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1. Introduction

In this paper, we present a moderately exponential time algorithm
for the satisfiability of Boolean formulas over the full binary ba-
sis, which is an interesting special case of the Circuit Satisfiability
(Circuit SAT) problem. Circuit SAT is, given a Boolean circuit C
with n input variables, to determine whether there exists a 0/1 as-
signment to the input variables such that C outputs 1. It is one of
the most fundamental and important NP-complete problems and
people have developed many efficient algorithms in both practical
and theoretical sense. It is easy to see that one can solve the prob-
lem in time poly(|C|)2n by brute force search where |C| denotes
the size of C. An obvious question is whether there exist moder-
ately exponential time algorithms, i.e., algorithms with the worst
case running time of the form poly(|C|)2(1−µ)n for some µ > 0.
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It is too difficult to answer the above question because of the
generality of Circuit SAT, that is, many combinatorial problems
can be represented as Circuit SAT, see, e.g., [Biere et al. (2009)].
Instead of considering Circuit SAT in the most general form, we
may investigate the complexity of Circuit SAT over some restricted
circuit class C. We write such restricted Circuit SAT as C-SAT.
The most well studied restricted circuit class is k-CNF-formulas,
which consist of a conjunction of clauses, where each clause is a
disjunction of at most k literals. k-CNF-SAT is a central problem
in the area of exact exponential algorithms and many efficient al-
gorithms for it have been developed over the past 30 years, see,
e.g., [Hertli (2011); Makino et al. (2011); Monien & Speckenmeyer
(1985); Moser & Scheder (2011); Paturi et al. (2005); Schöning
(1999)], and an excellent survey by [Dantsin & Hirsch (2009)]. The
best running time upper bound is of the form poly(|C|)2(1−µk)n,
where µk > 0 is some constant only depending on k. Despite the
success of exact algorithms for k-CNF-SAT, there are few works
studying the exponential time complexity of Circuit SAT over more
general circuit classes until recently.

Let us quickly review some results on C-SAT for more general
C. We are aware of the works for

◦ CNF-formulas (without restriction on length of each clause)
by [Arvind & Schuler (2003); Calabro et al. (2006); Dantsin
et al. (2004, 2006); Pudlák (1998); Schuler (2005)] (see also
[Hirsch (2008)]),

◦ AC0 circuits by [Calabro et al. (2009); Impagliazzo et al.
(2012)],

◦ ACC0 circuits by [Williams (2011)], and

◦ U2-formulas (De Morgan formulas) by [Santhanam (2010)].

Here, AC0 circuits are constant depth circuits over the basis {and,
or, not}, where the fan-in of each gate is unbounded, ACC0 circuits
are the same as AC0 circuits except that the basis also contains
arbitrary modulo gates of unbounded fan-in, and U2-formulas are
formulas over the basis U2={and, or, not}, where the fan-in of
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{and, or} is two. The follwoing summarizes the current best algo-
rithms:

◦ For CNF-formulas with m clauses, [Calabro et al. (2006)]
have shown that Circuit SAT can be solved in time
|C|2(1−1/ log(m/n))n (see also [Dantsin & Hirsch (2009)]),

◦ for AC0 circuits of size cn and depth d, [Impagliazzo et al.
(2012)] have shown that Circuit SAT can be solved in time
|C|2(1−1/O(log c+d log d)d−1)n,

◦ for ACC0 circuits of depth d, [Williams (2011)] has shown

that Circuit SAT can be solved in time |C|2n−Ω(n2−O(d)
), and

◦ for U2-formulas of size cn, [Santhanam (2010)] have shown

that Circuit SAT can be solved in time |C|2(1−1/cO(1))n.

In this paper, we extend the result of [Santhanam (2010)] to the
case of B2-formulas which are formulas over the full binary basis
B2 consisting of all two-variable functions. Our main result is the
following:

Theorem 1.1. There is a deterministic algorithm for B2-formula-
SAT which runs in time 2(1−µc)n on formulas of size at most cn.
Here µc > 0 is a constant only depending on c (roughly µc =
2−Θ(c3)).

Santhanam’s result has an application in proving strong average-
case hardness of the parity function against linear-sized U2-formulas.
From the proof of Theorem 1.1, we can show an analogous result,
strong average-case hardness of affine extractors against linear-
sized B2-formulas (affine extractors are formally defined in Sec-
tion 4, see Definition 4.2).

Theorem 1.2 (Informal). For any constant c > 0, any sequence
of B2-formulas of size at most cn must err in computing affine
extractors on at least a 1/2− 2−Ω(n) fraction of inputs of length n
for each n.
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1.1. Background. In this section, we discuss the motivation of
designing moderately exponential time algorithms for C-SAT with
more general C.

Encoding practical instances. One of the motivations comes
from practical applications. Because of its expressibility, Circuit
SAT can represent many industrial problems such as software and
hardware verification and testing, design automation, planning and
automated reasoning in a natural way, see, e.g., [Biere et al. (2009)].
This motivates the development of faster SAT solvers for instances
from practice and today we have very sophisticated SAT solvers
which can treat instances of relatively large size. However, most
SAT solvers require their input to be in CNF form although nat-
ural encoding of industrial problems such as hardware verification
to Circuit SAT often results in instances represented by general
circuits, e.g., formulas with no depth restriction, circuits with par-
ity gates etc. To use fast SAT solvers, first we need to transform
the original instances into CNF form. After such transformation,
the size of instances must increase and in some case the size blow
up can be exponential. For example, parity functions have linear
size representation in formulas over the full binary basis, but re-
quires quadratic size in De Morgan formulas and exponential size
in CNF form. One can use the Tseitin transformation to avoid
such huge blowups, but additional variables must be introduced
in the transformation, which is very expensive in the context of
exponential time algorithms. Thus, it is more desirable if one can
develop efficient algorithms which can treat the original encoding
of practical instances.

Proof Techniques. The analysis of running time savings of the
best known SAT algorithms for certain circuit classes such as AC0

and De Morgan formulas follows from proof techniques for cor-
responding circuit lower bounds. That is, AC0 circuits and De
Morgan formulas shrink their sizes significantly by “random re-
strictions”. Roughly speaking, random restriction chooses, say,
(1 − ρ)n variables for some ρ > 0 randomly and sets random
0/1 values to the chosen variables, and obtains a simplified cir-
cuit/formula over the remaining ρn variables. It is well known
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that by appropriately choosing ρ, random restriction can collapse
AC0 circuits and De Morgan formulas into a constant function
with high probability, see, e.g., [Ajtai (1983); Furst et al. (1984);
H̊astad (1986); Yao (1985)], and [Andreev (1987); H̊astad (1998);
Impagliazzo & Nisan (1993); Subbotovskaya (1961)]. This implies
that such circuit classes cannot compute parity functions since such
functions remain non-constant functions after a random restriction
is applied. The above lower bounds argument suggests that back-
tracking algorithms work well because expected depth of each path
in backtracking tree is at most (1− ρ)n with high probability. Un-
fortunately, for our target class, formulas over the basis {and, or,
xor}, random restriction cannot prove interesting lower bounds.
It is easy to see that a formula consisting of only xor gates does
not shrink into a constant unless we set values to all the variables.
To achieve similar savings as Santhanam’s result for De Morgan
formulas, our algorithm and its analysis require new ideas. We
establish a structural result for B2-formulas of linear size, and use
it to solve SAT.

SAT algorithm implies circuit lower bounds. As discussed
in the previous paragraph, design and analysis of C-SAT algorithm
is often inspired by the corresponding circuit lower bound tech-
nique for C. Interestingly, the connection also holds in the re-
verse order, that is, efficient SAT algorithms implies circuit lower
bounds. One of such examples is the result by [Paturi et al. (1999)]
showing tight lower bounds for depth three AC0 circuits comput-
ing parity functions. They exploited the connection between the
success probability of their SAT algorithm for k-CNF formulas and
bounds on the number of sub-circuits in depth three AC0 circuits.
Another example is a recent breakthrough result due to Williams.
In [Williams (2010)] he proves a generic result that SAT algorithm
for the circuit class C with “non-trivial” running time implies that C
does not contain NEXP, the class of languages computable in non-
deterministic exponential time. Then in [Williams (2011)] he shows
non-trivial SAT algorithms for ACC0 to conclude that ACC0 does
not contain NEXP. Thus, developing SAT algorithms for richer cir-
cuit classes is tied to proving lower bounds for those classes.
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Strong average-case hardness. We are often interested in prov-
ing strong average-case hardness for some circuit class C rather
than just proving worst-case hardness. Here, strong means that
any circuit in C must fail to compute the given function on at least
1/2− 2−Ω(n) fraction of inputs. Such a hardness result can be used
to construct very efficient pseudorandom generators for C. For ex-
ample, [Nisan & Wigderson (1994)] have shown that if there exists
a family of functions computable in E = DTIME(2O(n)) such that
any subexponential size circuits must fail on at least 1/2− 2−Ω(n)

fraction of inputs, then P = BPP holds. In general, proving strong
(exponential) circuit lower bounds even in the worst-case is a very
difficult task for even relatively weak circuit classes such as AC0.
However, if we can construct C-SAT algorithms which run in time
2n−Ω(n), they often provide strong average-case lower bounds for C
and actually there are such (but) few results: [Calabro et al. (2009);
Impagliazzo et al. (2012)] and [Santhanam (2010)], respectively
show that the parity function is strongly hard for linear-sized AC0

circuits and U2 formulas, respectively. (We remark that [Lu & Wu
(2010)] also obtained strong average-case lower bounds for linear-
sized AC0 circuits using different techniques.) Our result adds
such rare hardness results in the case of linear-sized B2-formulas.

Paper organization. In the rest of our paper, we provide de-
tailed algorithms and analysis to support our results. In section 2,
we present some useful properties of B2-formulas, which play an
important role in designing our satisfiability algorithm. In section
3, we give a high level idea, formal description and running time
analysis of our algorithm. In section 4, we prove strong average-
case hardness results.

2. Preliminaries

Let B2 be the set of all Boolean functions of two variables. A
B2-formula is a rooted binary tree in which each leaf is labeled
by a literal from the set {x1, . . . , xn, x1, . . . , xn} or a constant from
{0, 1} and each internal node is labeled by a function from B2.
Given a B2-formula φ, a subformula of φ is a B2-formula which is
a subtree in φ. By φv, we denote φ’s subformula whose root node is



A Satisfiability Algorithm for Formulas 7

v. Every B2-formula computes in a natural way a Boolean function
from {0, 1}n to {0, 1}. The size of a B2-formula φ is defined to be
the number of leaves in it, and it is denoted by L(φ). We denote
by var(φ) the set of variables which appear as literals in φ. The
frequency of a variable x in φ is defined to be the number of leaves
labelled by x or x, and it is denoted by freqφ(x). We often omit the
subscipt φ when it is clear from the context. A {∧,∨,⊕}-formula
is a B2-formula in which each internal node is labeled by ∧ (“and”)
or ∨ (“or”) or ⊕ (“xor”). It is easy to see that the following holds
by using De Morgan’s laws and the fact that φ1 ⊕ φ2 = φ1 ⊕ φ2.

Fact 2.1. For any B2-formula φ, there exists a {∧,∨,⊕}-formula
φ̃ such that φ̃ computes the same function as φ and L(φ̃) ≤ L(φ).
Furthermore, we can obtain φ̃ from φ in polynomial time in L(φ).

Proof. We modify each internal node u of φ from the root to
leaves in breadth first search manner so that u does not have a
label from B2 \{∧,∨,⊕}. Let f(x, y) denote the label of u, let v, w
denote the children of u. Since B2 contains 16 different functions,
we have to consider the following cases:
(i) f(x, y) = a for a ∈ {0, 1}. In this case, we replace a subformula
φu by a node u whose label is a.
(ii) f(x, y) = x ⊕ a (f(x, y) = y ⊕ a, respectively) for a ∈ {0, 1}:
In this case, we replace a subformula φu by a subformula φv (by a
subformula φw, respectively) and then replace the label g of v (w,
respectively) by g ⊕ a.
(iii) f(x, y) = (x ⊕ a) ∧ (y ⊕ b) ((f(x, y) = (x ⊕ a) ∨ (y ⊕ b), re-
spectively) for a, b ∈ {0, 1}: In this case, we replace the label of u
by x∧ y (x∨ y, respectively) and the label g of v by g⊕ a and the
label h of w by h⊕ b.
(iv) f(x, y) = ((x⊕a)∧(y⊕b))⊕1 (f(x, y) = ((x⊕a)∨(y⊕b))⊕1,
respectively) for a, b ∈ {0, 1}: In this case, we replace the label of
u by x ∨ y (x ∧ y, respectively) and the label g of v by g ⊕ a and
the label h of w by h⊕ b.
(v) f(x, y) = x⊕ y ⊕ a for a ∈ {0, 1}: In this case, we replace the
label of u by x⊕ y and the label g of v by g ⊕ a.
The resulting formula φ̃ computes the same function as φ and
L(φ̃) ≤ L(φ) as desired. �
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In our SAT algorithm for B2-formulas, we assume without loss
of generality that input formulas are always {∧,∨,⊕}-formulas.
In what follows, we often write just formula instead of {∧,∨,⊕}-
formula for brevity. For convenience, we think of constant functions
0 and 1 as formulas.

2.1. Maximal linear nodes. Given a formula φ, we define the
notion of linear node in φ inductively as follows. (i) Every leaf
is linear. (ii) An internal node is linear if it is labeled by ⊕ and
both of its child nodes are linear. Then, a linear node is maximal
if its parent node is not linear. Let v be a linear node in φ, φv
be the subformula rooted by v and S = {y1, . . . , yk} be the set
of all leaves in φv. It is easy to see that φv computes a linear
function y1 ⊕ · · · ⊕ yk. If there exists a variable x which appears
in S more than once (as x or x), φv is called redundant, otherwise
it is called irredundant. By the commutativity of ⊕ and the fact
that 0⊕ y = y, 1⊕ y = y, y ⊕ y = 0 and y ⊕ y = 1 for any literal
y, we have:

Fact 2.2. A redundant subformula φv can be replaced by an ir-
redundant formula φ̃v which computes the same function as φv.
Note that L(φ̃v) < L(φv) holds and we can obtain φ̃v from φv in
polynomial time in L(φ).

The usefulness of the notion of maximal linear nodes is shown
by the following lemma.

Lemma 2.3. Let φ be a formula which contains exactly m maxi-
mal linear nodes. Then, we can check the satisfiability of φ in time
2m · poly(L(φ)).

Proof. Let v1, . . . , vm be maximal linear nodes in φ. By the
inductive definition of maximal linear node, the output of φ is
fixed when all the outputs of φv1 , . . . , φvm are fixed to constants
a1, . . . , am ∈ {0, 1}. There are 2m possible ways of fixing the out-
puts of φv1 , . . . , φvm . For each possibility, we can check whether
there exists a corresponding assignment to x1, . . . , xn or not, by
solving a system of linear equations φv1 = a1, . . . , φvm = am in
polynomial time using Gaussian elimination. �
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The above lemma motivates us to reduce the number of max-
imal linear nodes in a formula φ. We need some definitions. Let
u, v be maximal linear nodes in φ. Then u and v are connected by
a ⊕-path if every node in the (unique) path from u to v is labeled
by ⊕. Such a pair of nodes u, v is called mergeable for the following
reason. Let s and t be the parent nodes of u and v respectively.
Then we can write φs = φu ⊕ φu′ and φt = φv ⊕ φv′ where φu′
and φv′ are any formulas. Note that neither u′ nor v′ is maximal
linear. We can assume t 6= u′ (by changing role of s and t if neces-
sary), and consider the following transformation. First replace φs
by φ̃s = (φu ⊕ φv) ⊕ φu′ , then replace φt by φ̃t = φv′ . The result-
ing formula φ̃ obviously computes the same function as φ because
(φu ⊕ φu′)⊕ · · · ⊕ (φv ⊕ φv′) = ((φu ⊕ φv)⊕ φu′)⊕ · · · ⊕ φv′ by the
commutativity of ⊕ and we reduce the number of maximal linear
nodes by one. Thus we have:

Fact 2.4. Let φ be a formula which contains mergeable pairs of
maximal linear nodes. Then there exists a formula φ̃ which com-
putes the same function as φ and does not contain mergeable pairs
of maximal linear nodes. Furthermore, L(φ̃) ≤ L(φ) and we can
obtain φ̃ from φ in polynomial time in L(φ).

2.2. Restrictions of {∧,∨,⊕}-formulas. For any formula φ,
any set of variables {xi1 , . . . , xik} and any constants a1, . . . , ak ∈
{0, 1}, we denote by φ[xi1 = a1, . . . , xik = ak] the formula obtained
from φ by assigning to each xij , xij the value aj, aj and applying
the following procedure Simplify.

The procedure Simplify reduces the size of a formula by apply-
ing rules to eliminate constants and redundant literals and gates. It
also reduces the number of redundant subformulas and mergeable
linear nodes in a formula. These are the same simplification rules
used by [H̊astad (1998)] and [Santhanam (2010)] with additional
rules regarding ⊕ gates.

Simplify (φ: formula)
Repeat the following until there is no decrease in size of φ, number
of redundant subformulas and number of mergeable linear nodes.
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(a) If 0∧ψ occurs as a subformula, where ψ is any formula, replace
this subformula by 0.

(b) If 0∨ψ occurs as a subformula, where ψ is any formula, replace
this subformula by ψ.

(c) If 1∧ψ occurs as a subformula, where ψ is any formula, replace
this subformula by ψ.

(d) If 1∨ψ occurs as a subformula, where ψ is any formula, replace
this subformula by 1.

(e) If y ∨ψ occurs as a subformula, where ψ is a formula and y is
a literal, then replace all occurrences of y in ψ by 0 and all
occurrence of y by 1.

(f) If y ∧ ψ occurs as a subformula, where ψ is a formula and y is
a literal, then replace all occurrences of y in ψ by 1 and all
occurrence of y by 0.

(g) If 0⊕ψ occurs as a subformula, where ψ is any formula, replace
this subformula by ψ.

(h) If 1 ⊕ ψ occurs as a subformula, where ψ is any formula, re-
place this subformula by ψ, where ψ denotes a formula which
computes the negation of ψ. (L(ψ) ≤ L(ψ) by Fact 2.1.)

(i) If ψ occurs as a redundant subformula, replace this subformula
by an irredundant formula ψ̃ as Fact 2.2.

(j) If φ contains mergeable maximal linear nodes, replace φ by φ̃
without them using Fact 2.4.

It is easy to see that Simplify runs in time polynomial in the size
of φ and the resulting formula computes the same function as φ.
If Simplify(φ) returns φ itself, φ is called irreducible.
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Observation 2.5. Let φ be a formula, x be a variable and a ∈
{0, 1} be a constant. Then

L(φ[x = a]) ≤ L(φ)− freq(x).

Furthermore, if freq(x) ≥ L(φ)
|var(φ)| + γ for some γ ≥ 0, then

L(φ[x = a]) ≤ L(φ)

(
1− 1

|var(φ)|

)1+
γ|var(φ)|
L(φ)

.

Proof. The first inequality is obvious. The following calcula-
tion shows the second inequality.

L(φ[x = a]) ≤ L(φ)− L(φ)

|var(φ)|
− γ

= L(φ)

(
1−

1 + γ|var(φ)|
L(φ)

|var(φ)|

)

≤ L(φ)

(
1− 1

|var(φ)|

)1+
γ|var(φ)|
L(φ)

,

where the last inequality is by (1−bx) ≤ (1−x)b for 0 < b, x < 1. �

Observation 2.6. Let φ be a formula, v be a maximal linear node
of φ where the parent node of v is labeled by ∧ (∨, respectively),
and u be a sibling of v. Assume var(φv) = {xi1 , . . . , xik} and there
exists a variable x which is in var(φu) but not in var(φv). Then for
any constants a1, . . . , ak ∈ {0, 1} such that φv[xi1 = a1, . . . , xik =
ak] = 0 (φv[xi1 = a1, . . . , xik = ak] = 1, respectively),

L(φ[xi1 = a1, . . . , xik = ak]) ≤ L(φ)−

 ∑
x′∈var(φv)

freq(x′)

− 1.

Furthermore, if freq(x′) ≥ L(φ)
|var(φ)| holds for every x′ ∈ var(φv),

L(φ[xi1 = a1, . . . , xik = ak])

≤ L(φ)

{
k−2∏
j=0

(
1− 1

|var(φ)| − j

)}

×
(

1− 1

|var(φ)| − k + 1

)1+
|var(φ)|
L(φ)

.
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Note that a half fraction of assignments to xi1 , · · · , xik makes φv[xi1 =
a1, . . . , xik = ak] = 0 (φv[xi1 = a1, . . . , xik = ak] = 1, respectively).

Proof. If we assign 0/1 values to xi1 , . . . , xik , obviously∑
x′∈var(φv) freq(x′) of leaves become constants. Furthermore, by

rule (a) of Simplify (by rule (d) of Simplify, respectively), v’s
parent node becomes constant. That is, we can remove at least
one leaf of φu whose label is x or x. The second inequality follows
from the first one and using Observation 2.5. �

Observation 2.7. Let φ be a formula, v be a maximal linear
node of φ where the parent node of v is labeled by ∧ or ∨, and u
be a sibling of v. Assume var(φv) = {xi1 , . . . , xik} and var(φv) ⊇
var(φu) and a variable x is in both var(φv) and var(φu). Assume
x = xi1 . Then for any constants a2, . . . , ak ∈ {0, 1},

L(φ[xi2 = a2, . . . , xik = ak]) ≤ L(φ)−

 ∑
x′∈var(φv)\{xi1}

freq(x′)

−1.

Furthermore, if freq(x′) ≥ L(φ)
|var(φ)| holds for any x′ ∈ var(φv)\{xi1},

L(φ[xi2 = a2, . . . , xik = ak])

≤ L(φ)

{
k−3∏
j=0

(
1− 1

|var(φ)| − j

)}

×
(

1− 1

|var(φ)| − k + 2

)1+
|var(φ)|
L(φ)

.

Proof. If we assign 0/1 values to xi2 , . . . , xik , obviously∑
x′∈var(φv)\{xi1}

freq(x′) of leaves become constants. Furthermore,

φv becomes x or x and φu becomes one of 0, 1, x, x. That is, by
rules (a),(b),(c),(d),(e) and (f),we can remove at least one leaf
whose label is x or x. The second inequality follows from the
first one and using Observation 2.5. �
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2.3. A structural lemma for {∧,∨,⊕}-formulas. In this sec-
tion, we present a structural lemma for {∧,∨,⊕}-formulas, which
is the main technical contribution of this paper. Let us explain the
motivation of the lemma.

First recall that the SAT algorithm of Santhanam (2010) for
U2-formula is based on the following observation:

Observation 2.8. Let φ be an n-variable U2-formula and let x
be a variable of maximum frequency in φ. Then L(φ[x = a]) ≤
L(φ)

(
1− 3

2n

)
and L(φ[x = a]) ≤ L(φ)

(
1− 1

n

)
holds for some a ∈

{0, 1}.

We can interpret the inequality L(φ[x = a]) ≤ L(φ)
(
1− 3

2n

)
as that φ shrinks non-trivially and this is the source of running
time savings. However, the above observation does not hold for
{∧,∨,⊕}-formulas due to the existence of parity gates.

Our structural lemma guarantees that given a {∧,∨,⊕}-formula
φ, either (i) satisfiability of φ can be somewhat easily solved by
brute force search, or (ii) there exists a good set of variables such
that assigning values to them shrinks φ non-trivially. The following
is the formal statement of the lemma.

Lemma 2.9. In any n-variable formula φ of size cn, c ≥ 3/4, such
that φ does not contain any pair of mergeable maximal linear
nodes, at least one of the following holds.

Case 1: The number of maximal linear nodes in φ is less than
3n/4.

Case 2: There exists a variable x ∈ var(φ), freq(x) ≥ c+ 1
8c

.

Case 3: There exists a maximal linear node v with L(φv) ≤ 8c
such that for any x ∈ var(φv), freq(x) ≥ c and the parent
node of v is labelled by ∧ or ∨.

Proof. Assume that neither Case 1 nor Case 2 occurs. We need
the following lemma and fact which are proven later.
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Lemma 2.10. Let φ be a formula which contains at least one node
labeled by ∧ or ∨ but not any pair of mergeable maximal linear
nodes. Then, the number of maximal linear nodes whose parent
nodes are labeled by ∧ or ∨, denoted by #MLin∧,∨(φ), is greater
than the number of maximal linear nodes whose parent nodes are
labeled by {⊕}, denoted by #MLin⊕(φ).

Fact 2.11. (i) The number of maximal linear nodes which have
more than 8c leaves as descendants is at most n/8. (ii) The number
of maximal linear nodes which have a variable x with freq(x) < c
is at most n/8.

By Lemma 2.10, #MLin∧,∨(φ) > (3n/4)/2 = 3n/8. By Fact 2.11,
there are at least 3n/8 − n/8 − n/8 = n/8 maximal linear nodes
satisfying the condition of Case 3.

Proof (of Lemma 2.10). We will prove by induction on the size
of φ.

If L(φ) = 1, then φ does not contain a node labeled by ∧ or ∨. If
L(φ) = 2 or 3, it is easy to check that #MLin∧,∨(φ) > #MLin⊕(φ)
holds.

Now we will show that #MLin∧,∨(φ) > #MLin⊕(φ) for φ whose
size is ` > 3 and which contains at least one node labeled by ∧ or
∨. If the number of internal nodes which are labeled by ∨ or ∧
is exactly one, it is easy to see that #MLin∧,∨(φ) > #MLin⊕(φ)
holds. Thus, assume otherwise. Consider the following two cases.
(i) There is a maximal linear node of size at least two. (ii) Every
maximal linear node is of size exactly one.

In case (i), pick any maximal linear node of size at least two,
say v. Since L(φv) ≥ 2, φv contains an internal node w whose child
nodes are leaves, say s and t. Let φ̃v be a formula which is identical
to φv except that the nodes s, t are removed from φv and the node
w is replaced by s. Then let φ̃ be the formula obtained from φ by
replacing φv by φ̃v. Note that φ̃ contains at least one node labeled
by ∧ or ∨ but does not contain any pairs of mergeable maximal
linear nodes. Since L(φ̃) = ` − 2, it holds that #MLin∧,∨(φ̃) >
#MLin⊕(φ̃) by the induction hypothesis. It is easy to see that
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#MLin∧,∨(φ) = #MLin∧,∨(φ̃) and #MLin⊕(φ) = #MLin⊕(φ̃) by
the construction of φ̃, we are done.

In case (ii), there exists at least one internal node, say u, whose
label is ∨ or ∧ and child nodes are leaves, say p and q. Furthermore,
there exists at least one more internal node whose label is ∨ or ∧.
Let v be a parent node of u and w be a sibling of u.

If v is labeled by ∨ or ∧, consider a formula φ̃ obtained from φ
by replacing u by s. Since L(φ̃) = `−1, it holds that #MLin∧,∨(φ̃) >
#MLin⊕(φ̃) by the induction hypothesis. It is easy to see that
#MLin∧,∨(φ̃) = #MLin∧,∨(φ)− 1 and #MLin⊕(φ̃) = #MLin⊕(φ),
we are done.

If v is labeled by ⊕, consider a formula φ̃ obtained from φ by
replacing φv by φw. It is easy to see that #MLin∧,∨(φ) − 2 =
#MLin∧,∨(φ̃) and #MLin⊕(φ) = #MLin⊕(φ̃) by the construction
of φ̃, we are done. �

Proof (of Fact 2.11). (i) is obvious by the averaging argument.
We will show (ii). By the averaging argument, there exists a vari-
able x ∈ var(φ) with freq(x) ≥ c. Since there is no variable
x ∈ var(φ) with freq(x) ≥ c+ 1

8c
by the assumption that Case 2 does

not hold, we have c ≤ freq(x) < c + 1
8c

. Note that if there exists
a variable x′ ∈ var(φ) with freq(x′) < c then freq(x′) < c + 1

8c
− 1

because freq(x′) is integer for any variable x′. By the averaging
argument, there are at most n

8c
variables in var(φ) with frequency

less than c. The total number of leaves labeled by such variables
is at most c× n

8c
≤ n/8. �

These proofs complete the proof of Lemma 2.9. �

3. A Satisfiability Algorithm for B2-Formulas

Before describing our B2-formula-SAT algorithm and its running
time analysis, let us give a basic idea behind them.

Let φ be an n-variable formula of size cn. If c is less than 3/4
or the number of maximal linear nodes in φ is less than 3n/4, then
we can check the satisfiability of φ in time 23n/4. Otherwise, Case 2
or 3 of Lemma 2.9 holds. In such a case, we can reduce the size of
φ non-trivially by fixing some number of variables to be constants
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as shown in Observation 2.5, Observation 2.6 and Observation 2.7.
Note that if freq(xij) ≥ c for any j, then

L(φ[xi1 = a1, . . . , xik = ak]) ≤ L(φ)

{
k−1∏
j=0

(
1− 1

n− j

)}

holds by repeatedly using Observation 2.5. This decrease of the
size from φ to φ[xi1 = a1, . . . , xik = ak] is called trivial. If for some
γ > 0,

L(φ[xi1 = a1, . . . , xik = ak]) ≤ L(φ)

{
k−1∏
j=0

(
1− 1

n− j

)}(
1− 1

n

)γ
holds, then the decrease of the size from φ to φ[xi1 = a1, . . . , xik = ak]
is called non-trivial. If Observation 2.5 or Observation 2.7 ap-
plies to φ, φ[x = a] or φ[xi2 = a2, . . . , xik = ak] is non-trivially re-
duced for any a, a2, . . . , ak ∈ {0, 1}. However, if Observation 2.6
applies to φ, φ[xi1 = a1, . . . , xik = ak] is non-trivially reduced for
at least a half fraction of assignments of a1, . . . , ak ∈ {0, 1}, and
φ[xi1 = a1, . . . , xik = ak] is at least trivially reduced for the remain-
ing assignments of a1, . . . , ak ∈ {0, 1}. To summarize, if we choose
certain number of variables appropriately and assign 0/1 values
to them uniformly at random, then the formula size non-trivially
reduces with probability at least 1/2. We would like to estimate
the expected size of the reduced formula after assigning values to
(1− α)n variables for some α > 0.

The lemma described below captures the analysis of the above
process. It is a generalization of the Lemma 5 shown in [Santhanam
(2010)]. Let X0, X1, . . . be independent random variables which
take 0/1 values uniformly at random. Let α ∈ (0, 1) and γ > 0
be real numbers and b, n be positive integers. We assume n is
sufficiently larger than b. Let Yn(α, b, γ) be a random variable
defined as follows:

Yn(α, b, γ) :=


(1−α)n∏
i=0

(
1− 1

n− i

)


(1−α)n
b∏
i=0

(
1− 1

n− bi

)γXi .
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Lemma 3.1. For any positive integer b, any real numbers δ ∈
(0, 1), γ > 0, there exist positive real numbers α ∈ (0, 1), ε > 0
and a positive integer N , such that for any integer n ≥ N ,

Pr[Yn(α, b, γ) ≤ αδ] ≥ 1− 2−εn

holds.

Proof. If what follows, we ignore integrality issues for simplic-
ity, but the argument holds with slight modification. First note

that
{∏(1−α)n

i=0

(
1− 1

n−i

)}
≤ α. Let ζ ∈ (0, 1) be a small positive

real number chosen later. Let Ij be a set of consecutive integers
defined as

Ij := {(ζn)(j − 1) + 1, . . . , (ζn)j}
for 1 ≤ j ≤ 1−α

bζ
. It is easy to see by the Chernoff bound that

Pr

∑
i∈Ij

Xi ≤
ζn

3

 = 2−Ωζ(n)

for any j, 1 ≤ j ≤ 1−α
bζ

. Here Ωζ hides a constant factor determined
by ζ. Thus, we have

Pr

∑
i∈Ij

Xi >
ζn

3
for any j, 1 ≤ j ≤ 1− α

bζ

 = 1− 2−Ωζ(n)

by the union bound. We can show the following fact by an elemen-
tary calculation.

Fact 3.2. If
∑

i∈Ij Xi > ζn/3 for any j, 1 ≤ j ≤ 1−α
bζ

, then it
holds that 

(1−α)n/b∏
i=0

(
1− 1

n− bi

)γXi < (α + ζ)γ/3b.

Proof. We need the following two inequalities.∏
i∈Ij

(
1− 1

n− bi

)Xi
≤
∏
i∈Ij−1

(
1− 1

n− bi

) 1
3

(3.3)
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for 2 ≤ j ≤ 1−α
bζ

, and

(
1− 1

n− bi

)
≤

b−1∏
k=0

(
1− 1

n− bi+ k

) 1
b

.(3.4)

Then, we can deduce the desired bound as follows.
(1−α)n/b∏
i=0

(
1− 1

n− bi

)γXi
≤


(1−α)n/bζ∏

j=1

∏
i∈Ij

(
1− 1

n− bi

)γXi ,

then, by (3.3),

≤


(1−α)n/bζ∏

j=2

∏
i∈Ij−1

(
1− 1

n− bi

)γ/3 ,

then, by (3.4),

≤


(1−α)n/bζ∏

j=2

∏
i∈Ij−1

b−1∏
k=0

(
1− 1

n− bi+ k

)γ/3b
=

(α+ζ)n∏
i=1

(
1− 1

n− i

)γ/3b
≤ (α + ζ)γ/3b.

�

Set ζ = α, 2α = δ3b/γ and choose ε = ε(ζ) appropriately, we
have the desired bound. �

3.1. The Algorithm and Computation Tree. Our satisfia-
bility algorithm for B2-formulas, Evalformula is described in Fig-
ure 3.1. Without loss of generality, we assume input formulas are
irreducible {∧,∨,⊕}-formulas. The correctness of Evalformula
is guaranteed by Lemma 2.9.

We define a notion of “computation tree” corresponding to the
execution of EvalFormula on a formula φ. A computation tree Tφ
is a binary tree whose nodes are labeled by a triplet < ψ, s, C >,
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EvalFormula (φ: Formula, n: integer)
01: /* Case 0 */
02: if L(φ) = cn < 3n/4,
03: check the satisfiability of φ by brute force search.
04: if φ is satisfiable, return “yes”, else return “no”.
05: /* Case 1 */
06: else if the number of maximal linear nodes is less than 3n/4,
07: check the satisfiability of φ by Lemma 2.3.
08: if φ is satisfiable, return “yes”, else return “no”.
09: /* Case 2 */
10: else if ∃x ∈ var(φ), freq(x) ≥ c+ 1

8c
,

11: EvalFormula(φ[x = 0], n− 1),
12: EvalFormula(φ[x = 1], n− 1).
13: /* Case 3 */
14: else if ∃ maximal linear node v with L(φv) ≤ 8c
: such that ∀x ∈ var(φv), freq(x) ≥ c and
: the parent node of v is labeled by ∧ or ∨,
15: assume var(φv) = {xi1 , . . . , xik} and u is a sibling of v.
16: /* Case 3a */
17: if ∃ x such that x ∈ var(φu) and x /∈ var(φv),
18: for each constants a1, . . . , ak ∈ {0, 1},
19: EvalFormula(φi[xi1 = a1, . . . , xik = ak], n− k).
20: /* Case 3b */
21: else if var(φv) ⊇ var(φu),
22: assume xi1 ∈ φu.
23: for each constants a2, . . . , ak ∈ {0, 1},
24: EvalFormula(φi[xi2 = a2, . . . , xik = ak], n− k + 1).

Figure 3.1: B2-formula SAT algorithm
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where ψ is a formula, s is an integer and C is an element in
{?, 0, 1, 2, 3a, 3a′, 3b, 3b′}. ψ, s and C are called formula label,
(amortized-)size label and case label, respectively. We construct
Tφ recursively as follows.

Base step: The root node of Tφ is labeled by < φ,L(φ), ? >.

Recursive Step: Let v be a leaf node of Tφ whose depth is d
and label is < ψ, s, ? >.

Case 0: If ψ satisfies the condition of Case 0 in EvalFormula,
replace v’s label by < ψ, 1, 0 >.

Case 1: If ψ satisfies the condition of Case 1 in EvalFormula,
replace v’s label by < ψ, 1, 1 >.

Case 2: If ψ satisfies the condition of Case 2 in EvalFormula,
replace v’s label by < ψ, s, 2 >. Add two nodes vl, vr as v’s
children in the following way:
vl is labeled by < ψ[x = 0], L(ψ[x = 0]), ? > and
vr is labeled by < ψ[x = 1], L(ψ[x = 1]), ? >.

Case 3a: If ψ satisfies the condition of Cases 3 and 3a in Eval-
Formula, replace v’s label by < ψ,L(ψ), 3a >. Construct a
complete binary tree Tk of height k starting from v as follows.
If a node u is labeled by < ψ′, s, 3a > or < ψ′, s, 3a′ > and
at a distance d′ < k from v, u’s left child is labeled by
< ψ′[xid′ = 0], s− L(ψ)

n−d , 3a
′ > and u’s right child is labeled by

< ψ′[xid′ = 1], s− L(ψ)
n−d , 3a

′ >.
If a node u is labeled by < ψ′, s, 3a > or < ψ′, s, 3a′ > and at
a distance k from v, u’s left child is labeled by
< ψ′[xik = 0], L(ψ′[xik = 0]), ? > and u’s right child is labeled
by < ψ′[xik = 1], L(ψ′[xik = 1]), ? >.

Case 3b: If ψ satisfies the condition of Cases 3 and 3b in Eval-
Formula, replace v’s label by < ψ,L(ψ), 3b >. Construct a
complete binary tree Tk−1 of height k − 1 starting from v as
follows.
If a node u is labeled by < ψ′, s, 3b > or < ψ′, s, 3b′ > and
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at a distance d′ < k − 1 from v, u’s left child is labeled by
< ψ′[xid′+1

= 0], s− L(ψ)
n−d , 3b

′ > and u’s right child is labeled

by < ψ′[xid′+1
= 1], s− L(ψ)

n−d , 3b
′ >.

If a node u is labeled by < ψ′, s, 3b > or < ψ′, s, 3b′ > and at
a distance k − 1 from v, u’s left child is labeled by
< ψ′[xik = 0], L(ψ′[xik = 0]), ? > and u’s right child is labeled
by < ψ′[xik = 1], L(ψ′[xik = 1]), ? >.

We will assume that the computation tree is a complete binary
tree of depth n by padding it - if there is a node v at depth less
than n whose case label is 0 or 1, we add nodes whose labels are
< null, 1, 0 > below v.

The following lemma is crucial in the running time analysis of
EvalFormula. We use the notation L̃(p) to denote the size label
of p in Tφ and d(p) to denote the depth of p in Tφ. Let p be a
node in Tφ with d(p) ≤ n − 8c and Tp(8c) denote the set of p’s
descendants which are at distance 8c from p. Then, we have:

Lemma 3.5. There is a subset T̂p(8c) of Tp(8c) with |T̂p(8c)| =
|Tp(8c)|

2
such that for any q ∈ T̂p(8c),

L̃(q) ≤ max

[
1, L̃(p)

{
8c−1∏
j=0

(
1− 1

n− d(p)− j

)}

×
(

1− 1

n− d(p)

) 1
c2

]
and for any q ∈ Tp(8c) \ T̂p(8c),

L̃(q) ≤ max

{
1, L̃(p)

{
8c−1∏
j=0

(
1− 1

n− d(p)− j

)}}
.

Proof. If the case label of p is 2, 3a or 3b, we obtain the desired
bound from Observation 2.5, Observation 2.6 or Observation 2.7
respectively according to the case label of p. If the case label of p
is 3a’ or 3b’, we can also use Observation 2.6 or Observation 2.7
respectively because of the definition of amortized-size. Note that
1
c2

in the exponent comes from Observation 2.5. If Observation 2.6
or Observation 2.7 apply, the exponent can be 1

c
. �
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3.2. Running time analysis. We begin with some definitions.
Let Tφ(d) denote the set of depth d nodes in Tφ. Let p be a node

in Tφ with d(p) ≤ n−8c and let T̂p(8c) denote the subset of Tp(8c)
such that the conditions in Lemma 3.5 hold. For p ∈ Tφ, Pp denotes
the path from the root of Tφ to p and Pp(d) denotes the node of
Pp with depth d. We define a function Xi(p) from Tφ((1− α)n) to
{0, 1} as:

Xi(p) :=

{
1 if Pp(8c(i+ 1)) ∈ T̂Pp(8ci)(8c)
0 otherwise

for 0 ≤ i ≤ (1−α)n
8c

.
The intuition behind these definitions is as follows: If a path

Pp from the root of Tφ to p ∈ Tφ((1 − α)n) goes through a node

in T̂Pp(8ci)(8c) for many i, then an assignment corresponding to Pp
shrinks Tφ significantly.

The follwoing lemma shows the independence of random vari-
ables {Xi}.

Lemma 3.6. Let p be drawn from Tφ((1− α)n) uniformly at ran-
dom. Then

Pr
[
X0(p) = a0, . . . , X (1−α)n

8c

(p) = a (1−α)n
8c

]
=

(
1

2

) (1−α)n
8c

+1

for any a0, . . . , a (1−α)n
8c

∈ {0, 1}. That is, X0, . . . , X (1−α)n
8c

are inde-

pendent random variables which take values 0 and 1 uniformly at
random.

Proof. It follows from that we define T̂q(8c) as |T̂q(8c)| = |Tq(8c)|
2

in Lemma 3.5. �

We can bound the size label of p ∈ Tφ((1−α)n) using Yn(α, b, γ).

Lemma 3.7. Let p be a node of Tφ((1− α)n). Then

L̃(p) ≤ max

{
1, L(φ)Yn

(
α, 8c,

1

c2

)
(p)

}
.
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where

Yn(α, b, γ)(p) :=


(1−α)n∏
i=0

(
1− 1

n− i

)
×


(1−α)n/b∏
i=0

(
1− 1

n− bi

)γXi(p) .

Proof. It follows from Lemma 3.5 and the definition of Xi(p).
�

Combining Lemma 3.1 with δ = 3
4

and Lemma 3.7, we have:

Lemma 3.8. Let p be drawn from Tφ((1− α)n) uniformly at ran-
dom. Then

Pr

[
L̃(p) <

3αn

4

]
= 1− 2−Ωα(n)

for α = 1
2

(
3
4

)24c3
.

Now we are ready to prove Theorem 1.1.

Proof (of Theorem 1.1). Let φ be an n-variable formula and
consider a corresponding computation tree Tφ. We upper bound
the running time of EvalFormula(φ, n) by the sum of the follow-
ing four values:
(i) Let N0(d) be the number of nodes whose depth is d and case
label is 0. Define T0 as

T0 :=

(1−α)n∑
d=0

N0(d) · 23(n−d)/4.

(ii) Let N1(d) be the number of nodes whose depth is d and case
label is 1. Define T1 as

T1 :=

(1−α)n∑
d=0

N1(d) · 23(n−d)/4.
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(iii) Let N2,3 be the number of nodes whose depth is (1− α)n and
size label is less than 3αn/4. Define T2,3 as

T2,3 := N2,3 · 23αn/4.

(iv) Let N ′2,3 be the number of nodes whose depth is (1− α)n and
size label is at least 3αn/4. Define T ′2,3 as

T ′2,3 := N ′2,3 · 2αn.

It is easy to see that poly(L(φ))(T0 +T1 +T2,3 +T ′2,3) upper bounds
the running time of EvalFormula(φ, n). N0(d), N1(d) is at most
2d and N2,3 is at most 2(1−α)n. Lemma 3.8 shows that N ′2,3 ≤
2(1−α)n × 2−Ω(n). Therefore, T0 + T1 + T2,3 + T ′2,3 = 2n−Ω(n). �

4. Strong average-case hardness

We will show strong average-case hardness of affine extractors for
linear-sized {∧,∨,⊕}-formulas, as claimed in Theorem 1.2. At
first, we give definitions of affine source and affine extractor.

Definition 4.1. Let F2 be the finite field with 2 elements. Denote
by F n

2 the n dimensional vector space over F2. A distribution X
over F n

2 is an (n, k)-affine source if there exist linearly independent
vectors a1, . . . , ak ∈ F n

2 and another vector b ∈ F n
2 such that X is

sampled by choosing x1, . . . , xk ∈ F2 uniformly and independently
and computing

X =
k∑
i=1

xiai + b.

An affine extractor is a deterministic function such that given any
affine source as the input, the output of the function is statistically
close to the uniform distribution.
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Definition 4.2. A function fn : F n
2 → F2 is a deterministic

(k, ε)-affine extractor if for every (n, k)-affine source X,

1/2− ε ≤ Pr[fn(X) = 0] ≤ 1/2 + ε.

(And 1/2− ε ≤ Pr[fn(X) = 1] ≤ 1/2 + ε.)

We need the following Theorem due to [Bourgain (2007); Li (2011);
Yehudayoff (2011)].

Theorem 4.3. For every δ > 0 there exists a polynomial time
computable family of (k, ε)-extractors {AEn

δ : F n
2 → F2} with

k = δn and ε = 2−Ωδ(n).

Theorem 4.4 (Formal restatement of Theorem 1.2). For any con-
stant c > 0, there exists δ > 0 such that any sequence of B2-
formulas of size at most cn must err in computing affine extractors
{AEn

δ } on at least a 1/2− 2−Ω(n) fraction of inputs of length n for
each n.

Proof (of Theorem 4.4). Let φ be an n-variable formula of size
at most cn and consider the computation tree Tφ constructed by
EvalFormula on φ. Here we treat Tφ as the original one, i.e., we
do not add any nodes to make Tφ a complete binary tree of height
n. Let T̃φ be the set of all leaf nodes in Tφ. Each node p of T̃φ
defines a subcube C(p) of {0, 1}n. Note that any node p in T̃φ has
case label 0 or 1.

We consider AEn
δ with δ = α

4
where α = 1

2

(
3
4

)24c3
is chosen as

Lemma 3.8 and prove the following facts.

Fact 4.5. If p has case label 0 and is at depth d, C(p) can be
partitioned into the set of subcubes {C1, . . . , Ck}, k ≤ 23(n−d)/4

such that each Ci has dimension at least (n − d) − 3(n − d)/4 =
(n− d)/4 and φ becomes constant on Ci. Furthermore, if d ≤
(1− α)n,

Pr
x∈Ci

[φ(x) = AEn
δ (x)] ≤ 1/2 + 1/2Ω(n).(4.6)
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Proof. Each assignment to var(φp) determines a subcube C of
dimension n − d − |var(φp)| in C(p) where φ is constant over C.

Since |var(φp)| ≤ 3(n−d)
4

, we have k ≤ 23(n−d)/4.
If d ≤ (1 − α)n, the dimension of each subcube Ci is at least
n−d

4
≥ α

4
n = δn. Thus, we have (4.6). �

Fact 4.7. If p has case label 1 and is at depth d, C(p) can be par-
titioned into the set of affine subspaces {C1, . . . , Ck}, k ≤ 23(n−d)/4

such that each Ci has dimension at least (n − d) − 3(n − d)/4 =
(n− d)/4 and φ becomes constant on Ci. Furthermore, if d ≤
(1− α)n,

Pr
x∈Ci

[φ(x) = AEn
δ (x)] ≤ 1/2 + 1/2Ω(n).(4.8)

Proof. Let v1, v2, . . . , vm be maximal linear nodes of φp and
a1, a2, . . . , am ∈ {0, 1} be constants. If a system of linear equations
φv1 = a1, φv2 = a2, . . . , φvm = am is feasible, then it determines an
affine subspace C ′ of of dimension at least n−d−m in C(p) where

φ is constant over C ′. Since m ≤ 3(n−d)
4

, we have k ≤ 23(n−d)/4.
If d ≤ (1−α)n, the dimension of each affine subspace Ci is at least
n−d

4
≥ α

4
n = δn. Thus, we have (4.8). �

In the proof of Theorem 1.1, we can see that

Pr
x∈{0,1}n

x ∈ ⋃
p ∈ T̃φ

d(p) > (1− α)n

C(p)

 ≤ 2−Ω(n).

Therefore,

Pr
x

[φ(x) = AEn
δ (x)]

=
∑
p∈T̃φ

Pr
x∈{0,1}n

[x ∈ C(p)] Pr
x∈C(p)

[φ(x) = AEn
δ (x)]

=
∑
p ∈ T̃φ

d(p) ≤ (1− α)n

Pr
x∈{0,1}n

[x ∈ C(p)] Pr
x∈C(p)

[φ(x) = AEn
δ (x)]

+
∑
p ∈ T̃φ

d(p) > (1− α)n

Pr
x∈{0,1}n

[x ∈ C(p)] Pr
x∈C(p)

[φ(x) = AEn
δ (x)]
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and ∑
p ∈ T̃φ

d(p) ≤ (1− α)n

Pr
x∈{0,1}n

[x ∈ C(p)] Pr
x∈C(p)

[φ(x) = AEn
δ (x)] ≤ 1

2
+ 2−Ω(n)

by Fact 4.5 and Fact 4.7 , and∑
p ∈ T̃φ

d(p) > (1− α)n

Pr
x∈{0,1}n

[x ∈ C(p)] Pr
x∈C(p)

[φ(x) = AEn
δ (x)]

≤
∑
p ∈ T̃φ

d(p) > (1− α)n

Pr
x∈{0,1}n

[x ∈ C(p)] ≤ 2−Ω(n)

where the last inequality follows from Lemma 3.8. This completes
the proof. �
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