
SHORT LISTS FOR SHORTEST

DESCRIPTIONS IN SHORT TIME

Jason Teutsch

June 18, 2021

Abstract. Is it possible to find a shortest description for a binary
string? The well-known answer is “no, Kolmogorov complexity is not
computable.” Faced with this barrier, one might instead seek a short
list of candidates which includes a laconic description. Remarkably such
approximations exist. This paper presents an efficient algorithm which
generates a polynomial-size list containing an optimal description for a
given input string. Along the way, we employ expander graphs and ran-
domness dispersers to obtain an Explicit Online Matching Theorem for
bipartite graphs and a refinement of Muchnik’s Conditional Complexity
Theorem. Our main result extends recent work by Bauwens, Mahklin,
Vereschchagin, and Zimand.

Keywords. Kolmogorov complexity, online matching, bipartite ex-
pander graph, disperser graph, Muchnik’s Conditional Complexity The-
orem.

Subject classification. 68Q30, 68R10

1. The quest for short descriptions

We explore an interaction between randomness extraction, combi-
natorics, and Kolmogorov complexity culminating in an efficient,
new approximation for optimal descriptions. Informally, a com-
puter program p is called a description for a binary string x if
the execution of p yields output x. The Kolmogorov complexity
of a binary string is the length of its shortest description in some
standard programming language (see Section 2). As much as one
might like to know the Kolmogorov complexity of a given string, it

ar
X

iv
:1

21
2.

61
04

v5
 [

cs
.C

C
]

 1
2

Fe
b

20
14

2 Jason Teutsch

is impossible to obtain this quantity effectively [5]. Even estimat-
ing Kolmogorov complexity for a given string is infeasible, as no
unbounded computable function can be a lower bound for a Kol-
mogorov complexity [11, Theorem 1.6]. Moreover, any algorithm
mapping a string to a list of values containing its Kolmogorov com-
plexity must, for all but finitely many lengths n, include in the list
for some string of length n at least a fixed fraction of the lengths
below n+O(1) [2].

Remarkably, as recently observed by Bauwens, Makhlin, Veresh-
chagin, and Zimand [1], the situation differs when we seek a short
list of candidate descriptions for a given string. We will show that
it is possible to efficiently compute a polynomial-size list contain-
ing a shortest description for any given string, up to an additive
constant number of bits (Corollary 8). The existence of our list-
ing algorithm will follow from a combinatorial graph construction,
namely our Explicit Online Matching Theorem, and we devote the
remainder of our discussion to establishing this crucial result.

Sections 2 and 3 provide background and prior results. Sec-
tion 4 discusses the bipartite expander and disperser graphs which
we will use to obtain our main theorems in Section 5, and the final
section provides additional analysis of the core construction.

2. Conventions for complexity and bipartite
graphs

We formalize the notions of “description” and “Kolmogorov com-
plexity” from the previous section, review the definition of condi-
tional complexity, and then discuss bipartite graphs. Throughout
this manuscript, |x| denotes the length of a string x, and |S| de-
notes the cardinality of a set S.

For every Turing machine M , we call

CM(x) = min{|p| : M(p) = x}

the (plain) Kolmogorov complexity with respect to M . Let
M0,M1, . . . be an effective enumeration of all Turing machines.
Let 〈·, ·〉 denote a polynomial-time computable encoding for pairs
of strings whose output has length which is a linear function of

Short lists for shortest descriptions in short time 3

the first coordinate’s length plus the second coordinate’s length,
and define a machine U by U(〈e, x〉) = Me(x). This standard ma-
chine U has the property that for any further machine M , there
exists a constant d such that CU(x) ≤ CM(x) + d for all strings x,
see [5] for details. For the remainder of this manuscript, let C = CU
denote the Kolmogorov complexity of the standard machine U . We
will say that p is a description of a binary string x if U(p) = x.
When discussing pairs, we may omit the delimiters 〈·〉 for readabil-
ity.

The conditional complexity of a given b, or C(a | b), is the
length of the shortest string which translates the string b into the
string a. More specifically,

C(a | b) = min{|p| : U(p, b) = a}.

We will use the following notation for graphs. Triplets (L,R,E)
will denote bipartite graphs in which L is a set of left-hand ver-
tices, R is a set of right-hand vertices, and E ⊆ L × R is a set of
edges connecting these two halves. For any set of vertices S, E(S)
denotes the neighbors of S, and a bipartite graph has left degree d
if each of its left-hand vertices has exactly d neighbors in R.

A family of bipartite graphs is called explicit if for each member
(L,R,E) with left-degree d, the ith neighbor of any vertex in L can
be computed in time polynomial in 〈log |L|, log d〉. When the fam-
ily context is clear, we simply say that (L,R,E) is itself explicit.
Similarly, an infinite bipartite graph whose left-hand vertices con-
sist of binary strings is called explicit if the ith neighbor of each
left-hand vertex x can be computed in time poly(|x|, log |E({x})|).

3. Prior and related results

Buhrman, Fortnow, Laplante [3] and Muchnik [6] observed that if
a hash value determines a string more or less uniquely among a
class of strings, then that hash value serves as a description of that
string modulo advice. While the authors of [3] used randomness
extraction to obtain bounds1 on polynomial-time variants of Kol-
mogorov complexity, [6] employed probabilistic methods to prove

1Bauwens, Makhlin, Vereshchagin, and Zimand [1] have refined the distin-
guishing complexity result from [3].

4 Jason Teutsch

the existence of an expander-like object. The latter translates into
the next statement about conditional complexity.

Muchnik’s Conditional Complexity Theorem (6). For any
strings x and y, there exists a string p such that

(i) C(x | p, y) = O(log |x|),

(ii) |p| = C(x | y), and

(iii) C(p | x) = O(log |x|).
The hidden constants do not depend on x, y, or p.

Muchnik’s Theorem has a simple interpretation in the context
of multisource information theory [8]. Suppose Alice wants to send
a string x to Bob and that Bob already knows y. By definition Alice
must send a message p of length at least C(x | y) bits to Bob in
order to communicate x. Muchnik’s Theorem tells us that Alice
can construct such a message p without even knowing y! According
to the theorem, Alice requires logarithmic advice to encode the
message p, and Bob then needs just logarithmic advice to transform
p back into x.

A recent paper [8] by Musatov, Romashchenko, and Shen fur-
nished two combinatorial proofs of Muchnik’s Conditional Com-
plexity Theorem. The first proof, which introduced online match-
ings (Definition 6), roughly follows Muchnik’s original argument
[6] whereas the second one appeals to randomness extraction along
the lines of Buhrman, Fortnow, and Laplante [3]. The proof of
our main result, Corollary 8, combines both of these methods in
its core construction. Somewhat unexpectedly, we can also un-
derstand Muchnik’s Conditional Complexity Theorem in terms of
lists of descriptions, the main objects of this paper. We explore
the details of this connection in Corollary 9.

Building on ideas from [8], Bauwens, Makhlin, Vereshchagin,
and Zimand [1] improved the following theorem in two ways.

Theorem 1 (Bauwens, Makhlin, Vereshchagin, and Zimand [1]).
There exists a computable function which maps each binary string
x to a poly(|x|)-size list containing a length C(x) + O(log |x|) de-
scription for x.

Short lists for shortest descriptions in short time 5

They showed that either one can generate the list in polynomial
time, or one can bound the length of the contained description
by C(x) + O(1). In the latter case the length of the list can be
quadratic in |x|, and furthermore no computable function can gen-
erate a shorter list for descriptions of this size [1]. The authors
also give an improvement of Muchnik’s Conditional Complexity
Theorem. They show that the description p in (iii) can be com-
puted efficiently from x given O(log |x|) bits of advice, and we
will improve their result further in Corollary 9 by showing that the
number of advice bits in (i) can be reduced from O(log |x|) to O(1).
In a similar vein, Musatov and Romashchenko [7, 8] investigated
Muchnik’s Theorem in the context of space complexity.

In this paper, we shall show that both the Theorem 1 improve-
ments from [1] can be achieved simultaneously. We will efficiently
generate a polynomial-length list containing a description whose
length is within an additive constant of optimal (Corollary 8). We
do not investigate running time of descriptions here, however time
complexity for these objects remains a relevant consideration.

4. Randomness extraction tools

Our main construction combines disperser and expander graphs
which we derive from an explicit graph object of Ta-Shma, Umans,
and Zuckerman [9].

Definition 2. A bipartite graph (L,R,E) is called a (K, ε)-disperser
if every subset of L with cardinality at least K has at least (1−ε)|R|
distinct neighbors in R.

Definition 3. A bipartite graph (L,R,E) is called a (K, c)-expander
if for every set S ⊆ L of size at most K, |E(S)| ≥ c|S|.

Both expanders and dispersers are bipartite graphs whose left-
hand vertices have many neighbors on the right side, however they
differ in two important respects. First, expander graphs achieve
expansion only for sufficiently small sets whereas disperser graphs
only guarantee dispersion for large sets. Secondly, while both ex-
panders and dispersers involve graphs with small left degree whose

6 Jason Teutsch

left-hand subsets have many neighbors, they differ in their means
of achieving these parameters. In a bipartite expander graph, sub-
sets of left-hand vertices have many right-hand neighbors relative
to their size, whereas in a disperser graph the neighbors of the left-
hand subset cover a large fraction of the entire right-hand side.

Theorem 4 (Ta-Shma, Umans, Zuckerman [9]). There is a con-
stant c > 0 such that for every K ≥ 0, ε > 0, and any nonempty
set of vertices L, there exists an explicit (K, ε)-disperser (L,R,E)
with left degree d = poly log |L| and

cKd

log3 |L|
≤ |R| ≤ Kd.

Ta-Shma, Umans, and Zuckerman’s construction aims to make
the set of right-hand vertices as large as possible, however our
purposes require a small right-hand set.

Disperser Lemma (Zimand). For every k ≥ 0 and any set L
with |L| ≥ 2k, there is an explicit bipartite graph (L,R,E)

◦ with |R| = 2k+1,

◦ whose left degree is polynomial in log |L| and does not depend
on k, and such that

any subset of L of size at least 2k has at least 2k neighbors in R.

Proof. Let k ≥ 0 and L be a set of size at least 2k. Apply
Theorem 4 with L, K = 2k and ε = 1/3, and call the resulting
graph G = (L,R,E). G is close to what we need, however the
right-hand size vertex set could be either too large or too small. If
|R| = 2k+1, in which case we say that R has the right size, then G
is already what we need as any subset of L of size at least 2k has
at least (2/3)2k+1 > 2k neighbors in R.

Consider the case where R is too small, meaning less than twice
the right size (but not already equal to it). In this step we will over-
shoot the size of R by a bit, and then we correct for this in the next
paragraph. We increase the size of the right-hand set by merging
cloned copies of G. Form a new graph which has the same left-hand

Short lists for shortest descriptions in short time 7

vertices as G, whose right-hand vertices are a disjoint union of R
with itself, and whose edges are the same as the ones for G in each
half. This operation doubles both the size of the right-hand vertex
set and the degree of the graph while maintaining the disperser
parameters K = 2k and ε = 1/3. We iterate this operation until
the right-hand vertex set becomes at least twice the right size. The
resulting graph preserves the disperser parameters, and the degree
is still poly log |L| as Theorem 4 provided us with a graph whose
right-hand cardinality was already no less than O(1/ log3 |L|) times
the right size.

Without loss of generality, assume that R is at least twice the
right size. We divide R into 2k+1 equivalence classes of approxi-
mately equal size, and call this collection of classes R′. Specifically,
we distribute the vertices of R evenly among the classes so that no
class is bigger than any other by more than one member. Now
define a bipartite graph G′ with left vertex set L, right vertex set
R′, and where x ∈ L is a neighbor of y ∈ R′ iff (x, z) ∈ E for
some z in the equivalence class of y. We claim that G′ has the
desired properties for the lemma. R′ is already the right size, and
the folding operation just described does not increase the left de-
gree, so it remains to verify the disperser property. Note that each
equivalence class must contain at least two vertices since R is at
least twice the right size. Let t ≥ 2 be the unique integer so that
t ≤ |R|/2k+1 < t + 1, and let S be a subset of L of size at least
2k. Without loss of generality, we can assume that |E(S)| is ex-
actly equal to (1− ε)|R| because if S had more neighbors we would
get even better parameters for the disperser. Thus the number of
equivalence classes in R′ which contain no neighbor of S is greater
than ε|R|/(t+ 1) and at most ε|R|/t. Indeed

ε2k+1 =
ε|R|
|R|/2k+1

lies between these two values. The ratio between these two end-
points is (t+1)/t ≤ 3/2, and it follows that the number of elements
in R′ which have no neighbor in S is at most (in fact strictly less
than) (3/2)ε2k+1 = (1/2)2k+1, so S has at least 2k+1−2k neighbors
in R′. �

8 Jason Teutsch

We modify the above construction to obtain an expander graph.

Expander Lemma. For every k ≥ 0 and any set L with |L| ≥ 2k,
there is an explicit bipartite graph (L,R,E)

◦ where |R| < 2k+3,

◦ whose left degree is polynomial in log |L| and does not depend
on k, and such that

any subset S ⊆ L of size at most 2k has at least |S| neighbors in R.

Proof. Assume k ≥ 0, and let L be a set satisfying |L| ≥ 2k.
First we construct for each 0 ≤ i ≤ k a disperser graph like the
one in the previous lemma but with slightly different parameters.
We want a bipartite graph Gi = (L,Ri, Ei) whose left degree is
polynomial in log |L|, where |Ri| = 2i+2, and such that any subset
of L of size at least 2i has at least 2i+1 neighbors in Ri. The
same argument from the previous lemma gets us a graph with
these parameters when we alter the “right size” and number of
equivalence classes to be 2i+2.

We now transform this collection of disperser graphs into an
expander graph. LetG = (L,R,E) be a merge of all these disperser
graphs. That is, R is the disjoint union of R0, R1, . . . , Rk, and E is
the corresponding union of the Ei’s. The left degree of G is at most
k times the maximum left degree of all Gi’s, which is poly log |L|,
and

|R| =
k∑
i=0

|Ri| =
k∑
i=0

2i+2 = 2k+3 − 4.

Consider any S ⊆ L of size at most 2k, and let i be the unique
integer such that 2i ≤ |S| < 2i+1. Then

|E(S)| ≥ |Ei(S)| ≥ 2i+1 > |S|. �

5. Explicit online matching

We now present the main theorem. The core of our constructions
is the following “static” disperser graph which we transform into
a further bipartite graph that admits “online” matching. In case

Short lists for shortest descriptions in short time 9

one does not require an explicit graph, a bipartite graph with ran-
domly chosen edges achieves the other properties of Lemma 5 with
nonzero probability2 [1].

Lemma 5. For every k ≥ 0, there exists an explicit bipartite graph
(L,R,E) such that

◦ L consist of all binary strings of length at least k,

◦ the cardinality of R is 2k+1,

◦ the degree of each vertex x ∈ L, is poly(|x|), and

◦ where any subset of L of size at least 2k has at least 2k

neighbors in R.

The polynomial poly(|x|) does not depend on k.

Proof. Our construction proceeds in two phases. First, we use
the Expander Lemma to spread the neighbors of the left-hand
nodes L across a small middle vertex set M . Next we take this
spread of neighbors M and map it to an even smaller set, namely
the right-hand vertices R, via the Disperser Lemma. The edges E
of our desired graph will consist of those pairs in L and R which
are connected by the composition of these two mappings.

We now discuss how to handle strings of different lengths. Each
string in L of length greater than 2k will have 2k neighbors in R
(which is polynomially many). For each length n in the remaining
range k ≤ n ≤ 2k, we create an explicit bipartite expander between
strings of length n and an intermediate set Mn and then disperse
the disjoint union of the Mn’s into the set R.

Let L be as in the assumption of this lemma, let k ≥ 0, and let
Ln denote the strings of length n. We generate an explicit expander
graph Gn = (Ln,Mn, An) for each string length k ≤ n ≤ 2k. Apply
the Expander Lemma to obtain a bipartite graph Gn with left

2See also [8] for an example of a similar but finite graph constructed using
the probabilistic method.

10 Jason Teutsch

Figure. The Expander Lemma composed with the Dis-
perser Lemma.

degree poly(n) and right vertex cardinality 2k+3 which is a (2k, 1)-
expander. Let M be the disjoint union of Mk,Mk+1, . . . ,M2k , and
let A denote the corresponding edges of this embedding. That is,

A = {(x, y) : x ∈ L, y ∈M and (x, y) ∈ An for some n}.

Now (L,M,A) is a bipartite graph where the left degree of each
length n string is poly(n), and

2k < |M | =
2k∑
n=k

|Mn| < 2k · 2k+3.

By the Disperser Lemma, there exists an explicit bipartite graph
(M,R,B) whose left degree, poly(log |M |), is polynomial in k,
whose right vertex set satisfies |R| = 2k+1, and such that any sub-
set of M of size at least 2k has at least 2k neighbors in R. Finally,
let E consist of all edges between L and R which are connected

Short lists for shortest descriptions in short time 11

through M by composition of the edge sets A and B. That is,

E = {(x, y) : x ∈ L, y ∈ R, and there exists z ∈M
such that (x, z) ∈ A and (z, y) ∈ B}.

This concludes the construction of the bipartite graph (L,R,E),
whose left degree for each string of length n is no more than

max{O(n), poly(n) · poly(log |M |)} = poly(n),

regardless of whether or not n > 2k.
Let S be a subset L of size at least 2k. If S contains a string

of length greater than 2k then that string has 2k neighbors in R,
so in this case we immediately satisfy |E(S)| ≥ 2k. Thus we may
assume that all strings in S have length at most 2k. It follows from
the expansion property of (L,M,A) that

|A(S)| =
2k∑
n=k

|An({x ∈ S : |x| = n})| ≥ 2k,

and from the disperser property of (M,R,B) we then get

|E(S)| = |B[A(S)]| ≥ 2k

as desired. �

The next definition and the argument in the next proof are due
to Musatov, Romashchenko, and Shen [8], but we include them
here for clarity and completeness.

Definition 6. We say that a bipartite graph (L,R,E) admits on-
line matchings up to size s if there exists an algorithm such that
for any set of vertices in L of size s, whose vertices are (adversari-
ally) presented to the algorithm one at a time, the algorithm can
assign each vertex in order received to one of its neighbors (with-
out knowing what comes next), and the overall assignment after
all ≤ s elements is a bijection. An online matching is efficient if
a neighbor can be selected in time linear in the logarithm of the
degree of the input.

We will use the following combinatorial theorem to obtain our
main result about Kolmogorov complexity.

12 Jason Teutsch

Explicit Online Matching Theorem. For every k ≥ 0, there
exists an explicit bipartite graph G = (L,R,E) such that

◦ L consist of all binary strings of length at least k,

◦ the cardinality of R is less than 2k+1,

◦ the degree of each vertex x ∈ L is poly(|x|), and

◦ G admits efficient online matching up to size 2k.

The polynomial poly(|x|) does not depend on k.

Proof. Let L be as in the hypothesis, and let k ≥ 0. Apply
Lemma 5 to obtain, for each integer 0 ≤ i < k, a bipartite graph
(L,Ri, Ei) where Ri is a set of vertices with cardinality 2i+1, the
left degree is polynomial in the string length, and any subset of L
of size at least 2i has at least 2i neighbors in Ri. Furthermore, let
(L,R−1, E−1) be a bipartite graph which has a single right-hand
vertex which is a neighbor of each element in L. We build the Ri’s
pairwise disjoint.

Let R =
⋃
i≥−1Ri and E =

⋃
i≥−1Ei. We claim that the ex-

plicit bipartite graph (L,R,E) has the required properties to es-
tablish the theorem. Since the degree of each vertex in x ∈ L is
the sum of the degrees for x over all Ri’s, we see that the degree
of each length n string in L is at most (k + 1) · poly(n), which is
still polynomial in n. Furthermore,

|R| =
k−1∑
i=−1

|Ri| =
k∑
i=0

2i = 2k+1 − 1.

It remains to verify the efficient online matching property. We
apply a greedy algorithm. Originally, all vertices in R are marked
as unused. When a vertex x ∈ L comes in, we assign it to an
arbitrary unused neighbor Rk−1, if such a neighbor exists. If not,
we attempt to assign x to an unused neighbor in Rk−2. If this is
not possible, we try for an unused neighbor in Rk−3, etc. When
(and if) x gets assigned to a particular y ∈ Ri, we mark y as used
and wait for the next vertex in L to arrive. Successive arrivals are
handled similarly.

Short lists for shortest descriptions in short time 13

We claim that every x gets assigned through this method, and
since each x is assigned to an unused vertex, the resulting matching
will be a bijection. We argue by induction that no more than 2i

vertices in L may fail assignment at level Ri for any i ≥ 0. Suppose
this bound were exceeded at level Rk−1, and letX ⊆ L denote those
vertices which failed assignment at this level. Then |X| > 2k−1,
and so by the disperser property |Ek−1(X)| ≥ 2k−1. Each element
of Ek−1(X) must be used, otherwise we could have matched an
element of X to it. Therefore the total number of vertices which
were either matched or failed assignment at level Rk−1 exceeds 2k,
a contradiction.

Thus at most 2k−1 vertices fail assignment at level Rk−1, and
of these at most half fail assignment at level Rk−2, and so by in-
duction, at most 20 vertices have failed assignment at all levels Ri

for i ≥ 0. The remaining vertex in R−1 is used to assist with the
recalcitrant vertex, if needed. Hence all vertices are matched. �

Remark 7 (Makhlin). The cardinality of R in the Explicit Online
Matching Theorem cannot be reduced to 2k, as then the online
matching property would force each right-hand vertex of length n
to have more than 2n − 2k neighbors, which would imply that the
graph restricted to strings of length n has more than 2k(2n − 2k)
edges, and therefore some left-hand vertex of length n has degree
greater than 2k(1− 2k/2n). It follows that for every k there exists
a string in L of length n = k + 1 whose degree exceeds 2k−1.

On the other hand, for any δ > 0 we can achieve |R| < 2k+δ. If
we modify ε in the Disperser Lemma to be (2/3)(1 − 2−δ) rather
than ε = 1/3 and fold into 2k+δ equivalence classes rather than
2k+1 of them, we obtain a disperser graph with right-hand size
2k+δ (and other parameters the same). This smaller right-hand
size then carries over to Lemma 5 and the Explicit Online Matching
Theorem.

We now formalize the connection between online matching and
short lists.

14 Jason Teutsch

Corollary 8. There exists a polynomial-time computable func-
tion which maps each binary string x to a poly(|x|)-size list con-
taining a length C(x) +O(1) description for x.

Proof. Define a (not necessarily polynomial-time) machine M
which does the following. At first, every right-hand vertices in each
k-parameter Explicit Online Matching Theorem (EOMT) graph is
designated as “unused.” Dovetail on all programs p for the stan-
dard machine U , and as each one converges, apply the EOMT with
k = |p| to match the value U(p), if it has not been matched already,
with an unused right-hand vertex z. If U(p) already had a match
in the k-parameter EOMT graph, then do nothing. Otherwise set
M(z) = U(p), and mark z as “used.”

The process just described attempts to match no more than 2k

strings on the k-parameter EOMT graph because there are only 2k

many binary strings of length k, and each of these attempts suc-
ceeds because the k-parameter EOMT graph admits online match-
ings up to size 2k. Since the |p|-parameter EOMT graph has less
than 2|p|+1 right-hand vertices, we may interpret z as a string of
length |p| + 1. Thus whenever p is a description for some string
x, x is eventually matched to a string z of length |p| + 1 which
is a neighbor of x in the |p|-parameter EOMT graph and satisfies
M(z) = x. In particular, this holds when p is a shortest description
for x.

Now M = Me for some index e, hence for all strings x with
C(x) ≤ |x| the efficiently computable set

{〈e, y〉 : y is a neighbor of x

in some EOMT graph with parameter k ≤ |x|}

contains a description 〈e, z〉 for x with |z| ≤ C(x) + 1. In order to
cover the case C(x) > |x|, we add an extra description to this set,
namely 〈i, x〉, where Mi is the identity map on all strings. �

One might wonder whether the additive O(1) error term is nec-
essary. The answer depends on the underlying standard machine,
as shown in [1]. While there exists a standard machine for which
Corollary 8 holds with O(1) equal to zero, there are also standard

Short lists for shortest descriptions in short time 15

machines where having O(1) equal to zero forces the list size to
become exponential in |x|.

As a further corollary, we improve Muchnik’s Conditional Com-
plexity Theorem not only by making the description p polynomial-
time computable but also by reducing the decoding overhead from
O(log n) bits to a constant. We define time-bounded conditional
complexity Ct for a string a relative to a string b as follows:

Ct(a | b) = min{|p| : U(p, b) converges to a in at most t steps}.

Corollary 9. For any strings x and y, there exists a string p
such that

(i) C(x | p, y) = O(1),

(ii) |p| = C(x | y), and

(iii) Cpoly(|x|)(p | x) = O(log |x|).

The hidden constants do not depend on x, y, or p.

Proof. First, note that the proof of Corollary 8 can easily
accommodate conditional complexity: if we dovetail on all pro-
grams 〈p, y〉 rather than on p and perform computations with 〈p, y〉
instead of p, then the same construction efficiently computes a
poly(|x|)-size list f(x) containing a length C(x | y) + O(1) string
q which satisfies U(q, y) = x. Let p be the string q with the last
O(1) bits removed. Then 〈p, y〉 together with O(1) bits of advice
suffice to reconstruct x, |p| = C(x | y), and

Cpoly(|x|)(p | x) ≤ Cpoly(|x|)(q | x) +O(1) = O(log |x|)

since O(log |x|) bits are enough to distinguish among the members
of f(x). �

16 Jason Teutsch

6. How big is the polynomial?

We estimate3 the size of the polynomial-size list in Corollary 8. Our
analysis involves some minor modifications to the construction.
Throughout the discussion below, δ denotes an arbitrary positive
constant, and n is shorthand for log |L|.

First we calculate the left-degree of the expander graph in our
main construction, Lemma 5. In order to do this, we must first
determine the left degree of the Ta-Shma, Umans, Zuckerman dis-
perser in Theorem 4. The authors of [9] state the left degree as
poly(n), but in fact it need not exceed O(n3). This sharper bound
follows by redoing the composition construction in [9, Lemma 6.4],
with the extractor in [4, Lemma 4.21]. In more detail, we import
the parameters from [4, Lemma 4.21] as follows:

t(n, k) = log n+O[log k · log(k/ε)], and ∆ = 2 log(1/ε)−O(1).

The definitions of E1 and E2 in [9, Lemma 6.4] stay the same
relative to these changes, as does the calculation of the disperser E.
Feeding this new E into [9, Lemma 6.5] yields a left degree of
O(n2+δ) in Theorem 4. This in turn, gives an O(n3) left degree for
the graph in the Disperser Lemma as the left degree may increase
slightly in the case where R has cardinality less than the right size.

By similar inspection, one obtains a bound of O(n4) for the
left degree of the graph in the Expander Lemma, however we can
reduce this to O(n2+δ) by replacing that lemma with the following
alternative expander construction.

Theorem 10 (Guruswami, Umans, Vadhan 4). There exists a con-
stant c such that for every α, ε > 0 and every 0 ≤ k ≤ n, there is
an explicit bipartite graph (L,R,E) with

◦ |L| = 2n,

◦ left degree d = c(nk/ε)1+1/α, and

◦ |R| ≤ d2 · 2k(1+α)

which is a [2k, (1− ε)d]-expander.

3Zimand [10] achieves an improved degree bound of 6 + δ.

Short lists for shortest descriptions in short time 17

The Guruswami, Umans, and Vadhan expander graph achieves
nearly perfect expansion into a space which is small enough to pre-
serve the other parameters of Lemma 5. Since the neighbors of each
left-hand vertex x in Lemma 5 now derive from the expander graph
of Theorem 10 composed with the revised Disperser Lemma graph
from this section, we calculate the degree of x to be O(|x|5+δ).

At this point the cloning procedure in the Explicit Online Match-
ing Theorem contributes a linear term to the O(|x|5+δ), and the
union over sets of size k ≤ |x| in Corollary 8 brings the total list
size to O(|x|7+δ). This completes our proof sketch of the following
result.

Theorem 11. There exists a constant c ≥ 1 such that for every
δ > 0, there exists a nonnegative d and a polynomial-time com-
putable function which maps each binary string x to a size c · |x|7+δ
list containing a length C(x) + d description for x.

The list size bound also refines the third part of Corollary 9.

Theorem 12. There exists a constant c ≥ 0 such that for every
δ > 0, there exists a nonnegative d such that for any strings x and
y, there exists a string p such that

(i) C(x | p, y) = d,

(ii) |p| = C(x | y), and

(iii) Cpoly(|x|)(p | x) ≤ (7 + δ) · log |x|+ c.

Acknowledgements

The author is grateful to Marius Zimand for his observation, the
Disperser Lemma, which improved the error term in Corollary 8
from O[logC(x)] to O(1) and simplified the proof of the main con-
struction, Lemma 5. Thanks also to the anonymous referee for
pointing out that the Expander Lemma follows from the disperser
graph of Ta-Shma, Umans, and Zuckerman (Theorem 4), which
means that we need not appeal to the Guruswami, Umans, and
Vadhan expander graph (Theorem 10) in the main construction.

18 Jason Teutsch

References

[1] Bruno Bauwens, Anton Makhlin, Nikolay Vereshchagin, and
Marius Zimand. Short lists with short programs in short time.
In IEEE Conference on Computational Complexity (CCC),
pages 98–108, June 2013.

[2] Richard Beigel, Harry Buhrman, Peter Fejer, Lance Fort-
now, Piotr Grabowski, Luc Longpré, Andrej Muchnik, Frank
Stephan, and Leen Torenvliet. Enumerations of the Kol-
mogorov function. The Journal of Symbolic Logic, 71(2):501–
528, 2006.

[3] Harry Buhrman, Lance Fortnow, and Sophie Laplante.
Resource-bounded Kolmogorov complexity revisited. SIAM
Journal on Computing, 31(3):887–905, 2001.

[4] Venkatesan Guruswami, Christopher Umans, and Salil Vad-
han. Unbalanced expanders and randomness extractors from
Parvaresh–Vardy codes. Journal of the ACM, 56(4):20:1–
20:34, July 2009.

[5] Ming Li and Paul Vitányi. An introduction to Kolmogorov
complexity and its applications. Texts in Computer Science.
Springer, New York, third edition, 2008.

[6] Andrej A. Muchnik. Conditional complexity and codes. The-
oretical Computer Science, 271(1-2):97–109, 2002.

[7] Daniil Musatov. Improving the space-bounded version of
Muchnik’s conditional complexity theorem via “naive” deran-
domization. In Computer Science—Theory and Applications,
volume 6651 of Lecture Notes in Computer Science, pages 64–
76. Springer Berlin Heidelberg, 2011.

[8] Daniil Musatov, Andrei Romashchenko, and Alexander Shen.
Variations on Muchnik’s conditional complexity theorem.
Theory of Computing Systems, 49:227–245, 2011.

Short lists for shortest descriptions in short time 19

[9] Amnon Ta-Shma, Christopher Umans, and David Zuckerman.
Lossless condensers, unbalanced expanders, and extractors.
Combinatorica, 27:213–240, 2007.

[10] Marius Zimand. Short lists with short programs in short
time—a short proof, 2013. Manuscript. http://arxiv.org/
pdf/1302.1109.pdf.

[11] A. K. Zvonkin and L. A. Levin. The complexity of finite
objects and the development of the concepts of information
and randomness by means of the theory of algorithms. Russian
Mathematical Surveys, 25(6):83–124, 1970.

Manuscript received 3 January 2013

Jason Teutsch
Penn State University

http://arxiv.org/pdf/1302.1109.pdf
http://arxiv.org/pdf/1302.1109.pdf

	Short lists for shortest descriptions in short time
	1 The quest for short descriptions
	2 Conventions for complexity and bipartite graphs
	3 Prior and related results
	4 Randomness extraction tools
	5 Explicit online matching
	6 How big is the polynomial?
	Acknowledgements

