

Wki+1

√
2 ln(2C1/ε)− (12/ε)

√
2 ln(4/ε)w�

Since i ≤ ln(4/ε) and each block is of length at most 1
τ

ln(C2/τ) by Corol-
lary 4.6, we have that ki + 1 ≤ 1

τ
ln(C2/τ) ln(4/ε) + 1. Recalling the definition

of �, it follows that (� − (ki + 1))/2 > 1
τ

ln(12/ε). Now using Lemma 4.5, we
have that

w� ≤
√

W� ≤ (1 − τ)(�−(ki+1))/2
√

Wki+1 ≤ ε

12

√
Wki+1 .

Rearranging this inequality and using 2C1 ≥ 4, it follows that the RHS of (4.9)
is at least

√
2 ln(2C1/ε)·

√
Wki+1. So to prove the lemma it suffices to bound

Prxki+1,...,x�
[|wki+1xki+1 + · · · + w�x�| ≥

√
2 ln(2C1/ε)·

√
Wki+1] by ε/C1. But

since w2
ki+1+· · ·+w2

� ≤ Wki+1, the Hoeffding bound implies that this probability

is at most 2e−(
√

2 ln(2C1/ε))2/2 = ε/C1. �

We now show that regardless of the value ξi−1 immediately before the i-th
stage, immediately after the i-th stage it must be the case that |ξi − θ| ≤
2
√

Wki+1

√
2 ln(2C1/ε) holds with probability at most 1/2 over the choice of

values for variables in block Bi in the i-th stage.

Lemma 4.10. For any ξi−1 ∈ R, we have

Pr
xki−1+1,...,xki

[
|ξi − θ| ≤ 2

√
Wki+1

√
2 ln(2C1/ε)

]
≤ 1/2 .

Proof. Since ξi equals ξi−1+(wki−1+1xki−1+1+· · ·+wki
xki

), we have |ξi−θ| ≤
2
√

Wki+1

√
2 ln(2C1/ε) if and only if the value wki−1+1xki−1+1 + · · ·+wki

xki
lies

in the interval

[IL, IR] :=
[
θ−ξi−1−2

√
Wki+1

√
2 ln(2C1/ε), θ−ξi−1 +2

√
Wki+1

√
2 ln(2C1/ε)

]

of width 4
√

Wki+1

√
2 ln(2C1/ε).

First suppose that 0 /∈ [IL, IR], i.e., the whole interval has the same sign. If
this is the case then Pr[wki−1+1xki−1+1 + · · · + wki

xki
∈ [IL, IR]] ≤ 1/2 since by

symmetry the value wki−1+1xki−1+1 + · · ·+wki
xki

is equally likely to be positive
or negative.

Now suppose that 0 ∈ [IL, IR]. By definition of ki, we know that
√

Wki+1 ≤
|wki−1+1|/

√
C2, and consequently we have that the width of the interval [IL, IR]

cc 16 (2007) Every LTF has a low-weight approximator 191

is at most 4|wki−1+1|
√

2 ln(2C1/ε)/
√

C2, which is at most 2
3
|wki−1+1| by the defi-

nition of C2. But now observe that once the value of xki−1+1 is set to either +1 or
−1, this effectively shifts the “target interval,” which now wki−1+2xki−1+2+· · ·+
wki

xki
must hit, by a displacement of wki−1+1 to become [IL − wki−1+1xki−1+1,

IR −wki−1+1xki−1+1]. Since the original interval [IL, IR] contained 0 and was of
length at most 2

3
|wki−1+1|, the new interval does not contain 0, and thus again by

symmetry we have that the probability (now over the choice of xki−1+2, . . . , xki
)

that wki−1+1xki−1+1 + · · · + wki
xki

lies in [IL, IR]] is at most 1/2. �

In order to have |w1x1 + · · · + w�x� − θ| ≤ (12/ε)
√

2 ln(4/ε)w�, it must be
the case that either

(1) each |ξi − θ| < 2
√

Wki+1

√
2 ln(2C1/ε) for i = 1, . . . , ln(4/ε); or

(2) for some i ≤ ln(4/ε) we have |ξi − θ| ≥ 2
√

Wki+1

√
2 ln(2C1/ε) but

nonetheless |w1x1 + · · ·+ w�x� − θ| < (12/ε)
√

2 ln(4/ε)w�.

Lemma 4.10 gives us that the probability of (1) is at most (1/2)ln(4/ε) =
ε/4, and Lemma 4.7 gives us that the probability of (2) is at most ln(4/ε) ·
ε/C1 = ε/4. Thus the overall probability that |w1x1 + · · · + w�x� − θ| ≤
(12/ε)

√
2 ln(4/ε)w� is at most ε/2, and (4.4) is proved.

Case IIb: w2
k/(

∑n
j=k w2

j) ≤ ε2/144 for some k ∈ {1, . . . , �}. Roughly speaking,
in this case the first k − 1 weights decrease quite rapidly, but then the rate
of decrease slows and wk is “not too large” compared with wk+1, . . . , wn. It
does not seem that we can simply truncate the weights wk, . . . , wn in this case;
instead we round the weights wk, . . . , wn to obtain an ε/2-approximating LTF
in which these weights are small integers. We then argue that this LTF is itself
ε/2-close to an LTF with all small integer weights.

We define weight vectors u′, v′ ∈ Rn as follows: For i = 1, . . . , k − 1 let

u′
i = wi/|wk| .

For i = k, . . . , n let u′
i be the value obtained by rounding wi/|wk| to the nearest

integer multiple of

α′ def
=

(ε/2)
√

w2
k + · · · + w2

n

6|wk|
√

2n ln(8/ε)
.

(Note that everywhere α in Case I had an ε, now α′ has ε/2.) Let

v′
i = u′

i/α
′

192 Servedio cc 16 (2007)

for all i = 1, . . . , n. Finally let

θ′ = θ/|wk| ,

and let g : {−1, 1}n → {−1, 1} be the LTF

g(x) = sgn(u′ · x − θ′)

or equivalently g(x) = sgn(v′ · x − θ′/α′).
We first show that g is an ε/2-approximator for f which has “almost all”

small integer weights.

Lemma 4.11. The linear threshold function g(x) = sgn(v′ · x − θ′/α′) is an
ε/2-approximator for f. Each weight v′

i for i ≥ k is an integer of magnitude
O(

√
n ln(1/ε)), and we have

∑n
i=k(v

′
i)

2 = O(n ln(1/ε)/ε2).

Proof. Fix any setting x∗
1, . . . , x

∗
k−1 of the first k − 1 bits. Let f∗ be the

linear threshold function on n− k + 1 variables which is obtained by fixing the
first k− 1 inputs of f to x∗

1, . . . , x
∗
k−1; note that we may write f∗(xk, . . . , xn) as

sgn(
∑n

j=k(wj/|wk|)xj − θ′ +
∑k−1

j=1(wj/|wk|)x∗
j). Similarly, let g∗ be the LTF on

n−k+1 variables obtained by fixing the first k−1 inputs of g to to x∗
1, . . . , x

∗
k−1,

i.e.,

g∗(xk, . . . , xn) = sgn

(
n∑

j=k

v′
jxj − θ′/α′ +

k−1∑
j=1

v′
jx

∗
j

)
.

We have that 1 = |wk/|wk|| ≥ |wk+1/|wk|| ≥ · · · ≥ |wn/|wk|| > 0. More-
over, each weight v′

i for i ≥ k is obtained from wi/|wk| by rounding to the
nearest integer multiple of α′ (and then scaling by α′ to get integer weights).
Since the thresholds of f∗ and g∗ match up as well (taking into account the
scaling by α′), we may apply Lemma 4.1, and conclude that Prxk,...,xn[g∗ �=
f∗] ≤ ε/2. Since this holds for every restriction x∗ ∈ {−1, 1}k−1, it follows that
Prx∈{−1,1}n [g(x) �= f(x)] ≤ ε

2
. The claimed bounds on the weights v′

i for i ≥ k
follow from Lemma 4.1. �

We next show that any linear threshold function which has “almost all”
its weights integers whose sum of squares is small (such as g) can be ε/2-
approximated by a linear threshold function with small integer weights. To do
this we will need the following claim, the proof of which is deferred until later:

cc 16 (2007) Every LTF has a low-weight approximator 193

Claim 4.12. Fix an integer R > 0. Let Ω denote {−1, 1}k−1 × {−R,−R +
1, . . . , R − 1, R}. Let h be any linear threshold function over Ω, i.e., for some
w ∈ Rk and θ ∈ R we have that h(x) = sgn(w · x − θ) for all x ∈ Ω. Then
there is a representation of h as h(x) = sgn(u · x − θ) in which

(a) each ui is an integer, and

(b) |ui| ≤ R · (k + 1)! for i = 1, . . . , k − 1 and |uk| ≤ (k + 1)!.

This claim is an extension of Muroga et al.’s classic upper bound on the size
of integer weights that are required to express linear threshold functions over
the usual domain {−1, 1}n; we defer its proof until later.

Lemma 4.13. Let g : {−1, 1}n → {−1, 1} : g(x) = sgn(s · x − µ) be a linear
threshold function where sk, sk+1, . . . , sn are all integers with

∑n
j=k s2

j ≤ N.
Then there is a linear threshold function g′(x) = sgn(t · x − ν) which is an
ε/2-approximator of g, where

(i) each ti is an integer;

(ii) |ti| ≤
√

N ln(1/ε) · 2O(k log k) for i ≤ k − 1; and

(iii)
∑n

i=1 t2i ≤ N · ln(1/ε) · 2O(k log k).

Proof of Lemma 4.13. We first observe that by the Hoeffding bound, we
have

Pr
xk,...,xn

[
|skxk + · · ·+ snxn| >

√
2 ln(4/ε)

√
N

]
≤ 2e−(

√
2 ln(4/ε))2/2 = ε/2 .

Intuitively, we can thus pretend that
∑n

j=k skxk always has magnitude at most√
2 ln(4/ε)

√
N and this causes us to incur error at most ε/2 (we will make this

more precise later).
Now the pieces are in place to prove Lemma 4.13. Let

R =
√

2 ln(4/ε)
√

N .

Given the LTF g(x) = sgn(s · x − µ), let h : Ω → {−1, 1} be the LTF

h(x) = sgn

(
k−1∑
j=1

sixi + xk − µ

)
.

194 Servedio cc 16 (2007)

By Claim 4.12, we have that over the domain Ω, h is equivalent to h(x) =
sgn(

∑k
j=1 uixi − µ), where u1, . . . , uk satisfy conditions (a) and (b). Now con-

sider g′ : {−1, 1}n → {−1, 1},

g′(x) = sgn

(
k−1∑
i=1

uixi + uk

(
n∑

j=k

sjxj

)
− µ

)
.

By our observation at the start of the proof, at least a 1 − ε/2 fraction of
all x ∈ {−1, 1}n have |∑n

j=k sjxj| ≤ R. For each such x we have g′(x) =

h
(
x1, . . . , xk−1,

∑n
j=k sjxj

)
= g(x). Thus g′ is an ε/2-approximator of g with

integer weights t1, . . . , tn, where ti = ui for i ≤ k − 1 and tj = uksj for j ≥ k.
Plugging in the bounds on ui, uk, sj from the conditions of Lemma 4.13 and
Claim 4.12, the proof of Lemma 4.13 is done. �

Combining Lemma 4.11 and Lemma 4.13, recalling that k ≤ � = Õ(1/ε2),
and taking N in Lemma 4.13 to be O(n ln(1/ε)/ε2), we obtain the desired
conclusion of Theorem 1.1 in Case IIb. It remains only to prove Claim 4.12.

Proof of Claim 4.12. We need only slightly modify known proofs of
Muroga et al.’s upper bound for LTF weights over {−1, 1}n. In particular
we closely follow the outline of the proof in Section 3 of H̊astad (1994).

Let H0 : Rk → R be a linear function H0(x) = a · x + t which satisfies the
following conditions:

1. sgn(H0(x)) = h(x) for each x ∈ Ω.

2. |H0(x)| ≥ 1 for each x ∈ Ω.

3. Among all linear functions which satisfy conditions (1) and (2) above, H0

maximizes the number of x ∈ Ω which have |H0(x)| = 1. If there is more
than one possible H0 which achieves the maximum number, choose one
arbitrarily.

Observe that since h(x) is a linear threshold function over Ω, there exists some
linear function satisfying (1) and (2), and thus there does exist some H0 satis-
fying (1)–(3) above.

As in H̊astad (1994), let x(1), . . . , x(r) be the set of points in Ω with
|H0(x

(i)| = 1. The argument in H̊astad (1994) now directly implies that H0 is
uniquely determined by the equations

H0(x
(i)) = h(x(i)) for i = 1, . . . , r .

cc 16 (2007) Every LTF has a low-weight approximator 195

Consequently the coefficients a1, . . . , ak, t of H0(x) can be obtained by solving
a linear system of k + 1 equations:

a1x
(i)
1 + · · ·+ akx

(i)
k + t = h(x(i)) for i = 1, . . . , k + 1 .

For each of these equations the right-hand side is ±1 as are the first k − 1
coefficients x

(i)
1 , . . . , x

(i)
k−1 (and the coefficient of t), whereas the k-th coefficient

x
(i)
k is an integer in {−R, . . . , R}.

Cramer’s rule now tells us that for j = 1, . . . , k, we have

aj = det(Mj)/ det(M)

for suitable (k + 1) × (k + 1) matrices M1, . . . , Mk, M. More precisely, the
matrix M has as its i-th row the vector x(i) with a 1 appended as the (k + 1)-
st entry, and the matrix Mj is M but with the j-th column replaced by the
column vector whose i-th entry is h(x(i)). Since all entries of M except for
the k-th column are ±1 and each element in the k-th column is an integer of
magnitude at most R, we have that det(M) is an integer of magnitude at most
(k+1)!R, and the same is true for det(M1), . . . , det(Mk−1). The matrix Mk is a
±1 matrix so it satisfies | det(Mk)| ≤ (k + 1)!. Now since each of a1, . . . , ak has
the same denominator we may clear it throughout and obtain a linear threshold
function for h whose k integer weights are det(M1), . . . , det(Mk). This concludes
the proof of Claim 4.12. �

4.1. Discussion and consequences for monotone formula construc-
tion. The main result of Servedio (2004) is a proof that any monotone linear
threshold function f can be ε-approximated by a monotone Boolean AND/OR

formula of size n10.6 · 2Õ(1/ε4). The high-level structure of our proof of Theo-
rem 1.1 is similar to that of Servedio (2004) in that the same cases I, IIa and
IIb are considered,1 but there are some significant differences. First, in Case I
of Servedio (2004) the weights are simply rounded to the nearest multiple of
1/n rather than the nearest α = 1

O(
√

n)
(ignoring the dependence on ε). Second,

our Case IIa is handled using a simpler argument in Servedio (2004) which only
yields � = Õ(1/ε4) in Servedio (2004) rather than the � = Õ(1/ε2) we achieve
here. Finally, since the goal in Servedio (2004) is to construct a monotone for-
mula rather than a low-weight linear threshold function, a different approach
is used in that paper to handle Case IIb. (In particular, a recursive tree-based

1Readers familiar with Servedio (2004) will note that Case IIa of this paper is Case IIb
of Servedio (2004) and vice versa.

196 Servedio cc 16 (2007)

decomposition is used in Servedio (2004) which yields a Boolean formula but
not a linear threshold function.)

We observe that our new analysis of Case I and our new bound on � can
be straightforwardly worked into the arguments of Servedio (2004) to obtain
a quantitative improvement of its main result: for f : {−1, 1}n → {−1, 1} any
monotone linear threshold function, there is a monotone Boolean formula of
size n5.3 · 2Õ(1/ε2) which is an ε-approximator for f. Briefly, the improvement
from n10.6 to n5.3 comes from the fact that now in Case I, we have that the sum∑n

i=1 |vi| of the integer weights of g(x) is O(n) rather than the O(n2) bound
obtained in Servedio (2004) by rounding each weight to the nearest 1/n. This
O(n) is then plugged into Valiant’s probabilistic construction (Valiant 1984) of
monotone formulas of size O(n5.3) for the majority function on n variables. We
omit the details to avoid unnecessary repetition of Servedio (2004).

5. Application to deterministic approximate counting

We describe an application of our approach to the problem of approximately
counting solutions of the zero-one knapsack problem. In an instance of zero-one
knapsack we are given a vector a = (a1, . . . , an) ∈ Rn and a threshold θ ∈ R;
the goal is to approximately compute the fraction p of points x ∈ {0, 1}n which
satisfy the linear threshold function sgn(

∑n
i=1 aixi − θ). It is not hard to see

that we may equivalently consider the domain of the LTF to be {−1, 1}n as we
have been doing throughout this paper.

The problem of efficiently computing a multiplicative (1±ε)-approximation
of p has received much attention (Dyer et al. 1993; Jerrum & Sinclair 1997;
Kannan 1994); the first polynomial-time algorithm was given by Morris &
Sinclair (1999) using sophisticated Monte Carlo Markov Chain techniques, and
more recently a simpler randomized algorithm based on dynamic programming
and “dart throwing” was given by Dyer (2003).

Our techniques, combined with the dynamic programming idea of Dyer
(2003), give a simple deterministic algorithm for computing an ε-accurate ad-
ditive approximation of p. (Achieving such an additive approximation is trivial,
of course, if randomization is allowed: simply make O(1/ε2) random draws from
{−1, 1}n and output the fraction of satisfying assignments in this sample as an
approximation of p.) See Trevisan (2004) for work in a similar spirit on de-
terministically counting the fraction of satisfying assignments to a k-DNF to
additive accuracy ±ε. (It should be noted, though, that for k-DNF an ad-
ditive approximation to the fraction of satisfying assignments is sufficient to
yield a multiplicative approximation, see the reduction given in Luby & Velick-

cc 16 (2007) Every LTF has a low-weight approximator 197

ovic (1996); no such reduction is known for the problem of counting satisfying
assignments for linear threshold functions.)

Theorem 5.1. There is a deterministic Õ(n2/ε)+2Õ(1/ε2)-time algorithm with
the following property: given an instance of the zero-one knapsack problem for
which the true fraction of satisfying assignments in {−1, 1}n is p, the algorithm
outputs a value p̃ such that |p − p̃| ≤ ε.

Proof. Given w1, . . . , wn, θ, the high-level idea is to efficiently construct a
linear threshold function g(x) which ε-approximates f(x) = sgn(w ·x− θ) as in
the proof of Theorem 1.1, and then use dynamic programming to exactly count
the number of satisfying assignments to g.

Suppose first that w1, . . . , wn satisfy Case I of Section 4. Then as in that
section we round each weight to the nearest integer multiple of α and di-
vide by α throughout to obtain an ε-approximating linear threshold function
g(x) = sgn(v · x − θ′) with integer weights vi that satisfy

∑n
i=1 |vi| ≤ M =

O(n ln(1/ε)/ε2). Let

F (r, s) =

∣∣∣∣∣
{

x ∈ {−1, 1}r :
r∑

i=1

vixi = s

}∣∣∣∣∣ .

We can compute F (r, s) for all 1 ≤ r ≤ n,−M ≤ s ≤ M in O(nM) time with
dynamic programming, using the initial condition F (0, 0) = 1 and the relation

F (r + 1, s) = F (r, s − vr+1) + F (r, s + vr+1) .

The number of satisfying assignments to g is
∑

s≥θ′ F (n, s).
Now suppose that w1, . . . , wn satisfy Case IIa. In this case, we shall take

g(x) = sgn(w1x1+· · ·+w�x�−θ) to be the truncated LTF analyzed in Case IIb.
Since this function depends only on � inputs, we can go over all possible set-
tings of the relevant variables and easily determine the number of satisfying
assignments to g in time 2O(�) = 2Õ(1/ε2).

Finally suppose that w1, . . . , wn satisfy Case IIb. In this case we use the
linear threshold function g(x) = sgn(v′ · x − θ′/α′) described in Lemma 4.11.
This function g has at most k − 1 ≤ � weights which are not integers, and
the integer weights have total magnitude bounded by M = O(n ln(1/ε)/ε2).
So we can do dynamic programming as in Case I in O(nM) time to compute
the values of F (n, s) as s ranges over all integers between −M and M. In an

additional O(M) time we can compute values Z(t)
def
=

∑
s≥t F (n, t) for all t

between −M and M. Given these values for Z(t), we we can go over all (at

198 Servedio cc 16 (2007)

most 2� = 2Õ(1/ε2) many) settings of the non-integer weights as in Case IIa and
easily compute the total number of assignments that satisfy g. �

6. Approximating an LTF from noisy versions of its
low-degree Fourier coefficients

Recall that for a Boolean function f : {−1, 1}n → {−1, 1}, the Fourier coeffi-
cients {f̂(S)}S⊆[n] of f are the coefficients of the (unique) multilinear polyno-
mial

f(x) =
∑

S⊆[n]

f̂(S)xS where xS denotes
∏
i∈S

xi

which agrees with f everywhere on {−1, 1}n. The degree of a Fourier coefficient
f̂(S) is the degree |S| of of the corresponding monomial.

The main result of this section is Theorem 1.2:

Theorem 1.2 (restated). Let f : {−1, 1}n → {−1, 1} be any linear thresh-
old function. Let g : {−1, 1}n → {−1, 1} be any Boolean function which
satisfies

|ĝ(S) − f̂(S)| ≤ 1/
(
n · 2Õ(1/ε2)

)
for each S = ∅, {1}, {2}, . . . , {n}. Then Pr[f(x) �= g(x)] ≤ ε.

Chow (1961) proved that every linear threshold function is uniquely speci-
fied (among all Boolean functions) by its n + 1 Fourier coefficients of degree 0
and 1; these coefficients are sometimes referred to as the Chow parameters of f.
Following this result (which was later generalized by Bruck 1990), there has
been interest in how to algorithmically obtain a weights-based representation
f(x) = sgn(w · x − θ) of f from its Chow parameters, see, e.g., Kaszerman
(1963); Winder (1971). This seems to be a difficult problem, and we do not
address it here.

A related question which has also been studied is the following: suppose
we are given noisy rather than exact values of the Chow parameters. How
does this affect the precision with which f is (information-theoretically) spec-
ified by these parameters? One motivation for studying this question comes
from the “1-restricted focus of attention” model in computational learning the-
ory; roughly speaking this is a learning model in which the learner is only
allowed to see a single bit xi of each example x = (x1, . . . , xn) used for learning
(see Ben-David & Dichterman 1994, 1998 for details). As observed by Birk-
endorf et al. (1998); Goldberg (2001), the class of linear threshold functions
over {−1, 1}n is uniform-distribution information-theoretically learnable from

cc 16 (2007) Every LTF has a low-weight approximator 199

poly(n) many examples in this framework if and only if any linear threshold
function is information-theoretically specified to high accuracy from Chow pa-
rameter estimates which are accurate to an additive ±1/poly(n).

With this motivation Birkendorf et al. gave the following result:

Theorem 6.1 (Birkendorf et al. 1998). Let f(x) = sgn(w1x1 + · · ·+wnxn−θ)
be a linear threshold function with integer weights wi such that W =

∑n
i=1 |wi|.

Let g : {−1, 1}n → {−1, 1} be any Boolean function which satisfies

|ĝ(S) − f̂(S)| ≤ ε

W

for each S = ∅, {1}, {2}, . . . , {n}. Then Pr[f(x) �= g(x)] ≤ ε.

Theorem 6.1 gives a strong bound on the precision required in the Chow
parameters if f has low weight, but a weak bound for arbitrary LTFs since W
may need to be 2Ω(n log n). Subsequently Goldberg (2001) gave an incomparable
result which can be rephrased as follows:

Theorem 6.2 (Goldberg 2001). Let f be any linear threshold function, and
let g : {−1, 1}n → {−1, 1} be any Boolean function which satisfies

|ĝ(S) − f̂(S)| ≤ (ε/n)O(log(n/ε) log(1/ε))

for each S = ∅, {1}, {2}, . . . , {n}. Then Pr[f(x) �= g(x)] ≤ ε.

In contrast, our bound in Theorem 1.2 has a worse dependence on ε but
has a 1/n rather than 1/quasipoly(n) dependence on n. Theorem 1.2 yields
an affirmative answer (at least for constant ε) to the open question of whether
arbitrary linear threshold functions can be learned in the uniform distribution
1-RFA model with polynomial sample complexity:

Corollary 6.3. Fix any constant ε > 0. There is an algorithm for learning
arbitrary linear threshold functions to accuracy ε under the uniform distribution
in the 1-restricted focus of attention model, using poly(n) many examples.

6.1. Proof of Theorem 1.2. Let ε > 0 be given and let f : {−1, 1}n →
{−1, 1} be any linear threshold function. We may suppose that

f(x) = sgn
(
F (x)

)
where F (x) =

n∑
i=1

wixi − θ

with 1 = |w1| ≥ |w2| ≥ · · · ≥ |wn| ≥ 0. Note that without loss of generality we
have |θ| ≤ ∑n

i=1 |wi|.

200 Servedio cc 16 (2007)

Fix any g : {−1, 1}n → {−1, 1} where for S = ∅, {1}, . . . , {n} we have

|ĝ(S) − f̂(S)| ≤ 1/M with M = n · 2Õ(1/ε2). Let D denote

D
def
=

{
x ∈ {−1, 1}n : g(x) �= f(x)

}

and τ denote |D|/2n. We will show that τ ≤ ε and thus establish Theorem 1.2.

We have

E
[|F (x)|] = E[fF] =

∑
S⊆[n]

f̂(S)F̂ (S)

=
∑

|S|≤1

f̂(S)F̂ (S) = −f̂(∅)θ +
n∑

i=1

f̂({i})wi

≤ ĝ(∅)(−θ) + ĝ({1})w1 + · · ·+ ĝ({n})wn +

(
|θ| +

n∑
i=1

|wi|
)

/M

The second equality above is Parseval’s identity, the third is because F ’s only
nonzero Fourier coefficients are of degree 0 and 1, and the fourth is by definition
of F. The inequality above is from our assumption on the Fourier coefficients
of g. Using Parseval again and writing B to denote (|θ| +

∑n
i=1 |wi|)/M , we

have that the right-hand side of the above inequality equals

∑
|S|≤1

ĝ(S)F̂ (S) + B =
∑

S⊆[n]

ĝ(S)F̂ (S) + B = E[g(x)F (x)] + B .

Rearranging, this gives

(6.4)

(
|θ| +

n∑
i=1

|wi|
)

/M ≥ E
[|F (x)| − g(x)F (x)

]
=

2

2n

∑
x∈D

|F (x)| .

Thus far we have followed the proof from Birkendorf et al. (1998) (which is
itself closely based on Bruck 1990), and indeed it is not difficult to complete the
proof of Theorem 6.1 from here. Instead we will use our ideas from Section 4.
The approach is to show that only a small number of points in {−1, 1}n can
have |F (x)| very small, and thus if |D| is large then the right hand side of (6.4)
must be fairly large, which contradicts (6.4).

Case I: ‖w‖ ≥ 12/ε. Let λ ≥ 1 be such that

ε

2
=

6λ

‖w‖ .

cc 16 (2007) Every LTF has a low-weight approximator 201

By Theorem 2.2 we have Pr[|F (x)| ≤ λ] ≤ ε/2. Now suppose that τ > ε; this
would mean that for at least ε

2
2n points x ∈ D we have |F (x)| > λ = ε‖w‖/12.

But the bound (6.4) now gives

(
|θ| +

n∑
i=1

|wi|
)

/M ≥ 2

2n
· ε

2
2n · ε‖w‖

12
=

ε2‖w‖
12

This implies that we must have

M ≤ 12
(|θ| + ∑ |wi|

)
ε2‖w‖ ≤

(|θ| + ∑ |wi|
)

ε
≤ 2n

ε
.

which contradicts the definition of M ; so case I is proved.

Case II: ‖w‖ < 12/ε. In this case we will use the following result due to H̊astad
(2005), which gives a bound on the rate at which weights need to decrease
(from largest to smallest in magnitude) for any linear threshold function over
{−1, 1}n.

Theorem 6.5 (H̊astad 2005). Let f : {−1, 1}n → {−1, 1} be any linear
threshold function which depends on all n variables. There is a representation
sgn(

∑
i wixi − θ) for f which is such that (assuming the weights w1, . . . , wn

are ordered by decreasing magnitude |w1| ≥ |w2| ≥ · · · ≥ |wn|) we have

|wi| ≥ |w1|
i!(n+1)

for all i = 2, . . . , n.

We prove Theorem 6.5 in Section 6.2. Note that this implies in general that
for any constant c = O(1), the c-th largest weight of any LTF need be at most
1/O(n) times smaller than the largest weight. More specifically, in our context
Theorem 6.5 lets us assume without loss of generality that the original weights
w1, . . . , wn for f satisfy |wi| ≥ 1

i!(n+1)
for each i (where we have |w1| ≤ 1). This

will prove useful in both cases IIa and IIb below.
In the following � = Õ(1/ε2) as in Section 4.

Case IIa: w2
k/(

∑n
j=k w2

j) > ε2/144 for all k = 1, . . . , �. As in Case IIa of
Section 4 we let

W = w2
�+1 + · · ·+ w2

n ,

but now we set

η′ = 2
√

W ln(8/ε)

(compare this with the setting of η as
√

W ln(4/ε) of the earlier proof).

202 Servedio cc 16 (2007)

We have that |F (x)| ≤ η′/2 only if either |w�+1x�+1 + · · ·+ wnxn| ≥ η′/2 or
|w1x1 + · · ·+ w�x� − θ| ≤ η′. As in the derivation of (4.3) the Hoeffding bound
gives us

Pr
[|w�+1x�+1 + · · · + wnxn| ≥ η′/2

] ≤ ε/4 .

It remains to bound Pr[|w1x1 + · · ·+ w�x� − θ| ≤ η′] by ε/4; again reasoning as
in the earlier section it suffices to show that

(6.6) Pr
[
|w1x1 + · · · + w�x� − θ| ≤ (24/ε)

√
2 ln(8/ε)w�

]
≤ ε/4 .

Comparing this with (4.4), we see that the two expressions differ only in con-
stant factors. One can verify that the arguments of Case IIa in Section 4 (with
suitably adjusted constants) also yield (6.6) as desired.

We thus have that Pr[|F (x)| ≤ η′/2] ≤ ε/2. From the definitions of η′ and W
we have that η′/2 ≥ √

W ≥ |w�+1|, so consequently

(6.7) Pr
[|F (x)| ≤ |w�+1|

] ≤ ε/2 .

Now let us suppose that τ > ε. Reasoning as in Case I, we thus have that at
least ε

2
2n many points x ∈ D have |F (x)| > |w�+1|. The bound (6.4) now gives

(
|θ| +

n∑
i=1

|wi|
)

/M ≥ 2

2n
· ε

2
2n · |w�+1|

which is equivalent to

M ≤ |θ| + ∑ |wi|
ε|w�+1| .

Since |θ| ≤ ∑ |wi|, we have that

vM ≤ 2

ε
·
∑n

i=1 |wi|
|w�+1| ≤ 2

ε

(
�

|w�+1| +

∑n
i=�+1 |wi|
|w�+1|

)

≤ 2

ε

(
�

|w�+1| + n

)

≤ 2

ε

(
� · (� + 1)!(n + 1) + n

)

where the second inequality holds since each of |w1|, . . . , |w�| is at most 1, the
third inequality holds since each of |w�+1|, . . . , |wn| is at most |w�+1|, and the
fourth inequality follows from Theorem 6.5. But recalling that � = Õ(1/ε2),

this upper bound on M contradicts the fact that M = n ·2Õ(1/ε2) (for a suitable

cc 16 (2007) Every LTF has a low-weight approximator 203

choice of the hidden polylogarithmic factor in the exponent of the definition
of M).

Case IIb: w2
k/(

∑n
j=k w2

j) ≤ ε2/144 for some k ∈ {1, . . . , �}. For each i =
1, . . . , n let vi denote wi/|wk|, so we have 1 = |vk| ≥ |vk+1| ≥ · · · ≥ vn. Using
Theorem 2.2 with λ = 1, we have that for all τ ∈ R,

Pr
xk,...,xn

[∣∣∣∣
n∑

j=k

wjxj − τ |wk|
∣∣∣∣ ≤ |wk|

]
= Pr

xk,...,xn

[|vkxk + · · · + vnxn − τ | ≤ 1
]

≤ 6/
√

v2
k + · · · + v2

n

= 6|wk|/
√

w2
k + · · ·+ w2

n ≤ ε/2(6.8)

where the last inequality holds since we are in Case IIb. It follows that for any
θ ∈ R we have

Pr
x1,...,xn

[|w1x1 + · · ·+ wnxn − θ| ≤ |wk|
]

= Pr
x1,...,xn

[|F (x)| ≤ |wk|
] ≤ ε/2 .

Now an entirely similar argument to that given from (6.7) through the end of
Case IIa shows that as in that case, we must have τ ≤ ε. This concludes the
analysis of all cases, so Theorem 1.2 is proved. �

6.2. Proof of Theorem 6.5. We first consider the case in which f(x) =
f(−x) for all x ∈ {−1, 1}n, i.e., f can be represented with a threshold of zero.
Once we have the result for such f we will use it to prove the result for general f.

Let sgn(w1x1 + · · · + wnxn) be a representation for f which satisfies the
conditions

1. sgn(w · x) = f(x) for each x ∈ {−1, 1}n.

2. |w · x| ≥ 1 for each x ∈ {−1, 1}n.

3. Among all vectors in Rn which satisfy conditions (1) and (2) above, w
maximizes the number of x ∈ {−1, 1}n which have |w · x| = 1. If there is
more than one such w, choose one arbitrarily.

The argument in Section 3 of H̊astad (1994) now implies that there is a set
x(1), . . . , x(n) of n elements of {−1, 1}n such that the coefficients w1, . . . , wn are
determined as the unique solution to the system of equations

v1x
(i)
1 + · · ·+ vnx(i)

n = f
(
x(i)

)
for i = 1, . . . , n .

204 Servedio cc 16 (2007)

This is a system of n equations in the variables v1, . . . , vn where each coefficient
is ±1 and the right-hand side of each equation, f(x(i)), is also ±1. Recall that
f depends on all n variables and consequently we have that each wi – and in
particular wn – is nonzero. Using this fact it is not difficult to see that the
above system of equations is equivalent to the following system of n equations
in v1, . . . , vn:

f
(
x(1)

)(
v1x

(1)
1 + · · · + vnx(1)

n

)
= f

(
x(i)

)(
v1x

(i)
1 + · · ·+ vnx(i)

n

)
for i = 2, . . . , n ,

vn = wn .

(The first n − 1 homogeneous equations above have a one-dimensional set of
solutions, and the final equation vn = wn specifies the unique correct solution
to the whole system.) Each of these first n− 1 equations has no constant term
and (dividing by two and rearranging) can be rewritten as v · y(i) = 0, where
y(i) is a vector whose entries are all −1, 0 or 1. So we have that w1, . . . , wn is
the solution to the system of equations

Y v = b

where Y is a nonsingular n × n matrix with {−1, 0, 1} entries where the last
row is (0 0 · · · 0 1) and the entries of b satisfy b1 = · · · = bn−1 = 0, bn = wn.

We assume that |w1| ≥ |w2| ≥ · · · ≥ |wn|, and now show that |wk| must be
somewhat large compared with |w1|.

After possibly reordering the first n − 1 equations, we can find a linear
combination of the first k − 1 equations such that the only nonzero coefficient
among v1, . . . , vk−1 belongs to v1, i.e., an equation of the form

(6.9) v1 =
n∑

j=k

ajvj .

Using Cramer’s Rule and the fact that any (k−1)× (k−1) matrix with entries
in {−1, 0, 1} has determinant at most (k − 1)!, it is not hard to show that
an equality in the form of (6.9) must exist where each |aj| ≤ (k − 1)!. But

now if |wk| < |w1|
(k−1)!(n−k+1)

, then it is impossible for w to satisfy (6.9) since the
right-hand side must be too small. This proves that

|wk| ≥ |w1|
(k − 1)!(n − k + 1)

≥ |w1|
(k − 1)!n

,

so we are done in the zero-threshold case.

cc 16 (2007) Every LTF has a low-weight approximator 205

We can treat the case where f has a nonzero threshold by considering the
function g : {−1, 1}n+1 → {−1, 1} which has zero threshold but an (n + 1)-st
weight which is the threshold of f. The argument for the zero-threshold case
now shows that g has a representation sgn(w1x1 + · · · + wnxn + wn+1xn+1)

with |w1| ≥ · · · ≥ |wn+1| and |wk| ≥ |w1|
(k−1)!(n+1)

; note that one of these wi

weights actually corresponds to the threshold of the original LTF f . If w1 is
the threshold then w2 is actually the largest weight of f in magnitude and we
have |wk| ≥ |w2|

(k−1)!(n+1)
. If wr is the threshold for some r > 1 then w1 is indeed

the largest of f ’s weights. In this case, for k < r we have that f ’s k-th biggest
weight is wk which satisfies |wk| ≥ |w1|

(k−1)!(n+1)
, whereas for k > r we have that

f ’s k-th biggest weight is wk+1 which satisfies |wk+1| ≥ |w1|
k!(n+1)

. So in every case

the magnitude of the k-th biggest weight is at least 1
k!(n+1)

times the magnitude
of the biggest weight, and Theorem 6.5 is proved.

6.3. Lower bounds on required accuracy for Chow parameter esti-
mation. In this section we sketch a simple argument which shows that no
variant of Theorem 1.2 in which the bound on |ĝ(S) − f̂(S)| is 1/o(

√
n) (as

a function of n) can be true. Suppose to the contrary that Theorem 1.2 held
with a bound of the form 1/(o(

√
n ·κ(ε)) for some function κ that depends only

on ε. If we fix ε to be a constant such as 1/10, the bound is simply 1/o(
√

n). It
is well known, and easy to verify, that the majority function on n variables has
all its Chow parameters 1/Θ(

√
n). If accuracy 1/o(

√
n) were sufficient, then for

sufficiently large n we could take g to be any function with Chow parameters
all 0, such as the parity function on n variables; but the majority function is
(1/2 − o(1))-far from the parity function on n variables.

7. Conclusion

We hope that Theorem 1.1 may find a range of applications in future work.
In computational learning theory, low-weight linear threshold functions are
known to be “nice” in several senses; our results suggest that similar properties
might sometimes hold for arbitrary linear threshold functions as well. As one
example, simple and efficient algorithms are known which can learn low-weight
linear threshold functions under noise rates at which no efficient algorithms
are known for learning arbitrary linear threshold functions. Can our results
(which can be viewed as stating that every linear threshold function is “close
to” a low-weight linear threshold function) be used to learn arbitrary linear
threshold functions in the presence of higher noise rates?

More concretely, an obvious direction for future work is to improve the

206 Servedio cc 16 (2007)

asymptotic dependence on ε in our results. As Goldberg (2001) and Serve-
dio (2004) have observed, H̊astad’s construction of a linear threshold function
which requires integer weights of size 2Ω(n log n) implies that in general an ε-
approximating LTF for an arbitrary LTF f may require integer weights of size
(1/ε)Ω(log log(1/ε)). While this means that it is impossible to obtain an analogue
of Theorem 1.1 with a poly(1/ε) dependence on ε, it may well be possible to

improve the current 2Õ(1/ε2) dependence.
Another goal is to obtain stronger bounds on the accuracy which is re-

quired in the Chow parameters in order to specify an arbitrary linear threshold
function f to accuracy ε. Can the gap between our 1/O(n) bound and the
1/Ω(

√
n/ log n) bound given in Section 6.3 be closed?

A final ambitious goal is to investigate a distributional version of the prob-
lem, in which the approximation is measured with respect to an arbitrary prob-
ability distribution. If positive results could be obtained in this setting, they
might lead to interesting consequences for distribution-independent learning of
linear threshold functions.

Acknowledgements

This research was partially supported by NSF CAREER award CCF-0347282,
by NSF award CCF-0523664, and by a Sloan Foundation Fellowship.

The author thanks Johan H̊astad for his kind permission to include the proof
of Theorem 6.5 in this paper, and thanks Adam Klivans for many stimulating
discussions on these topics without which this paper would never have been
written. The author also thanks the anonymous journal referees who made
many helpful suggestions, in particular pointing out the simple argument used
in Section 6.3.

References

S. Ben-David & E. Dichterman (1994). Learnability with Restricted Focus of
Attention guarantees Noise-Tolerance. In Proceedings of the 5th International Work-
shop on Algorithmic Learning Theory, 248–259.

S. Ben-David & E. Dichterman (1998). Learning with restricted focus of atten-
tion. Journal of Computer and System Sciences 56(3), 277–298.

A. Birkendorf, E. Dichterman, J. Jackson, N. Klasner & H. U. Simon

(1998). On restricted-focus-of-attention learnability of Boolean functions. Machine
Learning 30, 89–123.

cc 16 (2007) Every LTF has a low-weight approximator 207

H. Block (1962). The Perceptron: a model for brain functioning. Reviews of
Modern Physics 34, 123–135.

J. Bruck (1990). Harmonic analysis of polynomial threshold functions. SIAM
Journal on Discrete Mathematics 3(2), 168–177.

C. K. Chow (1961). On the characterization of threshold functions. In Proceedings
of the Symposium on Switching Circuit Theory and Logical Design, 34–38.

M. Dertouzos (1965). Threshold logic: a synthesis approach. MIT Press, Cam-
bridge, MA.

M. Dyer (2003). Approximate Counting by Dynamic Programming. In Proceedings
of the 35th Annual Symposium on Theory of Computing (STOC), 693–699.

M. Dyer, A. Frieze, K. Rannan, A. Kapoor, L. Perkovic & U. Vazirani

(1993). A mildly exponential time algorithm for approximating the number of so-
lutions to a multidimensional knapsack problem. Combinatorics, Probability and
Computing 2, 271–284.

Y. Freund (1995). Boosting a weak learning algorithm by majority. Information
and Computation 121(2), 256–285.

Y. Freund & R. Schapire (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences
55(1), 119–139.

P. Goldberg (2001). Estimating a Boolean perceptron from its average satisfying
assignment: Aa bound on the precision required. In Proceedings of the Fourteenth
Annual Conference on Computational Learning Theory, 116–127.

M. Goldmann, J. Håstad & A. Razborov (1992). Majority gates vs. general
weighted threshold gates. Computational Complexity 2, 277–300.

M. Goldmann & M. Karpinski (1998). Simulating threshold circuits by majority
circuits. SIAM Journal on Computing 27(1), 230–246.

A. Hajnal, W. Maass, P. Pudlak, M. Szegedy & G. Turan (1993). Threshold
circuits of bounded depth. Journal of Computer and System Sciences 46, 129–154.

J. Håstad (1994). On the size of weights for threshold gates. SIAM Journal on
Discrete Mathematics 7(3), 484–492.

J. Håstad (2005). Personal communication.

208 Servedio cc 16 (2007)

T. Hofmeister (1996). A Note on the Simulation of Exponential Threshold
Weights. In Computing and Combinatorics, Second Annual International Confer-
ence (COCOON), 136–141.

J. Hong (1987). On connectionist models. Technical Report 87-012, Dept. of Com-
puter Science, University of Chicago.

S. T. Hu (1965). Threshold Logic. University of California Press.

M. Jerrum & A. Sinclair (1997). The Markov Chain Monte Carlo method: an
approach to approximate counting and integration, 482–520. PWS Publishing.

R. Kannan (1994). Markov chains and polynomial time algorithms. In Proceedings
of the 35th Symposium on Foundations of Computer Science, 656–671.

P. Kaszerman (1963). A geometric test-synthesis procedure for a threshold device.
Information and Control 6(4), 381–398.

A. Klivans, R. O’Donnell & R. Servedio (2004). Learning intersections and
thresholds of halfspaces. Journal of Computer & System Sciences 68(4), 808–840.
Preliminary version in Proc. of FOCS’02 .

A. Klivans & R. Servedio (2001). Learning DNF in time 2Õ(n1/3). In Proceedings
of the Thirty-Third Annual Symposium on Theory of Computing, 258–265.

N. Littlestone (1988). Learning quickly when irrelevant attributes abound: a new
linear-threshold algorithm. Machine Learning 2, 285–318.

N. Littlestone (1991). Redundant noisy attributes, attribute errors, and linear-
threshold learning using Winnow. In Proceedings of the Fourth Annual Workshop on
Computational Learning Theory, 147–156.

M. Luby & B. Velickovic (1996). On deterministic approximation of DNF. Al-
gorithmica 16(4/5), 415–433.

W. Maass & G. Turan (1994). How fast can a threshold gate learn?. In Compu-
tational Learning Theory and Natural Learning Systems: Volume I: Constraints and
Prospects, S. Hanson, G. Drastal, and R. Rivest, eds., 381–414. MIT Press.

B. Morris & A. Sinclair (1999). Random walks on truncated cubes and sampling
0-1 Knapsack Solutions (Preliminary Version). In Proceedings of the 40th Annual
Symposium on Foundations of Computer Science (FOCS), 230–240.

S. Muroga (1971). Threshold logic and its applications. Wiley-Interscience, New
York.

cc 16 (2007) Every LTF has a low-weight approximator 209

S. Muroga, I. Toda & S. Takasu (1961). Theory of majority switching elements.
J. Franklin Institute 271, 376–418.

A. Novikoff (1962). On convergence proofs on perceptrons. In Proceedings of the
Symposium on Mathematical Theory of Automata, volume XII, 615–622.

P. Orponen (1992). Neural networks and complexity theory. In Proceedings of the
17th International Symposium on Mathematical Foundations of Computer Science,
50–61.

V. V. Petrov (1995). Limit theorems of probability theory. Oxford Science Publi-
cations, Oxford, England.

P. Raghavan (1988). Learning in threshold networks. In First Workshop on Com-
putational Learning Theory, 19–27.

A. Razborov (1992). On Small Depth Threshold Circuits. In Proceedings of the
Third Scandinavian Workshop on Algorithm Theory (SWAT), 42–52.

R. Servedio (2004). Monotone Boolean formulas can approximate monotone linear
threshold functions. Discrete Applied Mathematics 142(1-3), 181–187.

J. Shawe-Taylor & N. Cristianini (2000). An introduction to support vector
machines. Cambridge University Press.

L. Trevisan (2004). A note on approximate counting for k-DNF. In Proceedings of
the Eighth International Workshop on Randomization and Computation, 417–426.

L. Valiant (1984). Short monotone formulae for the majority function. Journal of
Algorithms 5, 363–366.

R. O. Winder (1971). Chow parameters in threshold logic. Journal of the ACM
18(2), 265–289.

Manuscript received 10 September 2006

Rocco A. Servedio

Department of Computer Science
Columbia University
1214 Amsterdam Avenue, Mailcode 0401
New York, NY 10027-7003, USA
rocco@cs.columbia.edu

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00417
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

