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Abstract

The central question in quantum multi-prover interactiveqb systems is whether or not entangle-
ment shared between provers affects the verification poivireoproof system. We study for the first
time positiveaspects of prior entanglement and show that entangleiseseful even fohonesiprovers.
We show how to use shared entanglement to parallelize any-pralzer quantum interactive proof sys-
tem to aone-roundsystem withperfect completeneswith one extra prover. Alternatively, we can also
parallelize to a three-turn system with the same numberafgrs, where the verifier only broadcasts the
outcome of a coin flip. This “public-coin” property is someatlsurprising, since in the classical case
public-coin multi-prover interactive proofs are equivaléo single prover ones.
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1 Introduction

Multi-prover interactive proof systems are a central notia theoretical computer science. An im-
portant generalization of interactive proof systerns [GMRBab85], they were originally introduced
in [BOGKWS8S8] in a cryptographic context. Later it was shoyBFL91,[FRS94] that the clagelIP of
languages having a multi-prover interactive proof systemqual taNEXP, which led to the development
of the theory of inapproximability and probabilisticalli@ckable proofs [FGL96,/AS98, ALM™98].

In a multi-prover interactive proof system, a verifier commuates with several provers, which do not
communicate with each other. One of the central challengehis area is to understand the power of
quantummulti-prover interactive proof systems (QMIP systems)pémticular, the major open question is
how entanglemenshared among the provers affects these systems. This@ueéstinique to the quantum
world, since the related classical resource of shared randss is known not to affect the power of such
systems. It is not even clear whether entanglemsreasesor decreaseshe verification power of QMIP
systems. On one hand, using entanglement, dishonest prongint cheat more easily, thereby breaking the
soundness of the system. On the other hand, the increasest i@t entanglement gives to honest provers
could be harnessed by the verifier, increasing the expigssiithe proof system.

To the best of our knowledge, all previous results in thimdeee below) have focused on the former
case, studying thaegativeeffects of entanglement, i.e., whether or mighonestentangled provers can
break proof systems that are sound for any dishomeshtangledprovers. Our work is the first to focus on
the positiveaspects of entanglement, where shared entanglement malydetageous tbhonestprovers.

1.1 Previous and related work

Kobayashi and Matsumotd_[KMO3] introduced QMIP systemshveitquantum verifier, and proved that
the class of languages having a quantum multi-prover iatieea proof system is equal tNEXP when
the provers do not share any prior entanglement, and is icedtan NEXP when they share at most
polynomially many entangled qubits. Cleve, Hgyer, Tonad Watrous[[CHTW04] studied multi-prover
interactive proof systems in which the verifier remains silze but provers may initially share entan-
glement, and presented several protocols for which shafd gairs can increase the power of dis-
honest provers. They also proved that the class of languagédag some restricted version of multi-
prover interactive proof system, denoted ®WIP*(2,1), is contained inEXP when provers are al-
lowed to share prior entanglement (Wehner [WehO06] improtredl upper bound t&)IP(2), the class
of languages having a two-message quantum interactivef pyatem), which is in stark contrast to the
corresponding classMIP(2,1) without prior entanglement, which is equal WEX P Very recently,
Kempe, Kobayashi, Matsumoto, Toner, and Vidick [KKBI7] gave limits on the cheating power of dis-
honest entangled provers in some quantum and classicalpnoler interactive proof systems, by show-
ing how such proof systems can be “immunized” against theofismtanglement by dishonest provers.
Ito, Kobayashi, Preda, Sun, and Yao [I[K@7] and Cleve, Gavinsky, and Jain [CGJ07] also gave limits on
the cheating power of entangled provers for some classialil-prover interactive proof systems.

All these studies focus only on timegativeaspects of prior entanglement, i.e., whether ordisitonest
but prior-entangled provers can break the soundness oftiné gystem.

1.2 Our Results

This paper studies thgositiveaspects of prior entanglement and shows a number of germeyties of
QMIP systems, extensively using prior entanglementhfmmestprovers. This gives the first evidence that
prior entanglemenis useful even for honest provers. Our main theorem statesathyafuantunk-prover

for some two-sided bounded error



interactive proof system that may involve polynomially maounds can be parallelized tocse-round
quantum(k + 1)-prover interactive proof system glerfectcompleteness and such that the gap between
completeness and soundness accepting probabilitiedl issthded by an inverse-polynomial.

To state our results more precisely, @I1P (k, m, ¢, s) denote the class of languages havingraturn
quantumk-prover interactive proof system with completeness attleasd soundness at most where
provers are allowed to share an arbitrary amount of entarggie We call the difference — s the “gap”
in this paper. As commonly used in classical multi-proveeractive proofs we use the term “round” to
describe an interaction consisting of questions from thidigefollowed by answers from the provers. We
use the term “turn” for messages sent in one direction. Omedgonsists of two turns: a turn for the verifier
and a turn for the provers. Lebly andpoly ! be the sets of all polynomially bounded functions and all
inverse-polynomial functions, respectively. Throughthis paper we assume that the numbenf turns
and the numbek of provers are functions ipoly with respect to the input size, and that completeressd
soundness are functions of the input size s: Z* — [0, 1]. Then we show the following main theorem.

Theorem 1. For any k, m € poly andc, s satisfyingec — s € poly ! there exists a functiop € poly such
that QMIP (k, m, ¢, s) C QMIP (k $1,2,1,1 - %)_

Since it is easy to amplify the success probability withaaréasing the number of rounds by running
multiple instances of a proof system in parallel using sedéht set of provers for every instance, the above
theorem shows that one-round (i.e., two-turn) QMIP systarasas powerful as general QMIP systems.

Corollary 2. For anyk, m € poly ande, s satisfyinge — s € poly !, andp € poly, there exists’ € poly
such thatQMIP (k, m, ¢, s) € QMIP (K, 2,1,27P).

The proof of our main theorem comes in three parts, corretipgrto Section§]3,14, arid 5. The first
part shows how to convert any QMIP system with two-sided bedrerror into one with one-sided bounded
error of perfect completeness without changing the numb@ravers. The second part shows that any
QMIP system with polynomially many turns can be parallelize one with only three turns (messages
from the provers followed by questions from the verifierdaled by responses from the provers) in which
the gap between completeness and soundness is still bobgaedinverse-polynomial. Again the number
of provers remains the same in this transformation. Fingily third part shows that any three-turn QMIP
system with sufficiently large gap can be converted into atiwo (i.e., one-round) QMIP system with
inverse-polynomial gap, by adding an extra prover.

Similar statements to our first and second parts have alfgzaly shown by Kitaev and Watrolis [KWO0O]
for single-proverquantum interactive proofs. Their proofs, however, hgardly on the fact that a single
quantum prover can apply arbitrary operators over all tleesgxcept for the private space of the verifier.
This is not the case any more for quantum multi-prover imira proofs, since now a quantum prover
cannot access the qubits in the private spaces of the otlartuqu provers, in addition to those in the
private space of the verifier. Hence new methods are reqfdargtle multi-prover case.

To transform proof systems so that they have perfect coenpdsts, our basic idea is to use the quantum
rewinding technigue developed for quantum zero-knowlgatgefs by Watrous [Wat06], but in a different
way. In our case we use it to “rewind” an unsuccessful contfmurtdhat would result in rejection into a suc-
cessful one. To apply the quantum rewinding technique, werfiodify the proof system so that the honest
provers can convince the verifier with probability exac%lyjsing some initial shared state and moreover
no other initial shared state achieves a higher acceptat®lgility. This initial shared state corresponds
to the auxiliary input in the case of quantum zero-knowledg®ofs, and thus, as in that scenario, the se-
quence of forward, backward, and forward executions of tisopol achieves perfect completeness. The
obvious problem of this construction lies in proving souesh) as the dishonest provers may not use the
same strategies for all of the three executions of the pigiem. To settle this, we design a simple protocol



that tests if the second backward execution is indeed a adksimulation of the first forward execution.
The verifier performs with equal probability either the amig rewinding protocol or this invertibility test
without revealing which test the provers are undergoings Tarces the provers to use essentially the same
strategies for the first two executions of the protocol, Wwhscsufficient to bound the soundness. As a result
we prove the following.

Theorem 3. For any %k, m € poly andc, s satisfyinge — s € poly !, andp € poly, there existsn’ € poly
such thatQMIP (k, m, ¢, s) € QMIP(k,m’',1,27P).

For the parallelization to three turns, our approach is b $inow that any QMIP system with sufficiently
large gap can be converted into another QMIP system withaitmesumber of provers, in which the number
of rounds (turns) becomes almost half of that in the origprabf system. The proof idea is that the verifier
in the first turn receives the snapshot state from the ofigiystem after (almost) half of turns have been
executed, and then with equal probability executes eittierveard-simulation or a backward-simulation of
the original system from that turn on. Honest provers onleha simulate the original system to convince
the verifier, while any strategy of dishonest provers withllowable high success probability would lead to
a strategy of dishonest provers in the original system thiatradicts the soundness condition. By repeatedly
applying this modification, together with TheorEin 3 as ppepssing, we can convert any QMIP system into
a three-turn QMIP system with the same number of proversstilblhas an inverse polynomial gap.

Theorem 4. For any k,m € poly and ¢, s satisfyinge — s € poly ™!, there existgp € poly such that
QMIP(k,m, ¢, 5) € QMIP (k,3,1,1 ~ 1),

For k =1, this gives an alternative proof of the parallelization atean due to Kitaev and Wa-
trous [KWOO] for single-prover quantum interactive praofisis interesting to note that our parallelization
method does not need the controlled-swap test at all, wilidéhie key test in the Kitaev-Watrous paralleliza-
tion method. Another point worth mentioning in our methodhiat, at every time step of our parallelized
protocol, the whole system has only one snapshot state ajripmal system. This is in contrast to the
fact that the whole system has to simultaneously treat maagshot states in the Kitaev-Watrous method.
The merit of our method is, thus, that we do not need to treaptissible entanglement among different
snapshot states when analyzing soundness, which may benaeaabn why our method works well even
for the multi-prover case. Moreover, our method is more gggfticient than the Kitaev-Watrous method,
in particular when we parallelize a system with polynonyiaiany rounds.

To prove the third part, we will take a detour by proving that

(i) any three-turn QMIP system with sufficiently large gam ¢ee modified to a three-tumpublic-coin
QMIP system with the same number of provers and a gap of rgugmilar order of magnitude,

(i) any three-turn public-coin QMIP system can be conwritgto a two-turn QMIP system without
changing completeness and soundness, by adding one ex¥e.pr

The notion of public-coin QMIP systems we use is a naturakgaization of public-coin quantum in-
teractive proofs in the single-prover case introduced byridé and Watrous [MWO5]. The corresponding
complexity class is denoted BYMIP ;,(k, m, c, s) in this paper. Intuitively, at every round, a public-coin
quantum verifier flips a fair classical coin at most polyndiyiemany times, and then simply broadcasts the
result of these coin-flips to all the provers. Property (i igeneralization of the result by Marriott and Wa-
trous [MWO05] to the multi-prover case, whereas propertyigicompletely new. The idea to prove (ii),
assuming that the number of provers in the original proofesyssk, is to send questions only to the fifst
provers in the newk + 1)-prover system, requesting the original second messagestfrek provers in the
original system. The verifier expects to receive from (the- 1)-st prover the original first messages from



the k provers in the original system without asking any questmithat prover. The public-coin property
of the original system implies the nonadaptiveness of thesages from the verifier, which is essential to
prove (ii). In fact, there is a way to directly prove the thpdrt, but our detour enables us to show another
two important properties of QMIP systems. Specifically,pandy (i) essentially proves the equivalence of
public-coinquantumk-prover interactive proofs and general quantisprover interactive proofs, for any
k.

Theorem 5. For any k, m € poly andc, s satisfyinge — s € poly !, andp € poly, there existsn’ € poly

such thatQMIP (k, m, ¢, s) € QMIP,,(k,m', 1,277).

Note that in the classical case, public-coin multi-proveeiactive proofs are only as powerful as single-
prover interactive proofs: because every prover recetvesame question from the verifier it means that
every prover knows how other provers will behave and thet jsirategy of the provers can therefore be
simulated by a single prover. Hence, these systems canrast pewerful as general classical multi-prover
interactive proofs unleSSEXP = PSPACE. In contrast, our result shows that in the quantum casejgubl
coin QMIP systemsre as powerful as general QMIP systems. The non-triviality wbljz-coin QMIP
systems may be explained as follows: even if every quantavepknows how other quantum provers will
behave, still each quantum prover can apply only local foermgations over a part of some state that may
be entangled among the provers, which is not enough to sieneleery possible strategy a single quantum
prover could follow.

Property (ii) for the casé& = 1 implies that any language iQIP (and thus inPSPACE) has atwo-
prover one-roundjuantum interactive proof system of perfect completenagsexponentially small error
in soundness, since any languag&)iiP has a three-message public-coin quantum interactive gy@dém
of perfect completeness with exponentially small errordarginess [MWO05].

Corollary 6. For anyp € poly, QIP C QMIP(2,2,1,27?) (and thusPSPACE C QMIP(2,2,1,277)).

In the classical case a similar statement to the last coyollaas shown by Cai, Condon, and Lip-
ton [CCL94] (and the stronger statement that two-proverronmd interactive proofs are as powerful as
general multi-prover interactive proofs was shown laterHgyge and Lovasz [FL92]). All these results
are, however, not known to hold under the existence of pritergglement among the provers. Before our
result, it has even been openHSPACE has a two-prover one-round quantum interactive proof gyste
(Very recently, Kempe et al. [KKMOQ7] succeeded in proving that the classical two-proverrongd inter-
active proof system foPSPACE in Ref. [CCL94] is sound in a weak sense against any pair dforisst
prior-entangled provers: soundness is bounded away frarbgran inverse-polynomial. Their result is
incomparable to ours since on one hand we have a much strengadness condition, and on the other
both the verifier and the honest provers must be quantum.nmast, in Ref. [KKM™07] both of them just
follow a classical protocol.)

Finally, we stress again that our constructions extengiueke the prior shared entanglement of the
provers in a positive sense. In particular, even if the hopessers in the original proof system do not need
any prior entanglement at all, the honest provers in thetoacted proof system do need prior entanglement
in many cases. Most of the properties proved in this papeediédmsg 1L and]5 and Corolldry 6 in particu-
lar) are not known to hold when considering only initiallyaumangled honest provers, and thus give first
evidence that sharing prior entanglement may be advantaga@n to honest provers.

2 Preliminaries

We assume that the reader is familiar with the quantum fasmalincluding the quantum circuit model and
definitions of mixed quantum states (density operators)filadity (all of which are discussed in detail in
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Refs. [NCOO/ KSVO0?], for instance). This section summarigeme of the notions and notations that are
used in this paper, reviews the model of quantum multi-proveractive proof systems and introduces the
notion of public-coinquantum multi-prover interactive proof systems.

As in earlier work [Wat0B, KW00, KM03], we define QMIP systeingerms of quantum circuits. It is
assumed that our circuits consist of unitary gates, whishificient since non-unitary and unitary quantum
circuits are equivalent in computational power [AKN98]. &wid unnecessary complication, however, in
the subsequent sections the descriptions of protocols oftdude non-unitary operations (measurements).
Even in such cases, it is always possible to construct ynigaantum circuits that essentially achieve the
same outcome. A notable exception is in the definition of thigip-coin quantum verifier, where we want
to define the public coin-flip to be a classical operation.sTaguires a non-unitary operation for the verifier,
the (classical) public coin-flip.

When proving statements that involve the perfect-compkste property, we assume that our universal
gate set satisfies some conditions, which may not hold withrbitrary universal gate set. Specifically, we
assume that the Hadamard transformation and any classi@isible transformations are exactly imple-
mentable in our gate set. Note that this condition is satigfiemost of the standard gate sets including the
Shor basis [Sho96] consisting of the Hadamard gate, thealtad-i-phase-shift gate, and the Toffoli gate,
and thus, we believe that this condition is not restrictiVée stress that most of our main statements do
hold with an arbitrary choice of universal gate set (the cletemess and soundness conditions may become
worse by negligible amounts in some of the claims, which dmdsffect the final main statements).

All Hilbert spaces in this paper are of dimension a power aj,tapanned by qubits. We will use the
following property of fidelity.

Lemma 7 ([SR02/NSO3]) For any density operators p,0,& over a Hilbert space #,
F(p,0)? + F(0,6)* <1+ F(p,£).

Quantum Multi-Prover Interactive Proof Systems (QMIP systems): Throughout this papet and &’
denote the number of provers and m’ denote the number of turns. All of these are from the set of
polynomially bounded functions in the input siz€, denoted bypoly. Further,c ands denote functions of
the input size intd0, 1] corresponding to completeness and soundness. For natiatimmvenience in what
follows we will omit the arguments of these functions.

A guantumk-prover interactive proof system consists of a verifiewith private quantum registey
andk proversP;y, ..., P, with private quantum registef3, . .., P, as well as quantum message registers
My, ..., My, which without loss of generality are assumed to have theesaumber of qubits, denoted by
gv. One of the private qubits of the verifier is designated asotliput qubit At the beginning of the
protocol, all the qubits iV, My, ..., M) are initialized to|0 - - - 0), and the qubits ifPy,...,Py) are in
somea priori shared statd®) prepared by the provers in advance (and hence possiblygetnwhich
w.l.o.g. can be assumed to be pure. No direct communicaédwden the provers is allowed after that.
The protocol consists of alternating turns of the proved@rthe verifier, starting with the verifier, i is
even, and with the provers otherwise. At a turn of the veriifeapplies some polynomial-time circuit to the
qubits in(V, My, ..., M), and then sends each registérto proverP;. At a turn of the provers each prover
P; applies some transformation to the registd?s M;) for 1 < i < k and sendd; back to the verifier.
The last turn is always a turn for the provers. After the last the verifier applies a polynomial-time circuit
to the qubits in(V, My, ..., My), and then measures the output qubit in the standard baseptaty if the
outcome ig1) and rejecting otherwise.

Formally, anm-turn polynomial-time quantum verifiér for k-prover QMIP systems is a polynomial-
time computable mapping from input stringsto a set of polynomial-time uniformly generated circuits
(vl ..., vIm+1/211 ‘and a partition of the space on which they act into regigtérs/; , ..., My), which
consist of polynomially many qubits. Similarly am-turn quantum provel is a mapping fronx to a set of



circuits { P!, ... ,PWH/QW} each acting on registe(®, M). No restrictions are placed on the complexity
of this mapping or the size d?. We will denote thei-th prover, his registers and transformations with
a subscripti. We will always assume that each provris compatiblewith the verifier, i.e. that the
corresponding registé¥l; is the same for the verifier and the prover fox i < k.

The protocol (V, Py, ..., Py, |®)) is the alternating application of prover’'s and verifier'scaits to the
state|0---0) ® |®) in registers(V,My,...,My,Py,...,Py). For oddm, circuits P} @ --- @ P}, V1,
P?®---® PZ,V? and so on are applied in sequence terminating With™'/2. If m is even, the sequence
begins withl’! followed by P} - - -® P} and so on up t&’™+%/2. We say thatV, Py, . . ., Py, |®)) accepts
x if the designated output qubit ¥ is measured inl) at the end of the protocol and call the probability
with which this happeng,..(z,V, P, ..., Py, |®)).

Definition 8. A languageL is in QMIP(k, m,c, s) iff there exists anm-turn polynomial-time quantum
verifier VV for quantumk-prover interactive proof systems such that, for every inpu

(Completeness) it € L, there existm-turn quantum prover#, ..., P, and an a priori shared sta@)
such thapaec(z,V, Py, ..., Pg, |®)) > ¢,

(Soundness) ifc ¢ L, for any m-turn quantum provers, ..., P/ and any a priori shared stat@’),
Pace(z, V. P|, ..., P}, |®")) < s.

Next, we introduce the notions plblic-coinquantum verifier angublic-coin QMIP systems. These
are natural generalizations of the corresponding notionthé single-prover case introduced by Mar-
riott and Watrous [MWOB]. Intuitively, a quantum verifierrfquantum multi-prover interactive proof sys-
tems is public-coin if, at each of his turns, after receivihg message registers from the provers, he first
flips a fair classical coin at most a polynomial number of smand then simply broadcasts the result of
these coin-flips to all the provers. No other messages atdreem the verifier to the provers. At the end
of the protocol, the verifier applies some quantum operdiothe messages received so far, and decides
acceptance or rejection.

Formally, anm-turn polynomial-time quantum verifier fér-prover interactive proof systemspsiblic-
coin if each of the circuitsV!, V2, ..., VI™=1/2] implements the following procedurey receives the
message registeid; from the provers, stores them in his private space, and tipmndlclassical fair coin
at mostgy times to generate a public strimg, recordsr; in his private space, and broadcasfgo all the
provers. The circuit’[™+1)/21 is some unitary transformation controlled by all the reesrdandom strings
rjforl <j <[(m—1)/2]. AQMIP system is public-coin if the associated verifier ibfercoin, and we
defineQMIP,,,;,(k, m, c, s) to be the class of languages@MIP (k, m, c, s) with a public-coin verifier.

3  QMIP with Perfect Completeness Equals General QMIP

In this section we prove Theordm 3, showing that any QMIPesgswith two-sided bounded error can be
transformed into a one with one-sided bounded error of pedempleteness without changing the number
of provers. For the case of a single prover, this was shownitaeli and Watrous [KWCQO0], but their proof
relies on the single prover performing a global unitary omwWhole system, and therefore does not carry
over to the multi-prover case (no prover has access to tles pthver’s private spaces and the private space
of each prover might be arbitrarily large, so we cannot usevttrifier to transfer those spaces from one
prover to the other).

First, we introduce the notion glerfectly rewindabl€MIP systems.

Definition 9. Let s < % A languagel has a perfectly rewindable:-turn quantumk-prover interactive
proof system with soundness at mesff there exists ann-turn polynomial-time quantum verifiér, such
that, for every inputr:



(Perfect Rewindability) ifz € L, there exists a set ofr-turn quantum proverd,..., P, such that
max|g) Pace(T, V, P, ..., Py, |®)) = % where the maximum is taken over all a priori shared states
|®) prepared byPy, . .., Py.

(Soundness) it ¢ L, for any set ofin-turn quantum prover#, ..., P/ and any a priori shared stg@’),
Pace(w, Vo Pl P, |9)) < 5B

We first show how to modify any general QMIP system (with somgrapriate conditions on complete-
ness and soundness) to a perfectly rewindable one with the/sandm.

Lemma 10. Letc > % > s. Then, any languagé in QMIP(k, m, ¢, s) has a perfectly rewindable:-turn
quantumk-prover interactive proof system with soundness at most

Proof. Let L be a language iQ)MIP(k, m, ¢, s) andV be the corresponding:-turn quantum verifier. We
slightly modify V' to construct anothet:-turn quantum verifiefV for a perfectly rewindable proof system
for L. The new verifierl¥, in addition to the registers df, prepares another single-qubit regisir
initialized to |0). For the firstm — 2 turns, W simply simulates/. In the (m — 1)-st turn, a turn for the
verifier, W proceeds likd” would, but send8 to the first prover in addition to the qubits would send in
the original proof system. In thex-th turn the first prover is requested to sdhithack tolV/, in addition to
the qubits sent td” in the original proof system. Thel¥ proceeds for the final decision procedure like
would, but accepts ifi” would have acceptednd B is in the statdl>@ Notice thatWW accepts only ifi
would have accepted, so the soundness is obviously atnioshe constructed proof system.

For perfect rewindability we slightly modify the protocarfhonest provers in the casec L. Let|®*)
be the a priori shared state in the original proof system reimizes the acceptance probability for the
original honest provers and Igt,.x be that maximal acceptance probability. The new proverg®seas
the a priori shared state and simulate the original proversg for the last turn. The only difference is that
in the last turn the first prover proceedsiswould, andapplies a one-qubit unitar¥ to the qubit inB,

/ 1 1
T: 1— 1).
‘O> - 2pmax ‘O> * 2pmax ‘ >

From the construction it is obvious that the maximum acogpgirobability is exactly equal té and that
this maximum is achieved when the provers use the a prioredhstatgd®*). O

Now, we are ready to show the following lemma.
Lemma 11. Letc > 1 ands < 5. ThenQMIP(k,m,c,s) C QMIP (k,3m,1, 3 + 2\/5 + 28).

Proof. The intuitive idea behind the proof of this lemma, using Wa$' “quantum rewinding technique”,
has already been explained in the introduction. We add soare mtuition before proceeding to the tech-
nical proof. Using Lemm&_10 we can assume that in the casermdsh@roversi € L) the acceptance
probability with shared stat@*) is exactly% and furthermore that no other a priori shared state achieves
higher acceptance probability. The acceptance probakihien the provers use any a priori shared gtaje

can be written APacc = ||HaCcQ|\Ij>||2 = ||HaccQHinit|\Il>H21 Where|\1j> = |0 o 0>(V,M1,...,Mk) ® |(I)>, Q

is the unitary transformation induced by the QMIP systerhlpe$ore the verifier's final measuremehit,;;

2Note that both for completeness and soundness we first fixrtheys’ transformations and then maximize over all a priori
shared states, which hence have a fixed dimension.

3This protocol can be brought into the standard form wherg oné qubit is measured to decide acceptance. \Ctik register
containing the designated output qubit idr 17 adds a new single-qubit output regis¥rinitialized to|0). At the end of the
protocol W performs a Toffoli gate on the qubits By Y, X controlled by the qubits iiB, Y). ClearlyX will contain |1) iff both
B andY contain|1).



is the projection on0 - - - 0) v m,,...m,) andIl,. is the projection onl1) of the designated output qubit. In
other words the stat@*) = [0+ 0)(v m,,..,m,) ® |®*) maximizes the expression

H‘{I%XOI’ ’Hinit QTHaCCQHiHit ‘ \I/> )

meaning that the matrid/ = Iy Q e QIlini, has maximum eigenvalugwith corresponding eigenvec-
tor [¥*). Now we apply the quantum rewinding technique by perfornforgvard, backward, and forward
executions of the proof system in sequence. Perfect coemges follows from the fact that the initial state is
an eigenvector ol with the corresponding eigenvalue exacgl,yaxactly as in the zero-knowledge scenario
of [Wat0g].

The challenge of this construction lies in the proof of sess. If the input is a no-instance, the
maximum eigenvalue of any matrid/ corresponding to our proof system is small. This shows thiiei
dishonest provers are actually “not so dishonest”, i.ethéfy use the same strategies for all of the three
(forward, backward, and forward) executions of the origeof system, the acceptance probability is
still small. However, the problem arises when the dishopesters change their strategies for some of the
three executions. To settle this, we design a simple prbtbhabtests if the backward execution is indeed a
backward simulation of the first forward execution. The fieriperforms the original rewinding protocol or
this invertibility test uniformly at random without revéad which test the provers are undergoing. Honest
provers always pass this invertibility test, and thus prémmpleteness is preserved. When the input is a
no-instance, this forces the provers to use approximalelysdme strategies for the first two executions of
the proof system, which is sufficient to bound the soundness.

We now proceed with the technical details. Letbe a language iQMIP(k, m,c,s) and letV be
the verifier in the perfectly rewindable:-turn quantumk-prover interactive proof system fdt as per
Lemmd10. We constructan-turn quantum verifiel/” of a new quantuni-prover interactive proof system
for L. W has the same registers Edn the original proof system, and performs one of two testsctvwe
call “REWINDING TEST and “INVERTIBILITY TEST'. The exact protocol is described in Figlide 1, where
for simplicity it is assumed that: is even (the case in whict is odd can be proved in a similar manner).

CompletenessAssume the input: is in L. From the original prover$, ..., P, we design honest
proversRy, ..., Ry for the constructe@m-turn system. Each new prov&; has the same quantum register
P; as P, has, and the new provers initially share*). For the firstm turns eachR; simulatesP;. At the
(m+2j)-thturnforl < j <2 R; applies(Pf_jJrl)Jr (i.e. the inverse of thém — 2j + 2)-nd turn of the
original F) . Finally, for the(2m + 2j)-th turn forl < j < %%, R; again appliest.

It is obvious from this construction that the provéts, . . . , R, can convincdV with certainty wheri?/
performs the NVERTIBILITY TEST. We show thatR,, ..., Ry can convincel with certainty even when
W performs the RWINDING TEST. In short, this holds for essentially the same reason tlegttantum
rewinding technique works well in the case of quantum zerowkedge proofs, and we will closely follow
that proof. ‘ ‘

For notational convenience, let PJ = Plo---@Pl for 1<j<%2, and et

m ~m m

Q=V3EHpP3V% ... PV Recall thatM|¥*) = 1|T*) where M = TiyitQ Macc QM.  De-

fine the unnormalized statésy), |¢1), [¢o), and|yy) by

|¢0> = HaCCQ|\II*>7 |¢1> = HTOJQ|\IJ*>> |71Z)0> = HinitQT|¢0>v |71Z)1> = HillegalQT|¢0>>

where [lijegal = [(v,m;,...M,) — init iS the projection onto states orthogonal[€o - - 0) v w;,...m,) and
Myej = I(v,My,...M,) — Llace. Then, noticing thatl*) = TI;p; |P*), we have

1
‘¢O> = HinitQTHaccQ’\I’*> = HinitQTHaccQHinit‘\Ij*> - M‘\Ij*> = 5‘\11*>;



Verifier's Protocol for Achieving Perfect Completeness
1. Simulate the original verifier for the first turns.

2. Choosé € {0, 1} uniformly at random. 1H = 0, move to the RwINDING TESTdescribed in Stefp 3,
while if b = 1, move to the NVERTIBILITY TESTdescribed in Stelp 4.

3. (REWINDING TEST)

3.1 Apply V2t to the qubits in(V,My,...,Mg). Accept if the content ofV, My, ..., M) cor-
responds to an accepting state in the original proof syst@therwise appIy(V%Jr T to the
qubits in(V, My, ..., My), and send\; to theith prover, forl < i < k.

3.2 Forj = 3 down to2, do the following:

ReceiveM; from theith prover, forl < i < k. Apply (V)T to the qubits in(V, My, ..., M),
and senaV; to theith prover, forl < i < k.

3.3 ReceivaVl; from theith prover, forl < i < k. Apply (V1T to the qubits in(V, My, ..., My).
Perform a controlled-phase-flip: multiply the phase-byif all the qubits in(V, My, ..., M)
are in statd0). Apply V; to the qubits in(V, My, ..., M), and sendV; to theith prover, for
1<i<k.

3.4 Forj = 2to 2, do the following:

ReceiveM; from theith prover, forl <i < k. Apply V7 to the qubits iV, My, ..., M), and
sendM; to theith prover, forl <i < k.

3.5 ReceiveM; from theith prover, forl < i < k. Apply V 2 ™! to the qubits in(V,My,..., Myg).
Accept if the content ofV, My, ..., M) corresponds to an accepting state in the original proof
system, and reject otherwise.

4. (INVERTIBILITY TEST)

4.1 SenadVi; to theith prover, forl < i < k.

4.2 Forj = 5 down to2, do the following:
ReceiveM; from theith prover, forl < i < k. Apply (V)T to the qubits in(V, My, ..., M),
and senaV; to thesth prover, forl < i < k.

4.3 ReceivaVl; from theith prover, forl <i < k. Apply (V1T to the qubits in(\V, My, ..., My).
Accept if all the qubits iV, My, ..., M) are in stateé0), and reject otherwise.

Figure 1: Verifier's protocol for achieving perfect comglieess

and thus,

Q¢1) = QML Q|T*) = |U*) — QM MaceQ|T*) = |U*) — QT |¢ho) = 2[ho) — (|o0) + [¥1)) = [vbo) — |t1)-

Hence, the state just before the controlled-phase-flip @p St3 when entering theEBRINDING TEST is
exactly
1
lé1)l

1

i —
Qlor = 157

([Y0) — [¥1)).



Sincellipnit[10) = [1o) andHinit]z/z1> =0, the controlled—phase—flip changes the state to

(Itho) + 1)) = ———=QT[¢0).

|H<z3 il H\cb il

Therefore, the state just afterz t1 is applied in Step 3.5is exactly

—QQ|do) = |b0),

H|¢1>II |||¢1>H

and thus, the fact thal,..|¢o) = |¢o) implies that the verifiei?” always accepts in Step 3.5.
SoundnessNow suppose that the inputis not in L. Let R}, ..., R; be anyk provers for the con-

structed3m-turn proof system, and lét)) be any a priori shared state. LB{ be the transformation that;
applies at higj-th turn, for1 <i < kandl < j < 3Tm and letZ denote the controlled-phase-flip operator
in Step 3.3. CalRy = R @ --- @ R}, for 1 <t < ™ and define

Uy =R3V% ... R?VIRWV!,

Uy = (VI)TEm . (V%L—I)TR 5 +2(V7;) E%L+1

U3 — ﬁSva% . Rm+2V2Rm+1V1.
There are three cases of acceptance in the constructedsysiem. In the first case, the verifiéf performs
the REWINDING TEST and accepts in Step 3.1. This happens with probalditywhere

b1 = ”Haccv%—i_lUlW»H?

In the second case, the verifidf performs the RwWINDING TEST and accepts in Step 3.5. This happens
with probability 22, where

m

= | MaccV 2 T U ZU(V 2 ) L V2 LU ) |12

Finally, in the third case, the verifié¥ performs the NVERTIBILITY TEST and accepts in Step 4.3. This
happens with probability?, where
p3 = || Wi U2Us [0)]%.

Hence, the total probability,.. that W acceptsz when communicating withR}, ..., R; is given by
Pace = %(pl + p2 + p3). From the soundness condition of the original proof systiéng obvious that
p1 < s. We shall show thap, < 1+ 4./s + 4s — p3. This implies thatp,.. < 2 + 2\/_+ , and the
soundness condition follows.

Using the triangle inequality, we have that

MaceV'2 T U ZU5(V 2 ) MgV 2 H1U o)) |
< MoV 2 U ZU(V E Y L V2 LU [9) — Maee V2 U3 ZULUL )|
+ |MaceV 2 THUSZUUL 1) — MooV 2 T U3 210030 Un Us [9)
+ | Maee V2 T U3 Z 103 U U [90) |- 1)
The first term of the right-hand side of inequality (1) can berfwded from above as follows:

[MaceV 2 U3 ZUs(VE ) L V2 T |9) — TaeeV 2 T U ZULUL [9)||

< |NVERUZUy(VE Y L VEHIUL|0) — VE U ZU,U, W) |
=[(Vz +1)THrejV 2 +1U1‘¢> —U|[)|| = [TV 2 Jr1U1W’> -Vz +1U1W’>H

m

= || = Maec V2 +1U1|¢>H = |Macc V2 +1U1|7/)>|| =vp < Vs.
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The second term of the right-hand side of inequalily (1) cabbdunded from above as follows:

| MaceV 2 U3 ZUSUL [§) — Taee V 2 T U3 Z T3 U U [4) |

<||VEHUZUSUL W) — V3 P U3 Z T U Un [9) |

= |U2U1[¢) — MinitU2U1[9)|| = [[Hinega1U2Ut[¥)|| = /1 — p3.
Here the last equality follows from the facts th&tl; ) = ILinicUaU |¥0) + inegatU2U1 |9) is @ unit vec-
tor, thatlli,; Ua Uy |¢) andIliegU2Us [10) are orthogonal, and thilt i UsUn [¥0)]|? = pa.
Finally, since II;,;;U>U1|t) is an unnormalized state parallel to some legal initial estand

Z1linie = —IIin; from the definitions ofZ andIl;,;, the third term of the right-hand side of inequality (1)
can be bounded as follows by using the soundness conditithre afriginal proof system:

[MaceV 2 T U3 Z1 5 U Un |90 || = || =Tace V2 Ui UsUn [10) || = | MaceV 2 T Us i UsUs [00)]] < /.

Putting everything together, we have

m

P2 = |Maee V2T U3 ZU(V E Y LV EHUL )2
< (2Vs+ /1 —p3)® =1+4/5(1 —p3) +4s —p3 < 1+ 44/5+4s — ps,
as desired. O

Now Theoreni B follows immediately from Lemrhal11 by appragfiaapplying sequential repetition.

4 Parallelizing to Three Turns

In this section we prove Theorem 4, which reduces the numbéuros to three without changing the
number of provers. This is done by repeatedly converting(ahy 1)-turn QMIP system into &'~ + 1)-
turn QMIP system where the gap decreases, but is still balbgen inverse-polynomial. We first show
the following lemma.

Lemma 12. Letc? > 5. Then,QMIP(k,4m + 1,¢,s) C QMIP (k 2m + 1, 1<, 1+2\/5>.

Proof. Let L be a language iQMIP(k,4m + 1, ¢, s) and letV be the correspondingim + 1)-turn quan-
tum verifier. We construct &m + 1)-turn quantum verifie#?” for the new quantuni-prover interactive
proof system foll. The idea is thatV first receives the snapshot state thawould have iV, My, ..., M)
just after the(2m + 1)-st turn of the original systemJ¥ then executes with equal probability either a
forward-simulation of the original system from tf@m + 1)-st turn or a backward-simulation of the origi-
nal system from thé2m + 1)-st turn. In the former casél” accepts if and only if the simulation results in
acceptance in the original proof system, while in the lateselV accepts if and only if the qubits i are

in state|0 - - - 0) @ The details are given in Figuke 2.

Completeness: Assume the inputz is in L. Let P,..., P, be the honest quantum provers
in the original proof system with a priori shared stafe). Let |¢9,,+1) be the quantum state in
(V,My,...,Mg,Pq,...,Pg) just after the(2m + 1)-st turn in the original proof system. We construct
honest proversy, ..., Ry for the new(2m + 1)-turn system. In addition tv andM;, R, prepare<; in
his private space. Similarly, in addition k&;, R; prepares; in his private space fat <i < k. R1,..., Ri
initially share|¢a;,+1) in (V,My,..., Mg, P1,...,Pg). At the first turn of the constructed proof system,

“Recall that in the original proof system the first turn waselbyg the provers, hence we do not measure the qubits inMach
here.

11



Verifier's Protocol to Reduce the Number of Turns by Half
1. ReceiveV andM; from the first prover andl; from theith prover for2 < i < k.
2. Choosé € {0, 1} uniformly at random.
3. If b = 0, execute a forward-simulation of the original proof sys&srfollows:

3.1 Apply V™*! to the qubits inV, My, ..., My). Sendb andM; to theith prover, forl < i < k.

3.2 Forj = m + 2 to 2m, do the following:
ReceiveM; from theith prover, forl <i < k. Apply V7 to the qubits inV, My, ..., M;,). Send
M; to theith prover, forl <i < k.

3.3 ReceivaVl; from theith prover, forl < i < k. Apply V2™ +! to the qubits iV, My, ..., My).
Accept if the content ofV, My, ..., My) is an accepting state of the original proof system, and
reject otherwise.

4. If b =1, execute a backward-simulation of the original proof sysses follows:

4.1 Send) andM,; to theith prover, forl <i < k.

4.2 Forj = m down to2, do the following:
ReceiveM; from theith prover, forl < i < k. Apply (V)T to the qubits in(V, My, ..., Mg).
SendM,; to theith prover, forl < ¢ < k.

4.3 ReceivaVl; from theith prover, forl <i < k. Apply (V1T to the qubits in(V, My, ..., My).
Accept if the qubits inV are in statd0 . . . 0), and reject otherwise.

Figure 2: Verifier’s protocol to reduce the number of turnshbyf.

R; sendsV and M; to W, while eachR;, for 2 <i < k, sendsM; to W. At the (25 — 1)-st turn for
2<j<m+1,if b=0, eachR; appliesPZ.m” (i.e. P;’s transformation at th¢2m + 25 — 1)-st turn in
the original system) while ib = 1, eachR; applies(P" 7)1 (i.e. the inverse of’s transformation at
the (2m — 25 + 5)-th turn in the original system) to the qubits (R;, M;), for 1 < i < k. The provers

R4, ..., R; can then clearly convinc®” with probability at least if b = 0, and with certainty ifb = 1.
Hence,IW accepts every input € L with probability at Ieaslléf—c.
SoundnessNow suppose that is not inL. Let R,..., R} be arbitrary provers for the constructed

proof system, and lgt)) be an arbitrary quantum state that represents the stataffesthe first turn in the
constructed system. Suppose that, at(tle— 1)-st turn for2 < j < m + 1, eachR; appliesX} if b =0
andY/ if b=1,for1 <i <kandwriteX/ = X{ ®---® Xj andY’ = Y{ ® --- ® Y. Define unitary
transformationd/y andU; by Uy = V2l xmtly2m .. x2ym+l andy, = (VH)Tymtl... (vm)ty?2,
and let|a) = mﬂaw%\w and|p) = mnimtww, wherell,. is the projection onto
accepting states in the original proof system &gl is the projection on0 - - - 0)y in V. Then

1

TTorgy] 100 acc o) = F(la) e, Dohé)(wIUg) = F(Ugle)(@lUo, 19) ().

”HaccUOWJM =

and thus, the probability, of acceptance wheh= 0 is given bypy = F(U&]a)(a\Uo, \¢><¢])2. Simi-
larly, the probabilityp; of acceptance wheh= 1 is given byp; = F(Uf\@ (BIUy, ]z/z>(z/z\)2. Hence the

12



probability p,.. that W acceptsc when communicating witt, . .., R, is given by

2o +21) = 3 (F(UIo) alUo. k) (1) + F(U]18)B100 [ w)?).

Pacc = 2(

Therefore, from Lemmia 7, we have
1 t t 1 t t
Pace < 5 (1 + F(Uo‘a><04’U07U1‘5><B’Ul)) = 5 (1 +F(‘Oé><04’,U0U1‘5><5’U1U0)> .

Note thatll;,i¢|3) = |5) and that3) is a legal quantum state which could appear in the origir@fsystem
just after the first turn. Hence, from the soundness propertiye original proof system,

HHaCCUOUT‘B H _ HH V2m+1Xm+1V2m X2vm+1(}72)Tvm”'(}A}m+1)Tvl‘B>H2

sinceV?!, (Yt ... ym (Y2t ymtl X2 ... y2m xmtl y2mtl form a legal sequence of trans-
formations in the original proof system.
Now, from the fact thail,..|«) = |a), we have

F(le){al, UoUT1B)(BIUUY) = [{alUsU(8)| = (@l MaccUoUT |8)| < | MaccUoUS8)]| < V5.

Hence the probability,.. thatIW acceptse is bounded by, g + f , which completes the proof.[]

Now, by repeatedly applying the construction in the proof.emmal12, we can reduce the number
of turns to three. The proof is straightforward, but we needdrefully keep track of the efficiency of the
constructed verifiers in each application, since the caostm is sequentially applied a logarithmic number
of times.

Lemma 13. For any m > 4 and anyc, s such thate = 1 — candé = 1 — s satisfyd > 2(m — 1)e,
QMIP(k,m,1 —,1 — §) C QMIP (k,3, 1- 21— (mfl)Q).

Proof. Let! be such thap! +1 < m < 241 4+ 1. Trivially, QMIP(k: m,c,s) C QMIP(k, 2! + 1, ¢, 5).
We showQMIP(k, 241 +1,1 —,1—6) C QMIP(k,3,1 — 2.1 — (mf1)2).

Let L be a language iMIP(k, 241 + 1,1 —£,1 — §) and letV(©) be the correspondin@/*+! + 1)-
turn quantum verifier. Given a description Bf?) one can compute in polynomial time a description of
a (2! 4+ 1)-turn quantum verified’ (1) following the proof of Lemmﬂz The resulting proof systeash
completeness at least- £ and soundness at mast+ @ < 1— 2. Crucially, the description of (1) is
at most some constant times the size of the descriptidn®fplus an amount bounded by a polynomial in
|z|. Hence it is obvious that, given a descriptioni&f), one can compute in polynomial time a description
of a three-turn quantum verifidr ©) by repeatedly applying the construction in the proof of Lemif2

1—41§1 —_ Ty as desired. 0

(m—1
TheorenT# now follows immediately from Theoréin 3 and LenimiaF@ everyp € poly there is an
m' € poly such thatQMIP(k m,e,s) C QMIP(k,m’,1,277) C QMIP (k 3.1,1— W) Now it

suffices to observe that: )2 € poly L.
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5 Public-Coin Systems

In this section we present the last part to complete the ppbdheoren{ . We show how any three-turn
QMIP system with sufficiently large gap can be converted mtiovo-turn QMIP system with one extra
prover, in which the gap is bounded by an inverse-polynamidthough we also have a direct proof for
this, given in Appendix_B, we will take a detour by showing h@vany three-turn QMIP system with
sufficiently large gap can be modified to a three-tpmblic-coinQMIP system with inverse-polynomial gap
without changing the number of provers, and (ii) any thige-public-coin QMIP system can be converted
into a two-turn QMIP system without changing completenas$ soundness, by adding an extra prover.
The added benefits of our detour are a proof of the equivalehpeblic-coin QMIP systems and general
QMIP systems (Theorem 5) and a proof thdP and henc&SPACE has a two-prover one-round quantum
interactive proof system of perfect completeness and exqaily small soundness (Coroll@).

5.1 Converting to Public-Coin Systems

In this subsection we prove Theoréin 5 showing that any laggtizat has a quantukprover interactive
proof system with two-sided bounded error also hpslaic-coinquantumk-prover interactive proof system
of perfect completeness and exponentially small soundness

We first show that any three-turn QMIP system with sufficiefdtge gap can be modified to a three-turn
public-coin QMIP system with the same number of provers awnerse-polynomial gap. In the single-prover
case, Marriott and Watrous [MWO05] proved a similar statet@ur proof is a generalization of their proof
(Theorem 5.4 in Ref[ [MWQ5]) to the multi-prover case.

Lemma 14. For anyc, s satisfyingc? > s, QMIP(k, 3, ¢, s) C QMIP,, (K, 3, %, 1+2\/§). Moreover, the

message from the verifier to each prover in the public-costesy consists of only one classical bit.

Proof. Let L be a language ifMIP (k, 3, ¢, s) and letV be the corresponding three-turn quantum verifier.
We construct a new verifidl” for the public-coin system. The idea is that in the first tlimreceives the
reduced state in the original registérof the snapshot state just after the second turn (i.e., jtest the
first transformation ofl”) in the original proof systemWW then flips a fair classical coih € {0,1} and
broadcast$ to the provers. At the third turn thigh prover is requested to send the regisfigiof the original
proof system, fol < i < k. If b = 0 the qubits in(V, My, ..., M) should form the quantum state the
original verifierV would possess just after the third turn of the original pmyaftem. Nowl? appliest’? to

the qubits in(V, My, ..., M) and accepts if and only if the content(@f, My, ..., M) is an accepting state
of the original proof system. On the other handp i 1, the qubits in(V, My, ..., M) should form the
quantum state the original verifi® would possess just after the second turn of the originalfpsgstem.
Now W applies(V1)T to the qubits in(V, M1, ..., M;) and accepts if and only if all the qubits inare in
state|0). The detailed description of the protocol df is given in Figuré B. The analysis of completeness
and soundness of the constructed proof system is nearltigdeto the one in Lemmia12, and is relegated
to AppendiXA. O

Theorem [5 now follows directly from Theorem] 4 and Lemrhal 14 etbgr with se-
quential repetition:  Theorem14 and Lemmal 14 imply that thdee a p’ €  poly
such that ~ QMIP(k,m,c,s) € QMIP(k,3,1,1 — 5) C QMIP,, (k,3,1,1 — 4Lp,), since

5The direct proof in AppendixB would only give the weaker dtary thatQIP has a two-prover one-round quantum interactive
proof system of perfect completeness, but with soundnéeyseaponentially close t(%. This is indeed weaker than what we can
show with the detour, since it is not known how to amplify thiecess probability of QMIP systems without increasingezithe
number of provers or the number of turns.
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Verifier's Protocol in Three-Turn Public-Coin System
1. ReceiveV from the first prover and receive nothing from ttie prover, for2 < i < k.
2. Choosé € {0, 1} uniformly at random. Sentlto each prover.
3. Receivavl; from theith prover forl < ¢ < k.

3.1 If b =0, apply V2 to the qubits in(V, My, ..., My). Accept if the content ofV, My, ..., M)
is an accepting state of the original proof system, and rejierwise.

3.2 Ifb =1, apply(V")' to the qubits in(V, My, ..., M,,). Accept if all the qubits irV are in state
|0), and reject otherwise.

Figure 3: Verifier's protocol in three-turn public-coin $ysn.

% (1 +4/1— I%) <1- 4%/- Finally, sequential repetition gives that for alle poly there exists an
m/ € poly such thalQMIP , (k,3,1,1 — 4%,) C QMIP,,, (k,m/,1,27P).

5.2 Parallelizing to Two Turns

Finally, we prove the last piece of Theorém 1 by showing thgttAree-turn public-coin quantukprover
interactive proof system can be converted into a two-tum,(bne-round) k + 1)-prover system without
changing completeness and soundness. The idea of the prtoofénd questions only to the fiksprovers

to request the original second messages fromktheovers in the original system and to receive from the
(k + 1)-st prover the original first messages of thprovers in the original system without asking him any
question.

Lemma 15. QMIP ., (k, 3, ¢,5) € QMIP(k + 1,2,¢, ).

Proof. Let L be a language i@MIP,,,;,(k,m, c, s) and letV be the corresponding verifier.

The protocol can be viewed as follows: At the first tuknfirst receives a quantum registst; from
theith prover, for each < i < k. V flips a fair classical coimy times to generate a random stringf
lengthqy, and broadcaststo all the provers) also stores in a quantum registeQ in his private space.
Finally, at the third turn)’ receives a quantum registdy from theith prover, for each < i < k. V then
prepares a quantum registéfor his work space, where all the qubits\irare initialized to staté)), applies
the transformatiori/i"2! to the qubits in(Q,V, My, ..., Mg, Ny,...,N;), and performs the measurement
IT = {II,c, I, } to decide acceptance or rejection. We construct a two-tuemiym verifieriV for the
new quantunik + 1)-prover interactive proof system far.

The constructed provail/ starts with generating a random stringf length ¢y in the first turn, and
sendsr to the firstk provers. W does not send any question to the last prover. In the seconditu
receivesN; from the ith prover expecting the original second message from trginatiith prover, for
1 <i < k. From the(k + 1)-st proveri¥ receivesk quantum registerdly, ..., My, expecting the original
first messages of the origin&l provers. W then proceeds likd” would. A detailed description of the
protocol of W is given in Figuré 4.

CompletenessAssume the input is in L. Let P,..., P, be the honest provers in the original proof
system. Lety; ) be the quantum state (M4, ..., Mg, P1, ..., Py) in the original proof system just after the
first turn. We construct honest proveRs, . . ., Rx for the two-turn system. Faor < i < k, R; prepares
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Verifier's Protocol in One-Round System

1. Prepare a quantum regisér and initialize all the qubits itV to state|0). Flip a fair classical coin
gv times to generate a random strin@f lengthqy. Storer in a quantum registeR, and send- to
theith prover forl < i < k. Send nothing to thék + 1)-st prover.

2. Receive a quantum registey from theith prover, forl < i < k, andk quantum registersly, ..., Mg
from the (k + 1)-st prover. ApplyVfnal to the qubits in(Q, V, My, ..., My, Ny,...,N;) and accept
if and only if the content ofQ, V, My, ..., Mg, Ny,...,Ng) is an accepting state of the original proof
system.

Figure 4: Verifier's protocol to reduce the number of turnsio.

quantum registeP; in his private space, where some of the qubit®jnform the quantum registeM;,
while Rj, 1 prepares the quantum registéfs, ..., My in his private spaceRy, ..., Ry initially share
[th1) In (My, ..., Mg, Pq,...,Pg). At the second turnR. just sends the qubits ifMy, ..., My) to W,
while eachR;, after receiving-, just behaves liké’;, would at the third turn of the original system, and then
sendsN;, which is a part ofP;, to W, for 1 < i < k. It is obvious from the construction that the provers

Ry, ..., Riy1 can convincdV with the same probability with whiclf,, . .., P, could convinceV/, which
is at least.
SoundnessNow assume the input is notin L. Let R}, ..., 2+1 be any provers for the constructed

proof system and IeR] be the quantum register consisting of all the qubits in theafer space of?;, for
1 <i<k+1. ForRj,,, some of the qubits iRk} , form the registeM = (My,...,M;). Let|¢) be
an arbitrary quantum state R, ..., R} ;) thatis initially shared by?;, ..., R} ;. Suppose that, at the

second turn, eacR, appliein(T), for1l < i < k, if the message frofi/ is r. Without loss of generality, we
assume thai; , does nothing, and just sends the qubitgMy, ..., My) at the second turn, sindg)
receives nothing fron¥V (that &), applies some transformatiafi is equivalent to sharing’|+) at the
beginning).

Consider three-turn quantum prover§ ..., P, for the original proof system with the following prop-
erties: (1) eachP/ prepares the quantum registef in his private space, fot <i <k, (2) P|,..., P,
initially share|y) in (R,...,R,_ ), where all the qubits iR}, except for those ir{My, ..., M) are
shared arbitrarily, (3) at the first turn, eaBfisendsM; to V, for 1 < i < k, and (4) if the message froii
is r, at the third turn, eack! appliesXZ.(T) to the qubits irR}, for 1 < < k. Itis obvious that these provers
Pj,..., P, can convince the original verifiér with the same probability thak;, ..., R;_ , can convince
W. Hence, the probability/” acceptse is at mosts, as desired. O

Now Theorem[1l follows from Theorerh] 4 and Lemmas 14 15. I2oyold, claiming
QIP C QMIP(2,2,1,27P) for anyp € poly follows directly from Lemma 15 and the fact shown by Mar-
riott and Watrous/ [MWO05] that any language@iP can be verified by a three-message public-coin quan-
tum interactive proof system of perfect completeness wighoaentially small error in soundness (i.e.,
QIP € QMAM(1,27P) for anyp € poly).
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Appendix
A Proof of Lemmal(l4

Proof. CompletenessAssume the input is in L. Let P,..., P, be the honest quantum provers in the
original proof system with a priori shared state) in (Py,...,Px). Let |¢9) be the quantum state in
(V,Mq,..., Mg, Pq,...,Pg) just after the second turn in the original proof system. Westrmict honest
proversRy, ..., Ry for the public-coin system. In addition 8¢ and My, R, preparesP; in his private
space. Similarly, in addition t¥;, R; prepares; in his private space, faX <i < k. Ry,..., Ry initially
share|yy) in (V,My,... Mg, Py,...,Pg). Atthe first turn of the constructed proof systeRy, sendsV to
W, while eachR;, 2 < ¢ < k send nothing té17. At the third turn, ifb = 0 eachR; appliest to the qubits

in (M;, P;) and then sendsl; to W, while if b = 1, eachR; does nothing and send$; to . It is obvious
that the proversz,, . .., Ry can convincéV with probability at least if b = 0, and with certainty ib = 1.
Hence,IW accepts every input € L with probability at Ieas%;r—c.

Soundness:Now suppose that is not in L. Let R},..., R} be arbitrary provers for the con-
structed proof system, and l@p) be an arbitrary quantum state that represents the stataffestthe
first turn in the constructed system. Suppose that at thd thin eachR, appliesX; if b =0 andY;
if b=1,for1<i<kandwriteX =X;®---® Xy andY =Y; ® --- ® Y;. Note thatX andY are

unitary transformations that do not act over the qubitd/in Let |a) = MH%CV?)N(W) and
1B) = Wmnmit(vlﬁ?yw, wherell,. is the projection onto accepting states in the original

proof system andl;,;; is the projection onto states in which all the qubitd/iare in state0).
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Verifier's Protocol in One-Round System (Direct Constructon)

1. Choosé € {0,1} uniformly at random. Sendlonly to the firstk provers, and send nothing to the
(k + 1)-st prover.

2. ReceivaM; from theith prover, forl < ¢ < k, andV from the(k + 1)-st prover.

2.1 If b =0, apply V2 to the qubits in(V, My, ..., M,;). Accept if the content ofV, M, ..., M)
is an accepting state in the original proof system, and rejerwise.

2.2 Ifb = 1, apply (V1T to the qubits iV, My, ..., M;). Accept if all the qubits irV are in state
|0), and reject otherwise.

Figure 5: Verifier's protocol to reduce the number of turngao (direct construction).

Then, with a similar argument to that in the proof of Lenima th2, probabilityp,.. that W acceptsr
when communicating witt®’, . .., R}, is bounded by

Pace < 5 (14 F(XT (V) o) (@]V2X, VIV 8)(8] (V) T))

N = DN =

(14 F(la)al, VYTV B)BI(V)IT X (V2)T))

Since ;i |8) = |8) is a legal quantum state which could appear just after thé tis in the
original proof system,V!, (XY1),V? form a legal sequence of transformations in the originalopro
system, andll,.|«) = |a), again a similar argument to that in the proof of Lemma 12 shomat
F(la){al, VAXYTVYB)(B|(VHTY XT(VA)T) < V5.

Hence the probability,.. thatI acceptse is bounded by, < % + % as desired. O

B Direct Proof of Modifying Three-Turn Systems to Two-Turn Systems

For completeness, here we give a direct proof of the facttingk-prover three-turn system can be converted
into a(k + 1)-prover two-turn system.

isfvinac2 I+c 1+V/s
Theorem 16. For anyc, s satisfyingc® > s, QMIP(k, 3, ¢, s) C QMIP (k: +1,2, %, 5 S).

Proof. The proof is very similar to that of Lemniall4. Indeed, ourtsigrpoint is the same, but this time
we move to a two-turn proof system, instead of a three-tublipicoin system, by adding an extra prover.
As in Lemmd1b, we first broadcast a randomtbit {0, 1} to all but the extra prover, and ask the extra
prover to send us a registérand the other provers to send us registd¢s We then proceed as in Step 3 of
the proof system given in Lemrial14: a detailed descriptigivisn in Figurd b.

CompletenessThis follows immediately from the completeness of the pregdtem in Lemma_14: in
Lemmd_ 14 the first prover sends batt{before receiving the bit) andM; (after); here we can imagine that
before the protocol starts the first prover gives registév the extrak + 1)-st prover, who sends it td@.

SoundnessThis also follows from the soundness of the proof system imio@[14: by combining the
actions of the first prover and the extra+ 1)-st prover (and thus making the provers only stronger), we ca
construct a set of provers that would succeed in the prooésysf Lemma 14 with the same probability as
they succeed here. O
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