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Abstract

This paper presents an efficient parallel approximation scheme for a new class of min-max problems.
The algorithm is derived from the matrix multiplicative weights update method and can be used to find
near-optimal strategies for competitive two-party classical or quantum interactions in which a referee
exchanges any number of messages with one party followed by any number of additional messages with
the other. It considerably extends the class of interactions which admit parallel solutions, demonstrat-
ing for the first time the existence of a parallel algorithm for an interaction in which one party reacts
adaptively to the other.

As a consequence, we prove that several competing-provers complexity classes collapse to PSPACE
such as QRG(2), SQG and two new classes called DIP and DQIP. A special case of our result is
a parallel approximation scheme for a specific class of semidefinite programs whose feasible region
consists of lists of semidefinite matrices that satisfy a transcript-like consistency condition. Applied to
this special case, our algorithm yields a direct polynomial-space simulation of multi-message quantum
interactive proofs resulting in a first-principles proof of QIP = PSPACE.

1 Introduction

This paper presents a parallel approximation scheme for a new class of min-max problems with applications
to classical and quantum zero-sum games and interactive proofs. In order to describe this class of min-max
problems let us begin by considering a semidefinite program (SDP) of the form

minimize Tr(XkP )

subject to TrMn(Xi+1) = Φi(Xi) for i = 1, . . . , k − 1

Tr(X1) = 1

0 � X1, . . . , Xk ∈Mmn

(1)

Here Md denotes the space of all d × d complex matrices and TrMn is the partial trace—the unique linear
map from matrices to matrices satisfying

TrMn : Mmn →Mm : A⊗B 7→ Tr(B)A

for every choice of A ∈ Mm and B ∈ Mn. An SDP (1) is specified by arbitrary choices of a positive
semidefinite matrix P ∈ Mmn with ‖P ‖ ≤ 1 and completely positive and trace-preserving linear maps
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Φ1, . . . ,Φk−1 : Mmn → Mm. (A linear map Φ is positive if Φ(X) � 0 whenever X � 0. Such a map is
completely positive if Φ⊗ 1Md

is positive for every positive integer d.)
Let A denote the feasible region of the SDP (1) (which is always non-empty) and let P ⊂ Mmn be a

non-empty compact convex subset of positive semidefinite matrices having operator norm at most 1. We are
concerned with the following min-max problem, which is a generalization of the SDP (1):

λ(A,P)
def
= min

(X1,...,Xk)∈A
max
P∈P

Tr(XkP ) (2)

The ordering of minimization and maximization is immaterial, as implied by well-known extensions of
von Neumann’s Min-Max Theorem [vN28, Fan53] given the fact that A,P are convex compact sets and
Tr(XkP ) is a bilinear form over the two sets.

Our main result is an efficient parallel oracle-algorithm for finding approximate solutions to the min-
max problem (2) and for approximating the quantity λ(A,P), given an oracle for optimization over the set
P. We also describe parallel implementations of this oracle for certain sets P, yielding an unconditionally
efficient parallel approximation scheme for the min-max problem (2) for those choices of P. This result is
stated formally below as Theorem 1. Before stating this theorem let us clarify terminology.

1.1 Review of parallel computation, formal statement of results

Recall that a parallel algorithm is described by a family of logarithmic-space uniform Boolean circuits. The
uniformity constraint ensures that the size of each circuit in the family scales as a polynomial in the bit
length of the input, and therefore the family represents a polynomial-time computation. Boolean circuits
are an ideal model of parallel computation because computational activity can occur concurrently at many
different gates in the circuit. Indeed, the run time of a parallel algorithm is determined by the depth of its
circuits, which might be much smaller than the total size of its circuits.

A parallel algorithm is said to be efficient if the depth of its circuits (and therefore the run time of the
algorithm) scales as a polynomial in the logarithm of the bit length of the input. The complexity class
NC consists of those functions which can be computed by efficient parallel algorithms. Efficient parallel
algorithms are sometimes called “NC algorithms” or “NC computations.” The reader is referred to [Pap94]
for an accessible introduction to parallel computation.

An oracle-algorithm is an algorithm endowed with the ability to get instantaneous answers to questions
that fall within the scope of some specific oracle. In our case, we assume an oracle for optimization over P,
which instantly solves problems of the form

Problem 1 (Optimization over P).
Input: A matrix X � 0 with Tr(X) = 1 and an accuracy parameter δ > 0.
Output: A near-optimal element P ? ∈ P such that Tr(XP ?) ≥ Tr(XP )− δ for all P ∈ P.

An oracle is incorporated into the circuit model of computation by supplementing a standard gate set
(such as {AND,OR,NOT}) with a special oracle gate. This oracle gate has many input bits (describing the
question) and many output bits (describing the answer). As with standard gates, each oracle gate contributes
unit cost to circuit size and run time.

An approximation scheme refers to an algorithm that computes one or more quantities to a given pre-
cision δ and whose run time is efficient for each fixed choice of δ > 0 but does not necessarily scale well
with δ. In the circuit model (and other models, too) this property is encapsulated by defining the underlying
problem so that the accuracy parameter δ = 1/s is specified in unary as 1s, thus forcing the bit length of the
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input to be proportional to 1/δ instead of 1/ log(δ). The choice to specify the accuracy parameter in unary
allows parallel approximation schemes to be described neatly by log-space uniform circuits with polylog
depth.

The following is a formal statement of the problem solved by our algorithm.

Problem 2 (Approximation of λ(A,P)).
Input: Completely positive and trace-preserving linear maps Φ1, . . . ,Φk−1 specifying the feasible

region A of an SDP of the form (1). An accuracy parameter δ > 0.
Oracle: Optimization over P (Problem 1).
Output: Near-optimal elements (X?

1 , . . . , X
?
k) ∈ A and P ? ∈ P such that

Tr(X?
kP ) ≤ λ(A,P) + δ for all P ∈ P

Tr(XkP
?) ≥ λ(A,P)− δ for all (X1, . . . , Xk) ∈ A

and a quantity λ̃ with |λ̃− λ(A,P)| ≤ δ.

The maps Φ1, . . . ,Φk−1 are linear maps from a complex vector space of dimension (mn)2 to another
complex space of dimension m2. As such, these maps can be represented by complex matrices of size
m2 × (mn)2. In both Problem 1 and Problem 2 it is assumed that the real and imaginary parts of each
entry in each input matrix are represented as rational numbers expressed as the ratio of two p-bit integers
written in binary for some p that is promised to scale as a polynomial in the dimension mn. (Indeed, it
suffices for our purpose that p scales logarithmically with mn.) As suggested previously, it is also assumed
that the accuracy parameter δ is represented in unary. These assumptions allow us to focus on the quantities
mn, k, 1/δ as the dominating factors determining the run time of our parallel algorithm. We may now state
our main result.

Theorem 1 (Main result). There is a parallel oracle-algorithm for Problem 2 (Approximation of λ(A,P))
with run time bounded by a polynomial in k, 1/δ, and log(mn). This algorithm is efficient if k, 1/δ are
promised to scale as a polynomial in log(mn).

1.2 Application: parallel approximation of semidefinite programs

The SDP (1) is recovered from (2) in the special case where P = {P} is a singleton set. Thus, a special
case of Theorem 1 is a parallel approximation scheme for SDPs of the form (1).

We restricted attention to SDPs for which ‖P ‖,Tr(X1) ≤ 1 because this restriction does not inter-
fere with our application to quantum interactive protocols and because the run time of our parallel algo-
rithm scales polynomially with the largest eigenvalue of P and with the trace of X1, so it is only efficient
when these quantities are bounded by a fixed polynomial in the logarithm of the bit length of the input
P,Φ1, . . . ,Φk−1. (In keeping with convention, one can think of these quantities as the width of the SDPs
we consider. Our algorithm is efficient only for width-bounded SDPs.)

It has long since been known that the problem of approximating the optimal value of an arbitrary SDP
is logspace-hard for P [Ser91, Meg92], so there cannot be a parallel approximation scheme for all SDPs
unless NC = P. The precise extent to which SDPs admit parallel solutions is not known. This special case
of our result adds considerably to the set of such SDPs, subsuming all prior work in the area at the time
it was made public. (Since that time parallel approximation schemes have been found for some SDPs of
unbounded width that are not covered by our scheme [JY11, PT12, JY12].)
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Some of what is known about SDPs in this respect is inherited knowledge from linear programs (LPs).
For example, Luby and Nisan describe a parallel approximation scheme for so-called positive LPs of the
form

minimize xp∗ subject to Cx ≥ q and x ≥ 0

where each entry of the matrix C and vectors p, q is a nonnegative real number [LN93]. Young provides
a generalization of Luby-Nisan to arbitrary mixed packing and covering problems [You01]. By contrast,
Trevisan and Xhafa show that it is P-hard to find exact solutions for positive LPs [TX98].1

The notion of a positive instance of an LP can be generalized to SDPs as follows. An SDP of the form

minimize Tr(XP ) subject to Ψ(X) � Q and X � 0

is said to be positive if P,Q � 0 and Ψ is a positive map. Of course, P-hardness of exact solutions for
positive LPs implies P-hardness of exact solutions for positive SDPs. Jain and Watrous give a parallel
approximation scheme for width-bounded positive SDPs [JW09]. Subsequent improvements extend to all
positive SDPs [JY11, PT12], and even to mixed packing and covering SDPs [JY12].

The Jain-Watrous algorithm for positive SDPs is derived from a correspondence between positive SDPs
and one-turn quantum games and can therefore be recovered as a special case of the work of the present
paper. In their proof of QIP = PSPACE, Jain et al. give a parallel algorithm for a specific SDP based on
quantum interactive proofs [JJUW11]. It is not difficult to see that their SDP can be written in the form (1)
considered in the present paper.

As mentioned above, our algorithm is not efficient when used for SDPs of unbounded width, leaving
the recent works of Jain and Yao [JY11, JY12] and Peng and Tangwongsan [PT12] on mixed packing and
covering SDPs as the only known parallel SDP approximation schemes that are not subsumed by the present
work. These recent works do not subsume our results, as neither the SDP instance used in Ref. [JJUW11]
to prove QIP = PSPACE nor its generalization (1) in the present paper are mixed packing and covering
SDPs.

1.3 Application: interactive proofs with competing provers

1.3.1 Definitions

An interactive proof with competing provers consists of a conversation between a verifier and two provers
regarding some input string x. The verifier may use randomness, but must run in time that scales as a
polynomial in the input length |x|; the provers are permitted unlimited computational power. One of the
provers—the yes-prover—tries to convince the verifier to accept x, while the other—the no-prover—tries to
convince the verifier to reject x. A decision problem L is said to admit an interactive proof with competing
provers with completeness c and soundness s if there exists c, s with c > s and a randomized polynomial-
time verifier who meets the following conditions:

Completeness condition. If x is a yes-instance of L then the yes-prover can convince the verifier to accept
with probability at least c regardless of the no-prover’s strategy.

Soundness condition. If x is a no-instance of L then the no-prover can convince the verifier to reject with
probability at least 1− s regardless of the yes-prover’s strategy.

1 For clarification, a polynomial-time algorithm finds an exact solution to an LP or SDP if it finds solutions that are within ε of
optimal in time polynomial in the bit length of ε—that is, log(1/ε). By contrast, an approximation scheme for LPs or SDPs finds
solutions that are within ε of optimal with run time that depends super-polynomially in the bit length of ε—typically 1/ε.

4



The completeness and soundness parameters c, s need not be fixed constants, but may instead vary
as a function of the input length |x|. If these parameters are not specified then it is assumed that L ad-
mits an interactive proof with competing provers for some choice of c(|x|), s(|x|) for which there exists a
polynomial-bounded function p(|x|) such that c − s ≥ 1/p. The complexity class RG consists of all deci-
sion problems that admit interactive proofs with competing provers. (The acronym RG stands for “refereed
games,” a term inspired by the field of game theory).

Often in the study of interactive proofs the precise values of c, s are immaterial because sequential
repetition (or sometimes parallel repetition) can be used to transform any verifier for which c−s ≥ 1/p into
another verifier for which c tends toward one and s tends toward zero exponentially quickly in the bit length
of x. (For example, sequential repetition followed by a majority vote can be used to reduce error for RG.)
For this reason, it is typical to assume without loss of generality that c, s are constants such as 2/3, 1/3 or
that c is exponentially close to one and s is exponentially close to zero whenever it is convenient to do so.
However, it is not always clear that a given complexity class is robust with respect to the choice of c, s so it
is good practice to be as inclusive as possible when defining these classes.

Interesting subclasses of RG are obtained by placing restrictions upon the number and timing of mes-
sages in the interaction between the verifier and provers. In this paper we introduce one such subclass based
upon interactions of the following form:

1. The verifier exchanges several messages with only the yes-prover.

2. After processing this interaction with the yes-prover, the verifier exchanges several additional mes-
sages with only the no-prover.

3. After further processing, the referee declares acceptance or rejection.

Interactive proofs of this form shall be called double interactive proofs: the verifier in such a protocol
executes a standard single-prover interactive proof with the yes-prover followed by a second single-prover
interactive proof with the no-prover. The class of problems that admit double interactive proofs shall be
called DIP.

By contrast to RG, it is not immediately clear that the definition of DIP is robust with respect to the
choice of parameters c, s. But it follows from our result that DIP is, in fact, robust with respect to the choice
of c, s. Also, whereas RG is trivially closed under complement, the protocol for double interactive proofs is
asymmetric and so it is not immediately clear that DIP is closed under complement. Again, it follows from
our result that DIP is closed under complement.

Another example of an interesting subclass of RG is the family of bounded-turn classes. For each
positive integer k the class RG(k) consists of those problems that admit an interactive proof with compet-
ing provers in which the verifier exchanges no more than k messages with each prover. It is understood
that messages are exchanged with the provers in parallel so that RG(k), like RG, is trivially closed under
complement.

Quantum interactive proofs with competing provers are defined similarly except that the verifier is a
polynomial-time quantum computer who exchanges quantum information with the provers. The analogous
complexity classes are denoted QRG, DQIP, and QRG(k).

1.3.2 Prior work

As noted in Refs. [FKS95, FK97], the results of Koller and Meggido [KM92] and Koller, Megiddo, and
von Stengel [KMvS94] imply that RG ⊆ EXP. The reverse containment was proven by Feige and Kilian
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[FK97], yielding the characterization RG = EXP. It was proven in Ref. [GW07] that QRG ⊆ EXP, from
which one obtains

QRG = RG = EXP,

which is the competing-provers version of the well-known collapse QIP = IP = PSPACE for single-
prover interactive proofs [LFKN92, Sha92, JJUW11].

For bounded-turn classes, the results of Fortnow et al. tell us that RG(1) is essentially a randomized
version of SP

2 [FIKU08]. Feige and Kilian proved RG(2) = PSPACE [FK97].2 For bounded-turn quantum
classes, [JW09] proved QRG(1) ⊆ PSPACE. The complexity of QRG(2) is an open question of [JJUW11]
that is solved in the present paper. The exact complexity of RG(k) and QRG(k) for all other k is not known.

Bounded-turn double quantum interactive proofs have been studied previously under the name short
quantum games; the associated complexity class has been called SQG. In an effort to unify notation let
DQIP(k, l) denote the class consisting of problems that admit a double quantum interactive proof with
competing provers in which the verifier exchanges no more than k messages with the yes-prover followed
by no more than l messages with the no-prover. The class SQG was first defined in Ref. [GW05] to be
equal to DQIP(1, 2), wherein it was shown that this class contains QIP = DQIP(poly , 0). The importance
of short quantum games has been diminished by the proof of QIP = PSPACE, as containment of QIP
is no longer such a peculiar property. However, the containment of PSPACE inside DQIP(1, 2) is still
interesting, as it is not known whether PSPACE is contained in DIP(1, 2), the classical version of this
class.

1.3.3 Our contribution

As we explain in Section 5, the oracle-algorithm of Theorem 1—together with a parallel implementation of a
suitably chosen oracle—implies that near-optimal strategies for the provers in a double quantum interactive
proof can be computed efficiently in parallel. The following containment then follows from a standard
argument (summarized in Section 5.4).

Theorem 2. DQIP ⊆ PSPACE.

This containment, when combined with the trivial containments IP ⊆ DIP ⊆ DQIP and the well-
known fact that PSPACE ⊆ IP [LFKN92, Sha92], yields the following characterization.

Corollary 2.1. DQIP = DIP = PSPACE.

As a special case of Corollary 2.1 we obtain the solution to an open problem of [JJUW11]:

Corollary 2.2. QRG(2) = PSPACE.

Another special case of our result is a direct polynomial-space simulation of multi-message quantum
interactive proofs, resulting in a first-principles proof of QIP = PSPACE.

Corollary 2.3. QIP = PSPACE via direct polynomial-space simulation of multi-message quantum inter-
active proofs.

2 The class we call RG(2) is called RG(1) by Feige and Kilian [FK97]. This conflict in notation stems from the fact that we
measure the length of an interaction in turns (i.e. messages per prover), whereas those authors measure an interaction in rounds of
messages. This switch of notation was instigated by Jain and Watrous, who required a convenient symbol for one-turn interactions
[JW09].
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By contrast, all other known proofs [JJUW11, Wu10] rely upon the fact that the verifier can be assumed
to exchange only three messages with the prover [KW00]. The original proof of Jain et al. [JJUW11] also
relies on the additional fact that the verifier’s only message to the prover can be just a single classical coin
flip [MW05].

Of course, every other competing-provers complexity class whose protocol can be cast as a double
interactive proof also collapses to PSPACE, such as the aforementioned class DQIP(1, 2) based on short
quantum games.

It follows from the collapse of DQIP and DIP to PSPACE that these classes are closed under comple-
ment and that they are robust with respect to the choice of parameters c, s. (Indeed, it may be assumed that
c = 1 and s ≤ 2−q for any desired polynomially-bounded function q(|x|)—see Section 6.3.)

Prior to the present work polynomial-space algorithms were known only for two-turn classical inter-
active proofs with competing provers (RG(2)), for one-turn quantum interactive proofs with competing
provers (QRG(1)), and for single-prover quantum interactive proofs (QIP). Our result unifies and sub-
sumes all of these algorithms. It also demonstrates for the first time the existence of a polynomial-space
algorithm for a competing-prover interaction (classical or quantum) in which one prover reacts adaptively
to the other.

Finally, our results illustrate a difference in the effect of public randomness between single-prover in-
teractive proofs and competing-prover interactive proofs. Any classical interactive proof with single prover
can be simulated by another public-coin interactive proof where the verifier’s messages to the prover consist
entirely of uniformly random bits and the verifier uses no other randomness [GS89]. Extending the notion
of public-coin interaction to competing-prover interactions, it is easy to see that any such interaction with a
public-coin verifier can be simulated by a double interactive proof.3 We therefore have that the public-coin
version of RG is a subset of DIP, which we now know is equal to PSPACE. Thus, by contrast to the
single-prover case where public-coin-IP = IP, in the competing-prover case we establish the following.

Corollary 2.4. public-coin-RG 6= RG unless PSPACE = EXP.

1.4 Summary of techniques

1.4.1 The matrix multiplicative weights update method

The parallel oracle-algorithm we exhibit in the proof of Theorem 1 is an example of the matrix multiplica-
tive weights update method (MMW) as presented in Refs. [AHK05, WK06, Kal07]. We draw upon the
valuable experience of recent applications of this method to parallel algorithms for quantum complexity
classes [JW09, JUW09, JJUW11, Wu10]. We also make extensive use of efficient parallel algorithms for
various matrix manipulation tasks, such as computing the singular value decomposition or exponential of a
matrix. The reader is referred to von zur Gathen for more detail on parallel algorithms for matrix operations
[vzG93] and to works of Jain et al. for discussion of the use of these algorithms in parallel implementations
of the matrix multiplicative weights update method [JUW09, JJUW11].

In its unaltered form, the MMW can be used to solve min-max problems over the domain of density
operators—positive semidefinite matricesX with Tr(X) = 1. We introduce a new extension to this method
for min-max problems over the domain A defined in the SDP (1)—a domain consisting of k-tuples of density
operators lying within a strict subspace of the affine space associated with k-tuples of density operators.
The high-level approach of our method is as follows:

3 Proof sketch: As the verifiers’s questions to each prover are uniformly random, they cannot depend on prior responses from
the other prover and can therefore be reordered so that all messages with one prover are exchanged before any messages with the
other.
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1. Extend the domain from a single density matrix to a k-tuple of density matrices.
This step is straightforward: the MMW can be applied without complication to all k density matrices
at the same time. (Equivalently, k density matrices may be viewed as a single, larger, block-diagonal
density matrix.)

2. Restrict the domain to a strict subspace of k-tuples of density matrices.
This step is more difficult. It is accomplished by relaxing the problem so as to allow all k-tuples, with
an additional penalty term to remove incentive for the players to use inconsistent transcripts.

3. Round strategies in the relaxed problem to strategies in the original protocol.
For this step one must prove a “rounding” theorem (Theorem 5), which establishes that near-optimal,
fully admissible strategies can be obtained from near-optimal strategies in the unrestricted domain
with penalty term.

1.4.2 Finding optimal strategies for the provers in a double quantum interactive proof

In Section 5 we observe that the verifier in a double quantum interactive proof induces a min-max problem
of the form (2) in which elements of A correspond to strategies for the yes-prover and elements of P
correspond to strategies for the no-prover. Thus, the parallel oracle-algorithm of Theorem 1—together with
a parallel implementation of the oracle for optimization over P—can be used to find optimal strategies for
the provers in a double quantum interactive proof.

Our implementation of this oracle is itself a special case of the algorithm of Theorem 1, so that the
overall algorithm employs the MMW method twice in a two-level recursive fashion. At the top level the
MMW is used to iteratively converge toward an optimal strategy for the yes-prover; at the bottom level
the MMW is used again to solve an SDP for “best responses” for the no-prover to a given strategy for the
yes-prover.

The central challenge in using the MMW to find optimal strategies for parties in a quantum interaction
is to find a representation for strategies that is amenable to the MMW method. In Kitaev’s transcript rep-
resentation [Kit02] the actions of a prover in a double quantum interactive proof are represented by a list
X1, . . . , Xk of density matrices that satisfy a special consistency condition that is captured by the definition
of the feasible region A of the SDP (1). Intuitively, these density matrices correspond to “snapshots” of the
state of the verifier’s qubits at various times during the interaction. (See Figure 3 on page 20.)

The key property of double quantum interactive proofs that we exploit is the ability to draw a “temporal
line” in the interaction before which only the yes-prover acts and after which only the no-prover acts. Given
a transcript X1, . . . , Xk for the yes-prover, the actions of the no-prover can then be represented by another
transcript Y1, . . . , Y`. By optimizing over all such transcripts one obtains an oracle for “best responses” for
the no-prover to a given strategy of the yes-prover as required by the MMW method.

1.4.3 Comparison of methods for semidefinite programming

In their proof of QIP = PSPACE, Jain et al. [JJUW11] employ the MMW to solve a special SDP for
quantum interactive proofs by making direct use of the primal-dual approach described in Kale’s thesis
[Kal07]. Subsequent parallel algorithms for positive SDPs [JY11, PT12] and for mixed packing and covering
SDPs [JY12] are matrix generalizations (also based on MMW) of existing algorithms for linear programs
[LN93, You01].

We do not use any of these approaches for solving SDPs. Instead we use the MMW to solve a min-max
problem as suggested by the algorithmic proof (also presented in Kale’s thesis) of a min-max theorem for
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a simple class of zero-sum quantum games. By introducing a penalty term for inadmissible strategies we
are able to extend this algorithm to a much richer class of games beyond the one-turn games considered
by Kale. We wish to stress that our parallel algorithm for SDPs arises as a special case of a more general
min-max algorithm, whereas previous approaches for SDPs do not generalize to min-max problems in any
obvious way.

1.4.4 Comparison of proofs of QIP = PSPACE

Unlike the present paper, the original proof of QIP = PSPACE due to Jain et al. [JJUW11] does not take
advantage of the transcript representation for arbitrary multi-turn strategies. Instead, as mentioned earlier,
those authors derive a special SDP by invoking several nontrivial facts about quantum interactive proofs.
Admittedly, their SDP does bear a resemblance to Kitaev’s transcript conditions, but this resemblance is only
superficial and their solution applies only to a very restricted subset of transcripts. Indeed, their derivation
breaks down without the assumption that the verifier sends only classical messages to the prover.

Previously one of us [Wu10] presented a simplified proof of QIP = PSPACE that, like the work of the
present paper, employs Kale’s algorithmic min-max theorem [Kal07] instead of the primal-dual approach
for SDPs that was used in the original proof by Jain et al. [JJUW11]. The QIP-completeness of the quantum
circuit distinguishability problem [RW05] means that quantum interactive proofs can be decided by approx-
imating the diamond norm of the difference between two quantum channels. Wu noticed that the diamond
norm can be approximated in this special case by a direct application of Kale’s algorithmic min-max the-
orem. His result did not require the penalization method introduced in the present paper nor an attendant
rounding theorem.

1.4.5 The Bures angle

Finally, it is noteworthy that the proof of our rounding theorem (Theorem 5) contains an interesting and
nontrivial application of the Bures angle, which is a distance measure for quantum states that is defined in
terms of the more familiar fidelity function.

Properties of the trace norm, which captures the physical distinguishability of quantum states, are suf-
ficient for most needs in quantum information. When some property of the fidelity is also required one
uses the Fuchs-van de Graaf inequalities to convert between the trace norm and fidelity [FvdG99]. (These
inequalities are listed in Eq. (4) of Section 2.3.)

However, every such conversion incurs a quadratic slackening of relevant accuracy parameters. Our
study calls for repeated conversions, which would incur an unacceptable exponential slackening if done
naively via Fuchs-van de Graaf. Instead, we make only a single conversion between the trace norm and
the Bures angle and then repeatedly exploit the simultaneous properties of (i) the triangle inequality, (ii)
contractivity under quantum channels, and (iii) preservation of subsystem fidelity.

Although conversion inequalities between the trace norm and Bures metric are implied by Fuchs-van de
Graaf, to our knowledge explicit conversion inequalities have not yet appeared in published literature. The
required inequalities are derived in the present paper (Proposition 4).

2 Preliminaries

Hereafter we must assume familiarity with standard concepts from quantum information, though we have
attempted to minimize our use of quantum formalism for the benefit of a wider audience. The reader is
referred to Nielsen and Chuang [NC00] and to the lecture notes of Watrous [Wat11] for proper introductions
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to the field. This section provides a short glossary clarifying our notation and terminology in Section 2.1 fol-
lowed by a review of two rarer but nonetheless simple and fundamental concepts from quantum information:
the preservation of subsystem fidelity in Section 2.2 and the Bures angle in Section 2.3.

2.1 Terminology and notation

Density matrix, quantum state. A density matrix or quantum state is a positive semidefinite matrixX with
Tr(X) = 1. Thus far, we have used upper-case Roman letters (X,Y, . . . ) to denote density matrices,
as well as other matrices. But it is standard practice in quantum information to denote density matrices
with lower-case Greek letters (ρ, ξ, . . . ). Hereafter we adopt this convention.

Measurement operator. A measurement operator is a positive semidefinite matrix M with ‖M ‖ ≤ 1.
Equivalently, it holds that 0 �M � I .

Quantum channel. A channel is a completely positive and trace-preserving linear map Φ : Mm → Mn

from matrices to matrices. These maps correspond to physically realizable operations on quantum
states.

Adjoint, matrix inner product. The adjoint A∗ of a matrix A is simply the conjugate-transpose of A. The
inner product 〈A,B〉 between two m × n matrices A,B is given by 〈A,B〉 = Tr(A∗B). The inner
product between two k-tuples of matrices is given by the sum

〈(A1, . . . , Ak), (B1, . . . , Bk)〉 =

k∑
i=1

〈Ai, Bi〉.

More generally, the adjoint Φ∗ of a linear map Φ from matrices to matrices is the unique linear map
with 〈Φ(X), Y 〉 = 〈X,Φ∗(Y )〉 for all X,Y . This formula extends in the obvious way to linear maps
from tuples of matrices to tuples of matrices.

Trace norm. The trace norm ‖X‖Tr of a matrix X is defined as the sum of the singular values of X . As a
measure of distance between quantum states, the trace norm is given by

1

2
‖ρ− ξ‖Tr = max

0�Π�I
〈ρ− ξ,Π〉 (3)

for all density matrices ρ, ξ.

Fidelity. The fidelity is another distance measure for quantum states given by

F (ρ, ξ) =
∥∥∥√ρ√ξ∥∥∥

Tr

for all density matrices ρ, ξ.

2.2 Preservation of subsystem fidelity

Consider the following property of the fidelity function, which we call the preservation of subsystem fidelity:
if ρ, ξ are states of a quantum system with fidelity F (ρ, ξ) and ρ′ is any state of a larger system consistent
with ρ then it is always possible to find ξ′ consistent with ξ such that F (ρ′, ξ′) = F (ρ, ξ).

A formal construction of such a ξ′ appears in Ref. [JUW09]. Since their construction consists entirely of
elementary matrix operations, there is an efficient parallel algorithm that takes as input ρ, ξ, ρ′ and produces
the desired state ξ′ as output.
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Proposition 3 (Preservation of subsystem fidelity [JUW09, Lemma 7.2]). Let ρ, ξ ∈ Mm and ρ′ ∈ Mmn

be density matrices with TrMn(ρ′) = ρ. There exists a density matrix ξ′ ∈ Mmn with TrMm(ξ′) = ξ and
F (ρ′, ξ′) = F (ρ, ξ). Moreover ξ′ can be computed efficiently in parallel given ρ, ξ, ρ′.

2.3 The Bures angle

The Bures angle or simply the angle A(ρ, ξ) between quantum states ρ, ξ is defined by

A(ρ, ξ)
def
= arccosF (ρ, ξ).

The angle is a metric on quantum states, meaning that it is nonnegative, equals zero only when ρ = ξ, and
obeys the triangle inequality [NC00]. Moreover, the angle is contractive, so that

A(Φ(ρ),Φ(ξ)) ≤ A(ρ, ξ)

for any quantum channel Φ. The Fuchs-van de Graaf inequalities establish a relationship between the fidelity
and trace norm [FvdG99]. The inequalities are

1− F (ρ, ξ) ≤ 1

2
‖ρ− ξ‖Tr ≤

√
1− F (ρ, ξ)2. (4)

These inequalities can be used to derive a relationship between A(ρ, ξ) and ‖ρ− ξ‖Tr. For example,

Proposition 4 (Relationship between trace norm and Bures angle). For all density matrices ρ, ξ it holds that

1

2
‖ρ− ξ‖Tr ≤ A(ρ, ξ) ≤

√
π

2
‖ρ− ξ‖Tr.

Proof. The lower bound on A(ρ, ξ) follows immediately from Fuchs-van de Graaf:

1

2
‖ρ− ξ‖Tr ≤

√
1− cosA(ρ, ξ)2 = sinA(ρ, ξ) ≤ A(ρ, ξ)

where we used the identity sinx ≤ x for all x ≥ 0.
To obtain the upper bound on A(ρ, ξ) we employ the identity cosx ≤ 1− x2/π for x ∈ [0, π/2], which

can be verified using basic calculus. Then we have

1

2
‖ρ− ξ‖Tr ≥ 1− cosA(ρ, ξ) ≥ A(ρ, ξ)2

π

from which the proposition follows.

3 Rounding theorem for a relaxed min-max problem

In this section we define a new min-max expression µε(A,P) that approximates the desired quantity
λ(A,P) from (2) in the limit as ε approaches zero. This new expression is a relaxation of λ(A,P) that
is more amenable to the MMW. We prove a “rounding theorem” (Theorem 5) by which near-optimal points
for λ(A,P) are efficiently obtained from near-optimal points for µε(A,P). Our use of the Bures angle
occurs in the proof of Lemma 8, which is used in the proof of our rounding theorem.
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Define the relaxation µε(A,P) of λ(A,P) by

µε(A,P)
def
= min

(ρ1,...,ρk)
max
P∈P

(Π1,...,Πk−1)

〈ρk, P 〉+
k

ε

k−1∑
i=1

〈TrMn(ρi+1)− Φi(ρi),Πi〉

= min
(ρ1,...,ρk)

max
P∈P
〈ρk, P 〉+

k

ε

k−1∑
i=1

1

2
‖TrMn(ρi+1)− Φi(ρi)‖Tr

Here the minimum is taken over all density operators ρ1, . . . , ρk ∈ Mmn and the maximum over all P ∈ P
and over all measurement operators Π1, . . . ,Πk−1 ∈ Mm. The second equality follows immediately from
the identity (3) from Section 2.1.

Notice that the minimum in the definition of µε(A,P) is taken over all k-tuples (ρ1, . . . , ρk) of density
operators, not just those in A. Each term in the summation serves to penalize any violation of the conditions
required for membership in A by adding the magnitude of that violation to the objective function. The k/ε
factor amplifies the penalty so as to remove incentive to select an element outside of A. Indeed, it is clear
that

lim
ε→0

µε(A,P) = λ(A,P).

The following “rounding” theorem establishes a specific rate of convergence for this limit. A subsequent
extension of this theorem (Proposition 7) provides a means by which near-optimal points for λ(A,P) are
efficiently computed from near-optimal points for µε(A,P).

Theorem 5 (Rounding theorem). For any ε > 0 it holds that λ(A,P) ≥ µε(A,P) > λ(A,P)− ε.

Proof. The first inequality is easy: let (ρ1, . . . , ρk) be optimal for λ(A,P) and let (P,Π1, . . . ,Πk−1) be
optimal for µε(A,P). Then we have

λ(A,P) ≥ 〈ρk, P 〉 = 〈ρk, P 〉+
k

ε

k−1∑
i=1

〈TrMn(ρi+1)− Φi(ρi),Πi〉 ≥ µε(A,P).

(The first inequality is because (ρ1, . . . , ρk) is optimal for λ(A,P). The equality follows because (ρ1, . . . , ρk) ∈
A, so each term in the sum is zero. The final inequality is because (P,Π1, . . . ,Πk−1) is optimal for
µε(A,P).)

The second inequality is more difficult. We invoke the following lemma, the proof of which appears
later in this section.

Lemma 6 (Rounding lemma). For any ε > 0 and any states ρ1, . . . , ρk ∈ Mmn there exists (ρ′1, . . . , ρ
′
k) ∈

A such that
1

2
‖ρk − ρ′k‖Tr < ε+

k

ε

k−1∑
i=1

1

2
‖TrMn(ρi+1)− Φi(ρi)‖Tr.

Moreover, ρ′1, . . . , ρ
′
k can be computed efficiently in parallel given ρ1, . . . , ρk.

Let (ρ1, . . . , ρk) be optimal for µε(A,P), let (ρ′1, . . . , ρ
′
k) be the density operators obtained by invoking

Lemma 6, and let P ∈ P be optimal for λ(A,P). Because (ρ1, . . . , ρk) is optimal for µε(A,P) we have

µε(A,P) ≥ 〈ρk, P 〉+
k

ε

k−1∑
i=1

1

2
‖TrMn(ρi+1)− Φi(ρi)‖Tr (5)

12



Employing the identity (3), the quantity 〈ρk, P 〉 becomes

〈ρk, P 〉 =
〈
ρ′k, P

〉
+
〈
ρk − ρ′k, P

〉
≥
〈
ρ′k, P

〉
− 1

2

∥∥ρk − ρ′k∥∥Tr
.

Substituting the bound on 1
2 ‖ρk − ρ′k‖Tr from Lemma 6, we see that the summation of trace norms in (5)

is canceled, leaving
µε(A,P) >

〈
ρ′k, P

〉
− ε ≥ λ(A,P)− ε

as desired. (The final inequality is because P is optimal for λ(A,P).)

Proposition 7 (Construction of near-optimal strategies). The following hold for any δ, ε > 0:

1. If (ρ1, . . . , ρk) is δ-optimal for µε(A,P) then there is an efficient parallel algorithm to compute
(ρ′1, . . . , ρ

′
k) ∈ A that is (δ + ε)-optimal for λ(A,P).

2. If (P,Π1, . . . ,Πk−1) is δ-optimal for µε(A,P) then P is also (δ + ε)-optimal for λ(A,P).

Proof of item 1. Let (ρ1, . . . , ρk) be δ-optimal for µε(A,P), let (ρ′1, . . . , ρ
′
k) ∈ A be obtained by invoking

Lemma 6, and let P ∈ P. We have〈
ρ′k, P

〉
≤ 〈ρk, P 〉+

1

2

∥∥ρk − ρ′k∥∥Tr

≤ 〈ρk, P 〉+ ε+
k

ε

k−1∑
i=1

1

2
‖TrMn(ρi+1)− Φi(ρi)‖Tr

≤ µε(A,P) + ε+ δ ≤ λ(A,P) + ε+ δ

(The first inequality follows from (3); the second from Lemma 6; the third because (ρ1, . . . , ρk) is δ-optimal
for µε(A,P); and the fourth because µε(A,P) ≤ λ(A,P).) It therefore follows that (ρ′1, . . . , ρ

′
k) is (δ+ε)-

optimal for λ(A,P).

Proof of item 2. Let (P,Π1, . . . ,Πk−1) be δ-optimal for µε(A,P). For any (ρ1, . . . , ρk) ∈ A we have

〈ρk, P 〉 = 〈ρk, P 〉+
k

ε

k−1∑
i=1

〈TrMn(ρi+1)− Φi(ρi),Πi〉

≥ µε(A,P)− δ > λ(A,P)− ε− δ

(The equality is because (ρ1, . . . , ρk) ∈ A so each term in the sum is zero. The first inequality is because
(P,Π1, . . . ,Πk−1) is δ-optimal for µε(A,P). The final inequality is because µε(A,P) > λ(A,P)− ε.) It
therefore follows that P is (δ + ε)-optimal for λ(A,P).

We now prove Lemma 6, the statement of which appeared in the proof of Theorem 5. Given any states
ρ1, . . . , ρk this lemma asserts that these states can be “rounded” to an element (ρ′1, . . . , ρ

′
k) ∈ A in such

a way that the distance between the final states ρk and ρ′k is bounded by a function of the extent to which
(ρ1, . . . , ρk) violate the conditions required for membership in A. Let us re-state Lemma 6 in terms of the
Bures angle.
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Lemma 8 (Rounding lemma). For any ε > 0 and any states ρ1, . . . , ρk ∈ Mmn there exists (ρ′1, . . . , ρ
′
k) ∈

A such that

A(ρk, ρ
′
k) ≤

k−1∑
i=1

A (TrMn(ρi+1),Φi(ρi)) .

Moreover, ρ′1, . . . , ρ
′
k can be computed efficiently in parallel given ρ1, . . . , ρk.

Proof. Define ρ′1, . . . , ρ
′
k recursively as follows. Let ρ′1 = ρ1. For each i = 1, . . . , k− 1 by the preservation

of subsystem fidelity (Proposition 3) there exists ρ′i+1 (which can be computed efficiently in parallel) with
TrMn(ρ′i+1) = Φi(ρ

′
i) and

A(ρi+1, ρ
′
i+1) = A

(
TrMn(ρi+1),Φi(ρ

′
i)
)
.

By the triangle inequality this quantity is at most

A (TrMn(ρi+1),Φi(ρi)) +A
(
Φi(ρi),Φi(ρ

′
i)
)
.

By contractivity of the Bures angle under channels, the summand on the right is at most A(ρi, ρ
′
i). The

lemma now follows inductively from the fact that A(ρ1, ρ
′
1) = 0.

It is easy to recover Lemma 6 from Lemma 8: it follows immediately from Lemma 8 and Proposition 4
(Relationship between trace norm and Bures angle) that

1

2
‖ρk − ρ′k‖Tr ≤

k−1∑
i=1

√
π

2
‖TrMn(ρi+1)− Φi(ρi)‖Tr.

Lemma 6 then follows from the fact that
√

π
2x <

1
2δx+ δ for all x ≥ 0 and all δ > 0.

4 A parallel oracle-algorithm for a min-max problem

In this section we prove Theorem 1 (Main result) by exhibiting an efficient parallel oracle-algorithm based
on MMW for finding approximate solutions to the min-max problem (2). The precise formulation of the
MMW method used in this paper is stated below as Theorem 9. Our statement of this theorem is somewhat
nonstandard: the result is usually presented in the form of an algorithm, whereas our presentation is purely
mathematical. However, a cursory examination of the literature—say, Kale’s thesis [Kal07, Chapter 3]—
reveals that our mathematical formulation is equivalent to the more conventional algorithmic form.

Theorem 9 (Multiplicative weights update method [Kal07, Theorem 10]). Fix γ ∈ (0, 1/2) and α > 0. Let
M (1), . . . ,M (T ) be arbitrary d × d “loss” matrices with 0 � M (t) � αI . Let W (1), . . . ,W (T ) be d × d
“weight” matrices given by

W (1) = I W (t+1) = exp
(
−γ
(
M (1) + · · ·+M (t)

))
.

Let ρ(1), . . . , ρ(T ) be density operators obtained by normalizing eachW (1), . . . ,W (T ) so that ρ(t) = W (t)/Tr(W (t)).
For all density operators ρ it holds that

1

T

T∑
t=1

〈
ρ(t),M (t)

〉
≤
〈
ρ,

1

T

T∑
t=1

M (t)

〉
+ α

(
γ +

ln d

γT

)
.
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Note that Theorem 9 holds for all choices of loss matrices M (1), . . . ,M (T ), including those for which
each M (t) is chosen adversarially based upon W (1), . . . ,W (t). This adaptive selection of loss matrices is
typical in implementations of the MMW.

Let us establish some notation before stating our algorithm. Let ε > 0 and consider the linear mapping
fA,ε with the property that

〈fA,ε(ρ1, . . . , ρk), (P,Π1, . . . ,Πk−1)〉 = 〈ρk, P 〉+
k

ε

k−1∑
i=1

〈TrMn(ρi+1)− Φi(ρi),Πi〉

so that we may write

µε(A,P) = min
(ρ1,...,ρk)

max
P∈P

(Π1,...,Πk−1)

〈fA,ε(ρ1, . . . , ρk), (P,Π1, . . . ,Πk−1)〉 .

It is clear that the mapping fA,ε is given by

fA,ε : (ρ1, . . . , ρk) 7→
(
ρk,

k

ε
[TrMn(ρ2)− Φ1(ρ1)] , . . . ,

k

ε
[TrMn(ρk)− Φk−1(ρk−1)]

)
It is tedious but straightforward to verify that the adjoint mapping f∗A,ε is given by

f∗A,ε =
(
f∗A,ε,1, . . . , f

∗
A,ε,k

)
where

f∗A,ε,1 : (P,Π1, . . . ,Πk−1) 7→ −k
ε

Φ∗1(Π1)

f∗A,ε,i : (P,Π1, . . . ,Πk−1) 7→ k

ε
[Πi−1 ⊗ I − Φ∗i (Πi)] for i = 2, . . . , k − 1

f∗A,ε,k : (P,Π1, . . . ,Πk−1) 7→ P +
k

ε
Πk−1 ⊗ I

Note that for any (P,Π1, . . . ,Πk−1) it holds that

−k
ε
I � f∗A,ε,1(P,Π1, . . . ,Πk−1) � 0

−k
ε
I � f∗A,ε,i(P,Π1, . . . ,Πk−1) � k

ε
I for i = 2, . . . , k − 1

0 � f∗A,ε,k(P,Π1, . . . ,Πk−1) �
(

1 +
k

ε

)
I � 2k

ε
I

(6)

The statement of our MMW algorithm in Figure 1 employs these formulae for the adjoint. We are now
ready to prove Theorem 1.

Proof of Theorem 1. We argue that the theorem is established by the oracle-algorithm presented in Figure
1. To this end, note that each loss matrix M (t)

i ∈ Mmn satisfies 0 � M
(t)
i � 1

kI—a fact that follows
immediately from their definition in step 2d and the bounds (6) on the adjoint mapping f∗A,ε.
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1. Let ε = δ/3, let γ = εδ
12k2

, and let T =
⌈

ln(mn)
γ2

⌉
. Let W (1)

i = I ∈Mmn for each i = 1, . . . , k.

2. Repeat for each t = 1, . . . , T :

(a) For i = 1, . . . , k: Compute the updated density operators ρ(t)
i = W

(t)
i /Tr(W

(t)
i ).

(b) For i = 1, . . . , k − 1: Compute the projection Π
(t)
i ∈Mm onto the positive eigenspace of

TrMn(ρ
(t)
i+1)− Φi(ρ

(t)
i ).

(c) Use the oracle to obtain a δ/3-optimal solution P (t) ∈ Mmn to the optimization problem for P
(Problem 1) on input ρ(t)

k .

(d) Compute the loss matrices(
M

(t)
1 , . . . ,M

(t)
k

)
=

ε

2k2

[
f∗R,ε

(
P (t),Π

(t)
1 , . . . ,Π

(t)
k−1

)
+
k

ε
(I, . . . , I, 0) .

]
(e) Update each weight matrix according to the standard MMW update rule:

W
(t+1)
i = exp

(
−γ
(
M

(1)
i + · · ·+M

(t)
i

))
.

3. Return

λ̃ =
1

T

T∑
t=1

〈
fR,ε

(
ρ

(t)
1 , . . . , ρ(t)

a

)
,
(
P (t),Π

(t)
1 , . . . ,Π

(t)
k−1

)〉
as the δ-approximation to λ(A,P).

4. Compute

(ρ1, . . . , ρk) =
1

T

T∑
t=1

(ρ
(t)
1 , . . . , ρ

(t)
k )

(P,Π1, . . . ,Πk−1) =
1

T

T∑
t=1

(P (t),Π
(t)
1 , . . . ,Π

(t)
k−1),

the pair of which are 2
3δ-optimal for µε(A,P). Compute (ρ′1, . . . , ρ

′
k) from (ρ1, . . . , ρk) as described

in item 1 of Proposition 7. Return (ρ′1, . . . , ρ
′
k) and P as the δ-optimal point for λ(A,P).

Figure 1: An parallel oracle-algorithm for finding approximate solutions to λ(A,P) (Problem 2) used in
the proof of Theorem 1.
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For each i = 1, . . . , k it is clear that the construction of the density operators ρ(t)
i in terms of the loss

matrices M (t)
i presented in Figure 1 are as defined in Theorem 9. It therefore follows that for any density

operator ρ?i ∈Mmn we have

1

T

T∑
t=1

〈
ρ

(t)
i ,M

(t)
i

〉
≤
〈
ρ?i ,

1

T

T∑
t=1

M
(t)
i

〉
+

1

k

(
γ +

ln(mn)

γT

)
.

Summing these inequalities over all i we find that for any density operators (ρ?1, . . . , ρ
?
k) it holds that

1

T

T∑
t=1

〈(
ρ

(t)
1 , . . . , ρ

(t)
k

)
,
(
M

(t)
1 , . . . ,M

(t)
k

)〉
≤
〈

(ρ?1, . . . , ρ
?
k),

1

T

T∑
t=1

(
M

(t)
1 , . . . ,M

(t)
k

)〉
+

(
γ +

ln(mn)

γT

)
.

Substituting the definition of the loss matrices M (t)
i from step 2d and simplifying, we obtain

λ̃ =
1

T

T∑
t=1

〈(
ρ

(t)
1 , . . . , ρ

(t)
k

)
, f∗R,ε

(
P (t),Π

(t)
1 , . . . ,Π

(t)
k−1

)〉
≤
〈

(ρ?1, . . . , ρ
?
k),

1

T

T∑
t=1

f∗R,ε

(
P (t),Π

(t)
1 , . . . ,Π

(t)
k−1

)〉
+

2k2

ε

(
γ +

ln(mn)

γT

)
︸ ︷︷ ︸

error term

.

(7)

Substituting the choice of γ, T from step 1 we see that the error term on the right side is at most δ/3. Since
this inequality holds for any choice of (ρ?1, . . . , ρ

?
k) it certainly holds for the optimal choice, from which it

follows that the right side is at most µε(A,P) + δ/3. By construction each (P (t),Π
(t)
1 , . . . ,Π

(t)
k−1) is a δ/3-

best response to (ρ
(t)
1 , . . . , ρ

(t)
k ) so it must be that the left side of this inequality is at least µε(A,P)− δ/3.

It then follows from Theorem 5 (Rounding theorem) and the choice ε = δ/3 that |λ̃ − λ(A,P))| < 2
3δ as

desired.
Next we argue that the point (ρ′1, . . . , ρ

′
k) returned in step 4 is δ-optimal for λ(A,P). By item 1 of

Proposition 7 it suffices to argue that (ρ1, . . . , ρk) is 2
3δ-optimal for µε(A,P). To this end, choose any

(P ?,Π?
1, . . . ,Π

?
a). Since each (P (t),Π

(t)
1 , . . . ,Π

(t)
k−1) is a δ/3-best response to (ρ

(t)
1 , . . . , ρ

(t)
k ) it holds that

the inner product 〈(
ρ

(t)
1 , . . . , ρ

(t)
k

)
, f∗R,ε

(
P (t),Π

(t)
1 , . . . ,Π

(t)
k−1

)〉
can increase by no more than δ/3 when (P ?,Π?

1, . . . ,Π
?
k−1) is substituted for (P (t),Π

(t)
1 , . . . ,Π

(t)
k−1). It

then follows from (7) that〈
1

T

T∑
t=1

(
ρ

(t)
1 , . . . , ρ

(t)
k

)
, f∗R,ε

(
P ?,Π?

1, . . . ,Π
?
k−1

)〉
≤ λ̃+ δ/3 ≤ µε(A,P) + 2

3δ

and hence (ρ1, . . . , ρk) is 2
3δ-optimal for µε(A,P) as desired.
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Next we argue that the operator P returned in step 4 is δ-optimal for λ(A,P). By item 2 of Proposition 7
it suffices to argue that (P,Π1, . . . ,Πk−1) is 2

3δ-optimal for µε(A,P). To this end, choose any (ρ?1, . . . , ρ
?
k).

It follows from (7) that〈
(ρ?1, . . . , ρ

?
k), f

∗
R,ε (P,Π1, . . . ,Πk−1)

〉
≥ λ̃− δ/3 ≥ µε(A,P)− 2

3δ

and hence (P,Π1, . . . ,Πk−1) is 2
3δ-optimal for µε(A,P) as desired.

The efficiency of this algorithm is not difficult to argue. Each individual step consists only of matrix
operations that are known to admit an efficient parallel implementation. Efficiency then follows from the
observation that the number T of iterations is polynomial in k, 1/δ, and log(mn).

5 Double quantum interactive proofs

In this section we prove DQIP ⊆ PSPACE by means of Theorem 1. Specifically, in Section 5.2 we argue
that the verifier in a double quantum interactive proof induces a min-max problem of the form (2) in which
elements of A correspond to strategies for the yes-prover, elements of P correspond to strategies for the
no-prover, and the value λ(A,P) corresponds to the probability with which the verifier rejects when both
provers act optimally.

Thus, the parallel oracle-algorithm of Theorem 1—together with a parallel implementation of the oracle
for optimization over P—can be used to compute this probability to sufficient accuracy so as to determine
which prover has the winning strategy. In Section 5.3 we provide a parallel implementation of the oracle
required by Theorem 1. Finally, in Section 5.4 we recite the argument by which the existence of a parallel
algorithm for approximating λ(A,P) leads to the containment of DQIP inside PSPACE. First, we briefly
introduce new notation in Section 5.1.

5.1 Notation

Until now we have used the symbol Mn to denote the space of complex n×nmatrices. This notation is ideal
when only one or two distinct quantum systems are under consideration. However, discussion henceforth
deals with many different systems (called registers) and so we adopt the convention that distinct finite-
dimensional complex vector spaces of the form Cd shall be denoted with calligraphic letters (X ,Y, . . . ).
We also adopt the following notation:

XY Shorthand for the Kronecker product X ⊗ Y . If X = Cd and Y = Cd′ then
XY = Cdd′ .

MX The complex space of all linear operators (matrices) acting on X .
IX ∈MX The identity operator acting on X .
TrX : MXY →MY The partial trace over X .

5.2 Characterization of strategies for the yes-prover

The verifier in a double quantum interactive proof can be assumed to act upon two quantum registers: an
m-qubit register M that is shared with the provers for the purpose of exchanging messages and a v-qubit
register V that serves as a private memory for the verifier. Associated with the registers M,V are complex
Euclidean spaces M = C2m ,V = C2v , respectively. A verifier who exchanges a rounds of messages
with the yes-prover followed by b rounds of messages with the no-prover is completely specified by a tuple
V = (|ψ〉, V1, . . . , Va+b−1,Π) where
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ρ P
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reject
|ψ〉 V1 V2 V3 V4 V5 Π

A1 A2 A3 B1 B2 B3

M M M M M MM M M M M M

V V V V V V

W W Z Z

Figure 2: An illustration of a double quantum interactive proof in which the verifier V =
(|ψ〉, V1, . . . , V5,Π) exchanges a = 3 rounds of messages with the yes-prover followed by b = 3 rounds
of messages with the no-prover before performing the measurement {Π, I − Π} that dictates acceptance or
rejection. Any choice of (A1, A2, A3) and (B1, B2, B3) induces a state ρ and a measurement operator P as
indicated. The probability of rejection is given by 〈ρ, P 〉 = Tr(ρP ).

1. |ψ〉 ∈ MV is a pure state.

2. V1, . . . , Va+b−1 ∈MMV are unitary operators.

3. Π ∈MMV is a projective measurement operator.

The yes-prover acts upon the shared communication register M and a private memory register W with asso-
ciated spaceW . The actions of the yes-prover are specified by unitaries A1, . . . , Aa ∈ MMW . Similarly,
the no-prover acts upon the shared communication register M and a private memory register Z with associ-
ated space Z . The actions of the no-prover are specified by unitaries B1, . . . , Bb ∈ MMZ . The interaction
proceeds as suggested by Figure 2 with measurement outcome Π indicating rejection.

Basic quantum formalism tells us that if the yes- and no-provers act according to ~A = (A1, . . . , Aa) and
~B = (B1, . . . , Bb), respectively, then the probability of rejection is given by

Pr
[
reject | ~A, ~B

]
= ‖ΠBbVa+b−1Bb−1 · · ·B1VaAaVa−1Aa−1 · · ·A2V1A1|ψ〉‖2 . (8)

(For clarity we have suppressed numerous tensors with identity and the initial states |0〉 of the provers’
private memory registers.)

For any ~A let ρ be the reduced state of the verifier’s registers (M,V) immediately after Aa is applied so
that the actions of the yes-prover are completely represented by the state ρ. Similarly, for any ~B let P be
the measurement operator on (M,V) obtained by bundling the verifier–no-prover interaction into a single
measurement operator as suggested by Figure 2. The expression (8) for the probability of rejection can be
rewritten in terms of ρ, P as

Pr[reject | ~A, ~B] = 〈ρ, P 〉.
By definition, the no-prover wishes to maximize this quantity while the yes-prover wishes to minimize it.
Let λ(V ) denote the verifier’s probability of rejection when both provers act optimally. For a verifier with
completeness c and soundness s, or goal is to determine whether λ(V ) is closer to 1− c or to 1− s.

Let Y(V ) ⊂ MMV denote the set of states of (M,V) obtainable by the yes-prover and let P(V ) ⊂
MMV denote the set of measurement operators on (M,V) obtainable by the no-prover. Then the desired
quantity λ(V ) is given by the min-max problem

λ(V ) = min
ρ∈Y(V )

max
P∈P(V )

〈ρ, P 〉. (9)
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|ψ〉 V1 V2 Π

A1 A2 A3

M M MM M M

V V V

W W

Figure 3: The states ρ1, ρ2, ρ3 are a transcript of the referee’s conversation with the yes-prover. It follows
easily from the unitary equivalence of purifications that a triple (ρ1, ρ2, ρ3) is a valid transcript if and only
if it obeys the recursive relation TrMi(ρi) = TrAi(Vi−1ρi−1V

∗
i−1) for i = 1, 2, 3 where V0 = I .

What can be said of the sets Y(V ),P(V )? Let us begin by considering the set Y(V ). As suggested by
Figure 3, each element of Y(V ) can be viewed as the final entry ρa in a transcript (ρ1, . . . , ρa) of the
verifier’s conversation with the yes-prover. Moreover, it is straightforward to use the unitary equivalence
of purifications to characterize those a-tuples of density matrices which constitute valid transcripts. This
characterization was first noted by Kitaev [Kit02].

Proposition 10 (Kitaev’s consistency conditions [Kit02]). Let V = (|ψ〉, V1, . . . , Va+b−1,Π) be a verifier
and let Y(V ) be the set of admissible states for the yes-prover. A given state ρ is an element of Y(V ) if and
only if there exist density matrices ρ1, . . . , ρa ∈MMV with ρa = ρ and

TrM(ρi) = TrM(Vi−1ρi−1V
∗
i−1) for i = 1, . . . , a

where we have written V0 = I and ρ0 = |ψ〉〈ψ| for convenience.

With these observations in mind we consider completely positive and trace-preserving linear maps

Φ0, . . . ,Φa−1 : MMV →MV

defined by

Φ0 : X 7→ Tr(X) TrM(|ψ〉〈ψ|)
Φi : X 7→ TrM(ViXV

∗
i ) for i = 1, . . . , a− 1

These maps specify the feasible region A(V ) of an SDP of the form (1) from Section 1. Moreover, it follows
from Kitaev’s consistency conditions (Proposition 10) that (ρ0, . . . , ρa) ∈ A(V ) if and only if ρa ∈ Y(V ).
Thus, the min-max problem (9) for λ(V ) can equivalently be written

λ(V ) = min
(ρ0,...,ρa)∈A(V )

max
P∈P(V )

〈ρa, P 〉 . (10)

We have not yet shown that the set P(V ) of measurement operators for the no-prover is compact and
convex. But if we assume for the moment that it is then we may already apply Theorem 1 so as to obtain
a parallel oracle-algorithm for approximating λ(V ) on input Φ0, . . . ,Φa−1 given an oracle for optimization
over P(V ).
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5.3 Implementation of the oracle for best responses of the no-prover

In order to complete the description of our parallel algorithm for double quantum interactive proofs it re-
mains only to describe the implementation of the oracle for optimization for P(V ) (Problem 1). In this
section we establish the following.

Proposition 11. Let V = (|ψ〉, V1, . . . , Va+b−1,Π) be a verifier and let P(V ) be the set of admissible mea-
surement operators for the no-prover. There is a parallel algorithm for optimization over P(V ) (Problem
1) with run time bounded by a polynomial in b, 1/δ, and log(dim(MV)).

It follows that the algorithm of Figure 1 yields an unconditionally efficient parallel algorithm for ap-
proximating λ(V ) given an explicit matrix representation of the verifier V .

As mentioned earlier, this instance of optimization over P(V ) (Problem 1) will be rephrased as an
SDP of the form (1) (plus some post-processing) so that the algorithm of Section 4 can be reused in the
implementation of our oracle.

To this end choose any state ρ ∈MMV and suppose that a (possibly cheating) yes-prover was somehow
able to make it so that the registers (M,V) after the interaction with the yes-prover are in state ρ. Let W
be a register large enough to admit a purification of ρ and let |ϕ〉 ∈ WMV be any such purification. If the
no-prover acts according to (B1, . . . , Bb) then the probability of rejection (as per Eq. (8)) is

Pr[reject | ρ, (B1, . . . , Bb)] = ‖ΠBbVa+b−1Bb−1 · · ·B1Va|ϕ〉‖2 .
Notice that this quantity also represents the probability of rejection in a different, single-prover interac-
tive proof with a verifier V ′ whose initial state is Va|ϕ〉. (Formally, the verifier V ′ exchanges b rounds of
messages with one of the provers and zero messages with the other.) The unitaries B1, . . . , Bb could spec-
ify actions for either the yes-prover or the no-prover—a choice that depends only upon how we label the
components of the verifier V ′.

Since our goal is to reduce optimization over P(V ) (which is a maximization problem) to an SDP of the
form (1) (which is a minimization problem), it befits us to view B1, . . . , Bb as actions for the yes-prover in
the interactive proof with verifier V ′. Let us write

V ′ = (Va|ϕ〉, V ′1 , . . . , V ′b−1,Π
′)

where V ′1 , . . . , V
′
b−1,Π

′ ∈MMVW are given by

V ′i = Va+i ⊗ IW for i = 1, . . . , b− 1

Π′ = (I −Π)⊗ IW .
The private memory register V′ of the new verifier V ′ is identified with the registers (V,W) and communi-
cation register M′ of the new verifier is identified with M.

Each choice of unitaries (B1, . . . , Bb) induces both a measurement operator P ∈ P(V ) and a state
ξ ∈ Y(V ′) with

〈ρ, P 〉 = ‖ΠBbVa+b−1Bb−1 · · ·B1Va|ϕ〉‖2 = 1−
〈
ξ,Π′

〉
and therefore

max
P∈P(V )

〈ρ, P 〉 = 1− λ(V ′) = 1− min
ξ∈Y(V ′)

〈
ξ,Π′

〉
.

Moreover, P ∈ P(V ) achieves the maximum on the left side if and only if the unitaries (B1, . . . , Bb) that
induce P also induce a state ξ ∈ Y(V ′) that achieves the minimum on the right side.

Incidentally, by identifying elements of P(V ) with elements of A(V ′) we have established that the set
P(V ) is compact and convex as required by Theorem 1. We are now ready to prove Proposition 11.
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Proof of Proposition 11. Consider the following algorithm for optimization over P(V ):

1. Use the algorithm of Figure 1 to find ξ ∈ Y(V ′) minimizing 〈ξ,Π′〉.
2. Find the unitaries (B1, . . . , Bb) that induce ξ. These unitaries also induce a measurement operator
P ∈ P(V ) maximizing 〈ρ, P 〉. Compute P using (B1, . . . , Bb) via standard matrix multiplication.

We already saw how the algorithm of Figure 1 can be used to accomplish step 1 given an oracle for opti-
mization over P(V ′). In this case P(V ′) = {Π′} is a singleton set and thus the oracle for optimization over
P(V ′) admits a trivial implementation by returning the only element.

It remains only to fill in the details for step 2. Recall that the algorithm of Figure 1 finds a near-optimal
transcript (ξ0, . . . , ξb) ∈ A(V ′), meaning that

TrM(ξ1) = TrM(Va|ϕ〉〈ϕ|V ∗a )

TrM(ξi+1) = TrM(V ′i ξiV
′∗
i ) for each i = 1, . . . , b− 1.

(Here ξ0 is an arbitrary density matrix that is not used in our construction. The presence of this matrix
is an artifact of the identification of Y(V ′) with A(V ′).) The following algorithm finds the unitaries
(B1, . . . , Bb):

1. LetZ be a space large enough to admit purifications of ξ1, . . . , ξb. Write |α0〉 = |ϕ〉|0Z〉 and V ′0 = Va.

2. For each i = 1, . . . , b:

(a) Compute a purification |αi〉 ∈ ZMVW of ξi.
(b) Compute a unitary Bi ∈MZM that maps V ′i−1|αi−1〉 to |αi〉.

3. Return the desired unitaries (B1, . . . , Bb).

Correctness of this construction is straightforward (though notationally cumbersome). Let us argue that each
individual step consists only of matrix operations that are known to admit an efficient parallel implementa-
tion, from which it follows that the entire construction is efficient.

Step 2a requires that we compute a purification |α〉 of a given mixed state ξ. This can be achieved by
computing a spectral decomposition

ξ =
∑
i

µi|φi〉〈φi|

of ξ; the purification |α〉 is then given by

|α〉 =
∑
i

√
µi|φi〉|φi〉.

Given two pure states |α〉, |α′〉 ∈ ZMVW with

TrZM(|α〉〈α|) = TrZM(|α′〉〈α′|),
step 2b requires that we compute a unitary B ∈ MZM that maps |α〉 to |α′〉. This can be achieved by
computing Schmidt decompositions

|α〉 =
∑
i

si|φi〉|ψi〉 |α′〉 =
∑
i

s′i|φ′i〉|ψi〉

with respect to the partition ZM ⊗ VW . (Schmidt decompositions on vectors are equivalent to singular
value decompositions on matrices and hence can be implemented in parallel.) The desired unitary is then
given by straightforward matrix multiplication and summation: B =

∑
i |φ′i〉〈φi|.
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5.4 Containment of DQIP inside PSPACE

The argument by which a parallel algorithm for double quantum interactive proofs leads to a proof of
DQIP ⊆ PSPACE is by now a familiar one. (See Section 3 of Ref. [JJUW11] for a good exposition
of this type of argument.)

Proof of Theorem 2. For each decision problem L ∈ DQIP we must prove that there is a polynomial space
algorithm for L. To this end consider a “scaled up” version of NC known as NC(poly), which consists of
all functions computable by polynomial-space uniform Boolean circuits of polynomial depth. It has long
since been known that NC(poly) algorithms can be simulated in polynomial space [Bor77], so in order to
prove L ∈ PSPACE it suffices to give an NC(poly) algorithm for L.

Let V be a verifier with completeness c, soundness s, and polynomial-bounded p with c − s ≥ 1/p
witnessing the membership of L in DQIP. Let x be any input string and consider the following algorithm
for deciding whether x is a yes-instance or a no-instance of L:

1. Compute an explicit matrix representation of the verifier V = (|ψ〉, V1, . . . , Va+b−1,Π) on input x.
As argued earlier, this representation specifies sets A(V ),P(V ) for a min-max problem of the form
(2).

2. Compute a δ-approximation of λ(V ) for the choice δ = (c−s)/3 so as to determine which of the two
provers has a winning strategy. Accept or reject accordingly.

The dimension dim(MV) = 2m+v of the matrix representation of a verifier on input x might grow expo-
nentially in the bit length of x. Nevertheless, as argued in Ref. [JJUW11] for ordinary quantum interactive
proofs, it is not difficult to see that step 1 admits a straightforward implementation in NC(poly) via standard
matrix multiplication.

Earlier in this section we argued that the parallel oracle-algorithm of Theorem 1 can be used to compute
the desired approximation of λ(V ). We also presented a parallel implementation of the oracle for optimiza-
tion over P(V ) required by Theorem 1. To see that this parallel algorithm is efficient it suffices to observe
that the number of rounds a+ b and the inverse of the accuracy parameter 1/δ both scale as a polynomial in
|x| and hence also in log(dim(MV)).

Thus, the above algorithm computes the composition of a function in NC(poly) with another func-
tion in NC. As NC(poly) is closed under such compositions, it follows that the above algorithm ad-
mits an NC(poly) implementation and hence also a polynomial-space implementation. It follows that
L ∈ PSPACE and hence DQIP ⊆ PSPACE.

6 Consequences and extensions

6.1 A direct polynomial-space simulation of QIP

As mentioned in the introduction, a special case of our result is a direct polynomial-space simulation of
multi-message quantum interactive proofs, resulting in a first-principles proof of QIP ⊆ PSPACE. Recall
that an ordinary, single-prover quantum interactive proof is a double quantum interactive proof in which the
verifier exchanges zero messages with the no-prover. We already observed in Section 5.3 that such a verifier
induces an SDP of the form (1) in which elements of the feasible region A are identified with strategies for
the prover. In this case, Theorem 1 yields an efficient parallel algorithm for finding optimal strategies for
the prover in a single-prover quantum interactive proof with no need to specify an oracle.

23



6.2 Finding near-optimal strategies

The algorithm of Figure 1 not only approximates the value λ(A,P) of the min-max problem (2), but it
also finds near-optimal points (ρ1, . . . , ρk) ∈ A and P ∈ P. By contrast, in Section 5 we were primarily
concerned with the problem of approximating only the value λ(V ) of the min-max problem (10). This
quantity is the verifier’s probability of rejection when both provers act optimally; approximating it suffices
to prove DQIP ⊆ PSPACE.

However, our result readily extends to the related search problem of finding near-optimal strategies for
the provers. Indeed, step 4 of the algorithm of Figure 1 returns a transcript (ρ0, . . . , ρa) ∈ A(V ) and a
measurement operator P ∈ P(V ), both of which are δ-optimal for λ(V ). The unitaries (A1, . . . , Aa) for
the yes-prover can be recovered from the transcript (ρ0, . . . , ρa) via the method described in Section 5.3
with no additional complication.

It is only slightly more difficult to recover the no-prover’s unitaries (B1, . . . , Bb) from P . Our definition
of Problem 1 (Optimization over P) specifies only that a solution produce a near-optimal measurement
operator P ∈ P for a given state ρ. But the algorithm for Problem 1 described in Section 5.3 for optimization
over P(V ) produces its output P by first constructing the associated unitaries (B, . . . , Bb). It is a simple
matter to modify our definition of Problem 1 so as to also return those unitaries in addition to P .

The near-optimal measurement operator P returned in step 4 of the algorithm of Figure 1 is given by

P =
1

T

T∑
t=1

P (t),

which indicates a strategy for the no-prover that selects t ∈ {1, . . . , T} uniformly at random and then acts
according to (B

(t)
1 , . . . , B

(t)
b ). It is a simple matter to construct unitaries (B1, . . . , Bb) that implement this

probabilistic strategy by sampling the integer t during the first round, recording that integer in the no-prover’s
private memory (which must be enlarged slightly to make room for it), and controlling the operation in sub-
sequent turns on the contents of that integer. All of the matrix operations required to construct (B1, . . . , Bb)

from each (B
(t)
1 , . . . , B

(t)
b ) in this way can be implemented efficiently in parallel.

6.3 Robustness with respect to error

In Section 1.3.1 we noted that it is not immediately obvious that the classes DIP and DQIP are robust
with respect to completeness and soundness parameters c, s. Because of this we defined the classes to be
inclusive as possible, allowing any verifier for which c − s ≥ 1/p for some polynomial-bounded function
p(|x|).

Nevertheless, it follows from the collapse of these classes to PSPACE that they are indeed robust with
respect to completeness and soundness. In particular, classical interactive proofs for PSPACE [LFKN92,
Sha92] imply that if a decision problem L admits a double (quantum) interactive proof with c − s ≥ 1/p
then L also admits a double (quantum) interactive proof with c = 1 and s ≤ 2−q for any desired polynomial-
bounded function q(|x|).

However, the method by which the original verifier is transformed into the low-error verifier is very
circuitous: the original verifier must be simulated in polynomial space according to Theorem 2 and then that
polynomial-space computation must be converted back into an interactive proof with perfect completeness
and exponentially small soundness according to proofs of IP = PSPACE. It would be nice to know
whether a more straightforward transformation such as parallel repetition followed by a majority vote could
be used to reduce error for double quantum interactive proofs and other bounded-turn interactive proofs with
competing provers.
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6.4 Arbitrary payoff observables

In the study of interactive proofs attention is generally restricted to the accept-reject model wherein the
verifier’s measurement {Π, I − Π} indicates only acceptance or rejection without specifying a payout to
the provers. From a game-theoretic perspective, one might wish to consider a more general verifier whose
final measurement {Πa}a∈Σ could have outcomes belonging to some arbitrary finite set Σ. In this case, the
verifier awards payouts to the provers according to a payout function v : Σ → R where v(a) denotes the
payout to the yes-prover in the event of outcome a. (Since the game is zero-sum, the no-prover’s payout
must be −v(a).)

Jain and Watrous describe a simple transformation by which their algorithm for one-turn quantum games
can be used to approximate the expected payout in this more general setting [JW09]. Their transformation
extends without complication to double quantum interactive proofs.

In our case, the expected payout to the yes-prover when she and the no-prover play according to
(A1, . . . , Aa) and (B1, . . . , Bb), respectively, is given by∑

a∈Σ

v(a)〈φ|Πa|φ〉 = 〈φ|ΠΣ|φ〉

where
|φ〉 = BbVa+b−1Bb−1 · · ·B1VaAaVa−1Aa−1 · · ·A2V1A1|ψ〉

is the final state of the system and the Hermitian operator ΠΣ =
∑

a∈Σ v(a)Πa denotes the payout observ-
able induced by the verifier. The expected payout of this interaction can be computed simply by translating
and rescaling ΠΣ so as to obtain a measurement operator 0 � Π � I and then running our algorithm for
double quantum interactive proofs with verifier V = (|ψ〉, V1, . . . , Va+b−1,Π). The expected payout of
the original protocol is then obtained by inverting the scaling and translation operations by which Π was
obtained from ΠΣ. As noted by Jain and Watrous, this transformation has the effect of inflating the additive
approximation error δ by a factor of ‖ΠΣ‖, which is the maximum absolute value of any given payout.
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