Skip to main content
Log in

Towards lower bounds on locally testable codes via density arguments

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

The main open problem in the area of locally testable codes (LTCs) is whether there exists an asymptotically good family of LTCs, and to resolve this question, it suffices to consider the case of query complexity 3. We argue that to refute the existence of such an asymptotically good family, it is sufficient to prove that the number of dual codewords of weight at most 3 is super-linear in the blocklength of the code and they are distributed “naturally”.

The main technical contribution of this paper is an improvement of the combinatorial lemma of Goldreich et al. (Comput Complex 15(3):263–296, 2006) which bounds the rate of 2-query locally decodable codes (LDCs) and is used in state-of-the-art rate bounds for linear LDCs. The lemma of Goldreich et al. bounds the rate of 2-query LDCs of blocklength n in terms of the corruption parameter δ(n)—this is the maximal fraction of corrupted codeword bits for which a (2-query) decoder can recover correctly every message bit (with high probability). Our combinatorial lemma gives non-trivial rate bounds for any corruption parameter δ(n) such that δ(n) · nω(1), whereas the previous lemma works only for corruption parameter δ(n) such that δ(n) · n ≥ log n. The study of LDCs with sublinear corruption parameter is also motivated by Dvir’s (IEEE conference on computational complexity. IEEE Computer Society, pp 291–298, 2010) observation that sufficiently strong bounds on the rate of such LDCs imply explicit constructions of rigid matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, Dana Ron (2005) Testing Reed-Muller codes. IEEE Transactions on Information Theory 51(11): 4032–4039. doi:10.1109/TIT.2005.856958

    Article  Google Scholar 

  • Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, Mario Szegedy (1998) Proof Verification and the Hardness of Approximation Problems. Journal of the ACM 45(3): 501–555

    Article  MathSciNet  MATH  Google Scholar 

  • Sanjeev Arora, Shmuel Safra (1998) Probabilistic Checking of Proofs: A New Characterization of NP. Journal of the ACM 45(1): 70–122

    Article  MathSciNet  MATH  Google Scholar 

  • László Babai, Amir Shpilka, Daniel Stefankovic (2005) Locally testable cyclic codes. IEEE Transactions on Information Theory 51(8): 2849–2858. doi:10.1109/TIT.2005.851735

    Article  Google Scholar 

  • Eli Ben-Sasson (2010) Limitation on the rate of families of locally testable codes. Electronic Colloquium on Computational Complexity (ECCC) 17: 123

    Google Scholar 

  • Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, Salil P. Vadhan (2006) Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding. SIAM Journal on Computing 36(4): 889–974

    Article  MathSciNet  MATH  Google Scholar 

  • Eli Ben-Sasson, Oded Goldreich, Madhu Sudan (2003). Bounds on 2-Query Codeword Testing. In Proceedings of the Approximation, Randomization, and Combinatorial Optimization, (APPROX-RANDOM 2003), volume 2764 of Lecture Notes in Computer Science, 216–227. Springer. ISBN 3-540-40770-7. http://dx.doi.org/10.1007/978-3-540-45198-3_19.

  • Eli Ben-Sasson, Venkatesan Guruswami, Tali Kaufman, Madhu Sudan, Michael Viderman (2010) Locally Testable Codes Require Redundant Testers. SIAM J. Comput 39(7): 3230–3247. doi:10.1137/090779875

    Article  MathSciNet  MATH  Google Scholar 

  • Eli Ben-Sasson, Prahladh Harsha, Sofya Raskhodnikova (2005). Some 3CNF Properties Are Hard to Test. SIAM Journal on Computing 35(1), 1–21. http://epubs.siam.org/SICOMP/volume-35/art_44544.html.

  • Eli Ben-Sasson, Madhu Sudan (2008) Short PCPs with Polylog Query Complexity. SIAM J. Comput 38(2): 551–607. doi:10.1137/050646445

    Article  MathSciNet  Google Scholar 

  • Eli Ben-Sasson, Madhu Sudan (2011). Limits on the Rate of Locally Testable Affine-Invariant Codes. In Proceedings of the Approximation, Randomization, and Combinatorial Optimization, (APPROX-RANDOM 11), volume 6845 of Lecture Notes in Computer Science, 412–423. Springer. ISBN 978-3-642-22934-3. doi:10.1007/978-3-642-22935-0.

  • Eli Ben-Sasson, Michael Viderman (2010). Low Rate Is Insufficient for Local Testability. In Proceedings of the Approximation, Randomization, and Combinatorial Optimization, (APPROX-RANDOM 2010), volume 6302 of Lecture Notes in Computer Science, 420–433. Springer. ISBN 978-3-642-15368-6. doi:10.1007/978-3-642-15369-3.

  • Eli Ben-Sasson, Michael Viderman (2011). Towards Lower Bounds on Locally Testable Codes via Density Arguments. In IEEE Conference on Computational Complexity, 66–76. IEEE Computer Society. doi:10.1109/CCC.2011.9.

  • Irit Dinur (2007). The PCP theorem by gap amplification. Journal of the ACM 54(3), 12:1–12:44. ISSN 0004-5411.

    Google Scholar 

  • Irit Dinur, Elazar Goldenberg (2008). Locally Testing Direct Product in the Low Error Range. In Proceedings of the 49th Annual Symposium on Foundations of Computer Science (FOCS 08), 613–622. IEEE Computer Society. doi:10.1109/FOCS.2008.26.

  • Irit Dinur, Omer Reingold (2006) Assignment Testers: Towards a Combinatorial Proof of the PCP Theorem. SIAM Journal on Computing 36(4): 975–1024. doi:10.1137/S0097539705446962

    Article  MathSciNet  MATH  Google Scholar 

  • Zeev Dvir (2010). On Matrix Rigidity and Locally Self-Correctable Codes. In IEEE Conference on Computational Complexity, 291–298. IEEE Computer Society. ISBN 978-0-7695-4060-3. doi:10.1109/CCC.2010.35.

  • Zeev Dvir, Amir Shpilka (2007) Locally Decodable Codes with Two Queries and Polynomial Identity Testing for Depth 3 Circuits. SIAM J. Comput 36(5): 1404–1434. doi:10.1137/05063605X

    Article  MATH  Google Scholar 

  • R. G. Gallager (1963). Low-density Parity Check Codes. MIT Press.

  • Gallager R.G. (1968) Information Theory and Reliable Communication. Wiley, New York

    MATH  Google Scholar 

  • Oded Goldreich, Howard J. Karloff, Leonard J. Schulman, Luca Trevisan (2006) Lower bounds for linear locally decodable codes and private information retrieval. Computational Complexity 15(3): 263–296. doi:10.1007/s00037-006-0216-3

    Article  MathSciNet  MATH  Google Scholar 

  • Oded Goldreich, Madhu Sudan (2006) Locally testable codes and PCPs of almost-linear length. Journal of the ACM 53(4): 558–655 ISSN 0004-5411

    Article  MathSciNet  Google Scholar 

  • Venkatesan Guruswami (2006). On 2-Query Codeword Testing with Near-Perfect Completeness. In Proceedings of the Algorithms and Computation, 17th International Symposium, (ISAAC 2006), volume 4288 of Lecture Notes in Computer Science, 267–276. Springer. ISBN 3-540-49694-7. doi:10.1007/11940128_28.

  • Russell Impagliazzo, Valentine Kabanets, Avi Wigderson (2009). New direct-product testers and 2-query PCPs. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, (STOC 09), 131–140. ACM. ISBN 978-1-60558-506-2. doi:10.1145/1536414.1536435.

  • Tali Kaufman, Madhu Sudan (2007). Sparse Random Linear Codes are Locally Decodable and Testable. In Proceedings of the 48th Annual Symposium on Foundations of Computer Science (FOCS 07), 590–600. IEEE Computer Society. doi:10.1109/FOCS.2007.65.

  • Tali Kaufman, Madhu Sudan (2008). Algebraic property testing: the role of invariance. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, (STOC 08), 403–412. ACM. ISBN 978-1-60558-047-0. doi:10.1145/1374376.1374434.

  • Tali Kaufman, Michael Viderman (2010). Locally Testable vs. Locally Decodable Codes. In Proceedings of the Approximation, Randomization, and Combinatorial Optimization (APPROX-RANDOM 10), volume 6302 of Lecture Notes in Computer Science, 670–682. Springer. ISBN 978-3-642-15368-6. doi:10.1007/978-3-642-15369-3.

  • Tali Kaufman, Avi Wigderson (2010). Symmetric LDPC Codes and Local Testing. In Proceedings of the Innovations in Computer Science, (ICS 2010), 406–421. Tsinghua University Press. ISBN 978-7-302-21752-7. http://conference.itcs.tsinghua.edu.cn/ICS2010/content/papers/32.html.

  • Iordanis Kerenidis, Ronald de Wolf (2004) Exponential lower bound for 2-query locally decodable codes via a quantum argument. J. Comput. Syst. Sci 69(3): 395–420. doi:10.1016/j.jcss.2004.04.007

    Article  MATH  Google Scholar 

  • Gillat Kol, Ran Raz (2009a) Bounds on 2-Query Locally Testable Codes with Affine Tests. Electronic Colloquium on Computational Complexity (ECCC) 16: 138

    Google Scholar 

  • Gillat Kol, Ran Raz (2009b) Locally Testable Codes Analogues to the Unique Games Conjecture Do Not Exist. Electronic Colloquium on Computational Complexity (ECCC) 16: 128

    Google Scholar 

  • Swastik Kopparty, Shubhangi Saraf, Sergey Yekhanin (2011). High-rate codes with sublinear-time decoding. In Proceedings of the 43rd ACM Symposium on Theory of Computing, (STOC 11), 167–176. ACM. ISBN 978-1-4503-0691-1. doi:10.1145/1993636.1993660.

  • Or Meir (2009) Combinatorial Construction of Locally Testable Codes. SIAM J. Comput 39(2): 491–544. doi:10.1137/080729967

    Article  MathSciNet  MATH  Google Scholar 

  • Kenji Obata (2002). Optimal Lower Bounds for 2-Query Locally Decodable Linear Codes. In Proceedings of the Approximation, Randomization, and Combinatorial Optimization, (APPROX-RANDOM 02), volume 2483 of Lecture Notes in Computer Science, 39–50. Springer. ISBN 3-540-44147-6. http://link.springer.de/link/service/series/0558/bibs/2483/24830039.htm.

  • Ran Raz (1998) A parallel repetition theorem. SIAM J. Comput. 27(3): 763–803. doi:10.1137/S0097539795280895

    Article  MathSciNet  MATH  Google Scholar 

  • D. A. Spielman (1995). Computationally Efficient Error-Correcting Codes and Holographic Proofs. Phd thesis, Massachusetts Institute of Technology.

  • David P. Woodruff (2007). New Lower Bounds for General Locally Decodable Codes. Electronic Colloquium on Computational Complexity (ECCC) 14(006). http://eccc.hpi-web.de/eccc-reports/2007/TR07-006/index.html.

  • David P. Woodruff (2010). A Quadratic Lower Bound for Three-Query Linear Locally Decodable Codes over Any Field. In Proceedings of the Approximation, Randomization, and Combinatorial Optimization (APPROX-RANDOM 10), volume 6302 of Lecture Notes in Computer Science, 766–779. Springer. ISBN 978-3-642-15368-6. doi:10.1007/978-3-642-15369-3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Viderman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Sasson, E., Viderman, M. Towards lower bounds on locally testable codes via density arguments. comput. complex. 21, 267–309 (2012). https://doi.org/10.1007/s00037-012-0042-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-012-0042-8

Keywords

Subject classification

Navigation