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Abstract

In this paper, we study the following variant of the junta learning problem. We are given oracle
access to a Boolean function f on n variables that only depends on k variables, and, when restricted
to them, equals some predefined function h. The task is to identify the variables the function depends
on. When h is the XOR or the OR function, this gives a restricted variant of the Bernstein-Vazirani
or the combinatorial group testing problem, respectively.

We analyse the general case using the adversary bound, and give an alternative formulation for
the quantum query complexity of this problem. We construct optimal quantum query algorithms for
the cases when h is the OR function (complexity is ©(v/k)) or the exact-half function (complexity is
O(k/*)). The first algorithm resolves an open problem from [4]. For the case when h is the majority
function, we prove an upper bound of O(k1/4). All these algorithms can be made exact.

We obtain a quartic improvement when compared to the randomised complexity (if & is the exact-
half or the majority function), and a quadratic one when compared to the non-adaptive quantum
complexity (for all functions considered in the paper).

1 Introduction

Learning theory studies the problem of reconstructing functions from their values in various points. In
this paper, we study the problem of exact learning from membership queries. In this problem, one is
given oracle (black-box) access to a function f: {0,1}"™ — {0, 1} belonging to some fixed class of functions
C (usually called concept class). The task is to identify the function using the smallest possible number
of queries to the oracle. It is required to give the exact description of the function, not an approximation
(although, it is allowed to err with small probability like 1/3).

This is a broad area of research both classically and quantumly. We shall highlight some of the results.
Classically, the problem was defined by Angluin [5]. Bshouty et al. [16] obtained upper and lower bounds
on the randomised query complexity of learning a concept class C exactly using a combinatorial parameter
0 < 4€ < 1 of the class. More specifically, the query complexity is O(IO%—C'C‘) and Q(%c + log |C|)

Quantumly, this problem was analysed (under the name of quantum oracle interrogation or iden-
tification) by van Dam [40] and Ambainis et al. [3]. Van Dam considered the case when C consists
of all Boolean functions on n variables, where n/2 + O(y/n) quantum queries suffice, in contrast to n
queries required classically. Ambainis et al. constructed a quantum O(y/nlog|C|logn loglog|C|)-query
algorithm for the general case. Finally, Kothari [28] gave a complete characterization of the quantum
query complexity of this problem in terms of n and |C|.

Servedio and Gortler [37] proved some quantum analogues of the results in [I6]. In particular,
they showed that, for any concept class C, the quantum query complexity of learning C exactly is

Q (\/% + M). Using this result, they obtained that the deterministic complexity of the same problem
gl

n

is O(n@?) where Q is its quantum query complexity. Atici and Servedio [6] constructed a quantum

1 log1
O( og |C| loglog |C|
/:YC

)-query algorithm for the same problem.

The problem and related work In this paper, we study the following learning problem proposed
by Ambainis and Montanaro [4]. Let h: {0,1}* — {0,1} be a fixed symmetric Boolean function. We are
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given oracle access to a Boolean function f on n >> k variables that satisfies the following properties.
The function f only depends on a subset A of k input variables, and, when restricted to these variables,
the function equals h. Thus, the learning problem reduces to identifying the set A.

Functions that only depend on a small number of the input variables are called juntas. Thus, our
problem is related to the problem of learning and testing juntas, which has been studied both classically
(see [I3] and the references therein) and quantumly [7]. Note, however, that our settings are different
from that of usual junta learning. First, we have an additional promise that the function f equals
function h. Second, we are allowed adaptive membership queries, not only samples. And third, we have
to find the function f exactly, not an approximation. The last two aspects make our settings different
from the quantum PAC model [17].

A simple information-theoretical argument shows that Q(log|C|) = Q(klog %) randomised queries
are required to solve this problem classically. Quantumly, as usual, one can do better. One of the
pioneering quantum algorithms, the Bernstein-Vazirani algorithm [12], can be stated in these settings.
The algorithm solves our problem for the case when h is the XOR function. It does so in one query,
without an error, and, moreover, for all values of k simultaneously.

Another example is the combinatorial group testing problem (despite the name, it is a learning
problem). In this problem, a set X of n elements is given, and it is known that at most k of them are
marked. For any subset S C X, it is possible to detect, in one query, whether S contains a marked
element. The task is to identify all marked elements making as few queries as possible. It corresponds to
the case when h is the OR function (if we additionally require having exactly k marked elements). This
is a well-studied problem classically [22]. Ambainis and Montanaro [4] studied the quantum complexity
of this problem and its special case, search with wildcards, that we do not define here. The search with
wildcards problem was resolved, but the complexity of the combinatorial group testing problem was only
stated to lie between Q(v/k) and O(k).

The quantum counterfeit coin problem studied by Iwama et al. [26] is also closely connected to our
work. In this problem, one is given n coins, and it is known that exactly k of them are counterfeit.
All genuine coins have the same weight, all counterfeit coins have the same weight, and the counterfeit
coins are strictly lighter than the genuine ones. One is also given perfect scales, and the task is to find
all counterfeit coins using as few weighing operations as possible. More formally, the oracle accepts two
disjoint equal-sized subsets S, T C [n] as its input. It replies with 0 if S and T contain equal number of
counterfeit coins, and with 1 otherwise. (I.e., one only gets to know whether the scales are balanced or
not.) Iwama et al. constructed a quantum algorithm that solves this problem in O(k'/*) queries to the
oracle. No general lower bound is known for this problem.

Our contribution In this paper, we do the following. In Section [B] we resolve the question posed by
Ambainis and Montanaro by describing a tight quantum O(\/E)-query algorithm for the combinatorial
group testing problem (in its full generality, i.e., allowing less than k marked elements). In Section Ml
we use the adversary bound and representation theory to formulate an optimization problem for the
quantum query complexity of our learning problem for any symmetric function h. In Section Bl we solve
this optimization problem when h is the exact-half function (the function that evaluates to 1 iff exactly
|k/2] of the input variables equal 1). The quantum query complexity of the learning problem turns out
to be ©(k/*). In Section B we describe some partial results for the case when h is the majority function.
Finally, in Section [1] we show that most of the above algorithms can be made exact without increase in
their complexity, and prove some no-go results for non-adaptive quantum algorithms.

Previous techniques Before discussing our techniques, let us describe some previously used tech-
niques. One possibility is to apply the Grover search (as in the papers by Ambainis et al. [3], and Atic1
and Servedio [6]). This gives at most quadratic speed-up.

Most of the papers, however, use the following prepare-and-measure strategy: A quantum state i)
is prepared, a tensor power O2T of the input oracle is applied to the state, and the result is measured.
This strategy usually comes in one of the two variations. The first one is Fourier sampling. In this
case, T'=1 and [|¢) is the uniform superposition. The resulting state, O,|v), is measured in the Fourier
basis. This procedure is repeated many times, and when enough samples have been collected, they are
processed by a classical subroutine to reconstruct f. Notable examples are the DNF learning algorithm
by Bshouty and Jackson [I7] and the junta learning algorithm by Atici and Servedio [7], where this



approach is mentioned explicitly (under the name of quantum example oracle in the first paper, and
Fourier sampling oracle in the second one).

A more general variant is to show that the states O 1) and OF”'|¢)) are almost orthogonal for
all x # y, and then apply the Pretty Good Measurement [24] to distinguish them. Examples here are
Ref. [20, 23].

Either way, the prepare-and-measure strategy usually can be made non-adaptive (see Section [2 for
the definition). This is a limitation. For example, Zalka [41] showed that a non-adaptive quantum
algorithm requires Q(n) queries to solve the OR function, in contrast to the Grover search. Childs et al.
in [20] explain why their hidden shift algorithm performs sub-optimally on the delta function using this
argument.

All these approaches are unsatisfactory for our problem. First, the general results mentioned in the
beginning of this section are useless here, because the quantum query complexity of our problems is less
than k, which is much less than n or log|C|. Next, we attain super-quadratic speed-ups over randomised
algorithms that is not possible by only using the Grover search. Finally, in Section [7] we show that any
non-adaptive quantum algorithm requires quadratically more queries than our algorithms. This does
not completely rule out the prepare-and-measure strategy, but shows that its easiest and most common
one-shot variant does not work here.

It is also interesting to compare our algorithm for the exactly-half function to the algorithm for the
counterfeit coin problem by Iwama et al. [26]. After all, both algorithms attain complexity O(k'/4),
which is a quartic improvement to the randomised complexity. We are not aware of any reduction in
either of two directions. Iwama et al. reduce the counterfeit problem to the Bernstein-Vazirani problem.
Indeed, if an even-sized subset S contains even number of counterfeit coins, there exist dissections of S
into two equal-sized subsets having equal number of counterfeit coins. These dissections can be detected
using quantum amplitude amplification [I5]. It seems unlikely that a similar approach can be applied
for the exact-half function.

Our techniques Instead of these techniques, we use the dual adversary bound. The adversary bound
is a lower bound on quantum query complexity first developed by Ambainis [2] in the form that is now
known as the positive-weighted adversary. Later, it was strengthened by Hgyer et al. [25] to the negative-
weighted, or general adversary bound. Reichardt et al. proved that this lower bound is tight by showing
how the dual to the adversary bound can be converted into a quantum query algorithm [33] [31]. Their
algorithm is based on quantum walks.

Thus, a quantum query algorithm can be constructed by coming up with a feasible solution to the
dual adversary bound. There has been some work in this vein. One example is provided by algorithms
for formulae evaluation [34] [42]. Another line of development is learning graphs [9]. They were applied
to improve quantum query complexity of triangle and other subgraph detection [30] [I0], and the -
distinctness problem [8]. In general, learning graphs work well for Boolean functions with small 1-
certificates. Clearly, both of these general approaches do not work here. Indeed, our problem does not
have a nice formula description, nor does it have Boolean output, nor small certificates.

Instead of that, we construct a feasible solution to the dual adversary from scratch. Let us give a
short overview of our construction. For precise formulations of the adversary bound, the reader may
refer to Section[21 Informally, the dual adversary bound (B]) boils down to distinguishing inputs A, B € C
using queries ([BL). In the following informal exposition, we analyse complexity of distinguishing A and B
using both a usual randomised algorithm and the the adversary bound, and compare the two. Although
obtaining equality in (Bh), and not a lower bound like in ([Bd)), is important, we ignore this issue for now.

We start with combinatorial group testing, which corresponds to the case when h is the OR function.
Assume we want to distinguish k-subsets A, B C [n]. Moreover, we want to do so regardless of the
distance ¢ = | B\ A]. A simple strategy is to take a subset S C [n] by including each element of [n] with
probability p independently at random, and hope that exactly one of SN A and S N B is empty.

Classically, the worst case is when the distance ¢ = 1. In this case, conditioned on SN A = (), the
probability that S distinguishes A and B (i.e., that SN B # () is p. But taking p > 1/k does not make
much sense, because then the probability that S does not intersect A is too small.

The dual adversary, however, allows for additional tricks. In particular, we may “condition” on S
and A having intersection of size at most 1. That is, the queries S with | SN A| > 1 count neither towards
the complexity, nor towards distinguishing A and B. (The same, clearly, applies for B as well.) Thus,



in this settings, we may even take p = 1/2, which increases the chances of A and B being distinguished.

But when / is, say, k, the choice of p = 1/2 does not work. Indeed, conditioned on AN S = (), the
probability of |SN B| =1 is very small. (Remember, we do not use S for B if |SN B| > 1.) In this case,
p = 1/k is a much better choice. In the final solution, we take p € (0,1) uniformly at random that, a bit
surprisingly, works for all values of £.

Thus, our solution to the combinatorial group testing problem is somewhat ad hoc. The analysis is so
simple because we may assume that S intersects A in either 0 or 1 element. If A is the majority function,
it is suboptimal to condition that |S N A| is [k/2] — 1 or [k/2]. Indeed, assume A N B = (). Then,
regardless of AN S, the probability is at most O(1/vk) that [SNB| € {[k/2] —1,[k/2]}. Thus, to solve
this case, we would have to take other intersection sizes as well, and that would make the analysis much
more complicated.

Instead of sticking to this ad hoc solution, we use an approach that is guaranteed to be tight. Without
loss of generality, we may assume that the optimal solution I' to the adversary lower bound (2) is
symmetric with respect to permuting the elements of [n]. Then, the matrix I' can be uniquely described
by k + 1 real numbers. We use representation theory of the symmetric group and obtain necessary and
sufficient conditions that these numbers must satisfy. A feasible solution to the dual problem again gives
a quantum query algorithm.

Unfortunately, the resulting optimization problem is still very complicated. We were able to obtain
a feasible solution, when h is the majority or the exact-half function, using that these functions are
symmetric about the weight k/2. But applying these scheme for the OR function, for instance, would be
much more complicated than our previous ad hoc solution. Our solutions for majority and exact-half are
essentially equivalent, but for exact-half, the solution turns out to be tight. Generalizing this solution
to the exact-£ or the /-threshold function is an open problem.

2 Preliminaries

We use [n] to denote the set {1,2,...,n}, and 24 to denote the set of subsets of A. A k-subset is a
subset of size k.

All matrices in the paper have real entries. A* denotes the adjoint (transposed) matrix of A. If A
is a matrix, by A[,j], we denote the element on the intersection of row i and column j. By [|A] we
denote the spectral norm of A (the maximal singular value), and by ||Al|,, we denote the trace norm
of A (the sum of the singular values). By (A, B) we denote the inner product between the matrices:
(A, B) = tr(A*B).

We assume familiarity with basic probability theory, and we repeatedly use the following well-known
result about binomial coefficients:

Lemma 1. Ifn and k are positive integers satisfying k = O(y/n), then (Ln/gj:tk) =0(2"/\/n).

Quantum query complexity Now we define quantum query complexity both in its standard and
non-adaptive variants. For a more complete treatment refer to [I8] for query complexity and [32] for
non-adaptive query complexity. A quantum query algorithm is defined as a sequence of unitary trans-
formations alternated with the oracle calls:

Up—O0p U1 = O0p = -+ = Upr_1 = Oy = Ur. (1)

Here U;s are arbitrary unitary transformations independent of the input. The oracle O, is the same
in all places, and it depends on the input string & = (z;) as |¢)i|b)y — |i)i]b + x;)y where the addition
is performed modulo 2. Other registers besides i and v are left intact. The computation starts in a
predefined state |0). After all the operations in ({]) are performed, some predefined output register is
measured. We say that the algorithm evaluates a function f if, for any = in the domain, the result of
the measurement is f(x) with probability at least 2/3. The number T is the query complexity of the
algorithm. The smallest value of T' among all algorithms evaluating f is the quantum query complexity
of f, and is denoted by Q(f).

Thus, we see that a quantum algorithm can prepare the input to the next oracle query depending on
the results of the previous oracle calls. In many cases, this is crucial for obtaining a good algorithm. But,
in some cases, the input to the oracle does not depend on the output of its previous executions. This



is captured by the notion of non-adaptive quantum query complexity. In such an algorithm, we assume
that all the oracle calls happen simultaneously in parallel. More formally, a non-adaptive quantum query
algorithm is of the form Uy — O%T — U;. The non-adaptive quantum query complexity of f is then
defined similarly to the adaptive case.

Formulation of the problem Let us rigorously define our version of the learning problem. Let
h: {0,1}* — {0,1} be a symmetric Boolean function. It is uniquely defined by a subset W3 C {0,...,k}
such that h(z) = 1 iff |z| € W)}, where |z| stands for the Hamming weight of . Let n > k be a positive
integer, and C denote the set of all k-subsets of [n]. If A € C, we define the function f4 : {0,1}" — {0,1}
by fa(xz) = h(xa) where x4 is the restriction of the input string x to the positions in A. It is more
convenient to identify the input string x with the subset S C [n] defined by ¢ € S iff ; = 1. Thus,
fa(S)=1iff |[ANS| € Wp.

The learning problem L7 : {0, 1}{%1}" — 2[" ig defined by L}(fa) = A. Thus, h is fixed and known
to the learner in advance, the inputs are the functions f4 (which can be identified with the elements of
C), and the input variables are the input strings to f4 (which can be identified with the subsets of [n]).

It is easy to see that the quantum query complexity Q(L}) is a non-decreasing function in n. There
also exists an upper bound on Q(L}) independent of n. For instance, one may take the complexity of
the Fourier sampling algorithm like in [7], since its behaviour does not depend on n. Hence, there exists
lim,, 00 Q(L}), which we denote by Q(Ly), and which we are mostly interested in.

Adversary Bound Next, we define the adversary bound tailored to our special case of L}. An
adversary matrix I" is a C x C real symmetric matrix with zeroes along the diagonal. Introducing an
abuse of notation, let I o Ag denote the submatrix of I" formed by the rows in {A € C | f4a(S) = 0} and
the columns in {B € C | fp(S) = 1}.

The adversary bound ADV*(L?) is equal to the (common) optimal value of the following two opti-
misation problems:

maximise ||| (2a)
subject to [[['o Agl| <1 forall S C [n]; (2b)
I'[A,A] =0 forall AeC. (2¢)
and
minimise  max sCh Xs[A, A] (3a)
subject to ZS: S () Xs[A,B] =1 forall A# BinC; (3b)
Xs =0 for all S C [n], (3c)

where Xg are C x C positive semi-definite matrices (see [33] Theorem 6.2] for the proof of the equality
of both problems). The adversary bound is very useful because of the following result:

Theorem 2 ([25, 31]). The quantum query complexity of a function f equals ©(ADVE(f)).

Using this theorem, we can estimate ADV®(Ly,) instead of Q(Ly). Here we denote ADVE(Ly,) =
lim,, 0o ADV™E (L}). The limit exists because ADV* (L}) is a non-decreasing function in n.

An important special case of the adversary bound is the positive-weighted adversary, which we denote
by ADV(L}). It is a slight modification of the original version by Ambainis [2]. It is strictly weaker than
the general bound, but it is usually much easier to apply. The positive-weighted adversary is defined as
in @) and (@) with the following modifications. In (2)), we require all the entries of I' to be non-negative.
In (3]), we replace condition (Bh) by the following one [38, Eq. (3.7)]:

Xo[A. Bl >1 forall A# B in C: d
Zs:ms#m& sl4, B = orall 47 B in C; (3d)



3 Combinatorial Group Testing

In this section, we describe a quantum query algorithm for the combinatorial group testing problem. We
solve the problem in its original form, which deviates slightly from our version of the learning problem.
Let us reformulate the problem. Let k < n be fixed positive integers, and C consist of all subsets of [n]
of sizes at most k. For each A € C, the function fa: 2" — {0,1} is defined by

1, if ANS #0;

0, otherwise.

fa(s) :{

We are given oracle access to fa, and the task is to detect A. The difference with the Lor problem is
that we allow A of size less than k. In this section, we prove the following result:

Theorem 3. The quantum query complexity of the combinatorial group testing problem is @(\/E)

The lower bound can be proved by a reduction from the unordered search, refer to [4] for more detail.
Here we prove the upper bound. We do so by constructing a feasible solution to (B]). This is done in two
steps: First, we define rank-1 matrices Ys(p), and then build the matrices Xg from them.

Let P be the binomial probability distribution on [n] with probability p. Recall that it is a probability
distribution on the subsets of [n], where each element of [n] is included into the subset independently
with probability p. By P(S), we denote the probability of sampling S from P: P(S) = p!¥l(1 — p)»~151.
Finally, let /A denote the symmetric difference of sets.

We define Y'(p) = (Ys(p))scn by

P(S
Ys(p) = % Y = 0,
where
) Vkp/(1—p), iH[ANS]=0;
Y[A] = A=Az V(1 =p)/(kp), i[ANS|=1

0, otherwise;
for all A € C. In this notation,

> Ys(p)[A,A] :ﬁ(Pr [|SmA|_0],/1kp + Pr [|SmA|—1 kpp)

5Cn]
1 k .
e G e R A e e

Now we fix two distinct elements A, B of C. An element A is used in Yy only if |S N A| < 1. Thus,
we are only interested in S C [n] such that |[AN S|+ |BNS|=1. Thus,
Prs~p[|[ANS|+|BNS|=1]

Y. YA Bl = = e
5 1a()215(9)

IN

|AA B|
— -1

_[AABlp(1—p) APt AN B
= T _pAEE — g (P

Now, for each S C [n], let
1
Xs= [ Yoo dp
0

First, each Xg is positive semi-definite, because positive semi-definite matrices form a convex cone. Next,
for any A € C:

ZXSAA]]<\/_/ _ = vk .
And finally, for all A # B in C:

AN B ! |AA Bl _
> Xs[[AvB]]:%/(lfp) = ldp=
S: fa(S)#fB(S) 0



4 Application of Representation Theory

In the previous section, we described an ad hoc construction of a feasible solution to ([B)) when h is
the OR function. In this section, we use representation theory to give an alternative description for
ADVE(L;) that works for any function h. We work with the lower bound (2), because it has a very
simple structure. In the next two sections, we use duality to the new formulation to prove that the
quantum query complexity of the Lgxacr-naLr, and the Lyajoriry, problems is O(k:l/ 4).

Let h: {0,1}* — {0,1} be a symmetric function defined by the subset W), of weights, i.e., h(z) =
iff |x| € Wh. The search for an adversary matrix for the function Lj turns out to be equivalent to the
search for a list of real numbers d = (d, . .., dy) satisfying the constraints we are about to describe.

Let m < k be a positive integer and 0 < p < 1 be a real number. We make use of Krawtchouk
polynomials for probability p. These polynomials are orthogonal with respect to the binomial distribution
(see [39)] for the general definition, and [29] for the special case p = 1/2, which we use in Sections[Bland [@]).
We treat them as column vectors in R™*! and also include the weight (due to the weight, they cease to
be polynomials). With this modification, the definition is as follows:

K" [a] = \/(Zb)pm(l —p)mT ;(—Uipt‘i(l -p) (f) (T_Zx> (4)

where t,z € {0,...,m}. Let (m P) = Kt(m’p)/HKt(m’p)H be the corresponding normalised vectors. Thus,
{%gm,p )}, for fixed m and p, form an orthonormal basis of R™*1. We use the list d to define the matrices

M@ Z dy_ Z%(mﬁﬂ) (map))*. (5)

m,p m—i \Fm—i
1=0

Let 0 < ¢t < k — m be an integer, and define Wi(t) = {£{ € Z | 0 < £ < m, £+t € Wy}, and
Wo(t) ={0,...,m}\ Wi(t). Let
MY, = MO IWo(t), Wa(t)] (6)

be the submatrix of M,(n‘f)p formed by the rows in Wy(t) and the columns in W4 (¢).
The aim of this section is to prove the following result:

Theorem 4. For any symmetric function h, ADV* (Ly) equals the supremum of max; d; over all lists
of real numbers d = (do, . .. ,dy) satisfying the following constraints:

e di, =0, and
e for all integers 0 < m <k, 0 <t <k —m, and reals 0 < p < 1, we have HM(d
M(d) + 1s defined in (@).

il < 1, where

In order to prove this theorem, we need some basic results from representation theory of the symmetric

group. These results are only used in this section. The reader may refer to a textbook on the topic like,
g., [35], or to the appendix, where we briefly formulate the required notions and results.

If N is a finite set, let us denote by Sy the symmetric group on N. We consider modules over the
group algebra RG where G is either a symmetric group or a direct product of two symmetric groups.

Fix an integer n, and consider the problem L}. Let also N = [n]. The rows and the columns of
an adversary matrix I" are labelled by k-subsets of V. The problem is symmetric with respect to the
permutations of variables, so by [25] we may assume that T’ is symmetric with respect to Sy. More
specifically, I does not change if we simultaneously transform the labels of its rows and columns by
{a1,...,a} — {maq,...,way} for some m € Sy.

The real vector space with the set of k-subsets of N as its orthonormal basis, and the above action
of Sy, is the permutation RSy-module corresponding to the partition (n — k, k) of n. We denote it by
M (N, k). We denote the basis element of M (N, k) corresponding to A by A itself.

Now consider ||[I'o Ag|| for S C N. We denote Ny = N\ S, Ny = S, ng = |No|, and n; = |[N7|. Then,
I' o Ag is symmetric with respect to Sy, X Sy,. Thus, we have to understand how the RSy-module
M (N, k) behaves under restriction to this subgroup. It is easy to see that

M(N, k) sy, xsy, = @ M (No, ko) @ M (N, ki), (7)
ko+ki=k



where A ® B, with A being a basis element of M (Ny, ko) and B being a basis element of M (Ny, k1), is
understood as the basis element AU B of M (N, k). We continue using the convention that A ® B is the
disjoint union of A and B later, for instance, in (3.

Let IT; be the projector onto the spaces on the right-hand side of () with k; € W}, and Iy be the
projector onto the orthogonal complement of this space. Then,

[T o Asl| = [[TIoI'TL ||, (8)

The following result describes the decomposition of M (N, k) into irreducible submodules. They are
isomorphic to the Specht modules S(N,t) corresponding to partitions (n — ¢,t) of n. The modules with
different values of ¢ are not isomorphic. The lemma follows from general theory [35, Sections 2.9 and
2.10]. We give a proof in the appendix.

Lemma 5. The RSy-module M(N,k) has the following decomposition into irreducible submodules:
M(N,k) = @f:o Sk(N,t), where each Sk(N,t) is isomorphic to S(N,t). The submodule Si(N,t) is
spanned by the vectors

up(N,t,a,0) = ({ar} = {b1}) @ - @ ({ar} — {bi}) ® ( > A) )
be}: |Al=k—t

ACN\{a1,...,a¢,b1,...,

defined by disjoint sequences a = (a1, ...,as) and b= (by,...,bs) of pairwise distinct elements of N. The
dimension of S(N,t) is (?) - (tfl).
Moreover, the only (up to a scalar) RSy-isomorphism of Si(N,t) onto S¢(N,t) maps the vector

vk (N, t,a,b) into ve(N,t,a,b) for any choice of a and b.

We define Sy, (No,to) and Sk, (Ny,t1) similarly. By combining () and Lemma [ we get that the
irreducible R(Sy, x Sy, )-submodules of M (N, k)ls, sy, are Sk,(Nosto) ® Sk, (N1, 1), where

k0+l€1:]€, Ogtogko, and O§t1 Skl (10)

Two submodules of this form are isomorphic iff their values of ¢y and t; are equal. Thus, the canonical
submodules of M(N, k)ls, s, are

R(to, t1) = b Sko(Nosto) @ Sk, (N1, t1),
ko, k1 satisfy (IQ)

and the multiplicity of S(No,to) ® S(N1,t1) in M(N, k) is k+ 1 —to — t1.
By Schur’s lemma, in a suitable basis of R(t,t1), any R(Sy, X Sy, )-homomorphism from R(to, 1)
to itself is of the form A ® I, 4,, where Ais an (k+1—tg —t1) x (k+ 1 —to — 1) matrix, and I, 4
is the identity matrix in S(No,to) ® S(Ni,t1). For each (to,t1), we choose the basis {es}scqo,... k—to—t:}
for the matrix A so that (ese)) ® Iy, 1, projects onto Sk—i, —¢(No, to) @ Sty +¢(N1,t1). With this choice of
the basis, we have that
HO(A ® It07t1)]:[1 = A[[Wo(tl)v Wi (tl)]] ® Ito,hv (11)

where IIy and II; are as in (), and Wy and W are as in (@]).
Let II;(N,t) denote the orthogonal projector onto Sk(N,t). Again, by Schur’s lemma,

(N, t) = @D ALY, @ Ly,

to,t1

for some matrices A§2t1. By the Littlewood-Richardson rule [35] Section 4.9],

SN, t) sy, xsn, = @ S(No,to) ® S(N1,t1), (12)

to+t1<t

o) Ag),tl is zero if t < to + t1, and, otherwise, it is a rank-1 orthogonal projector (as the corresponding
multiplicity is 1).

At the heart of the proof of Theorem [ is the following observation (recall that the matrices Agz?tl
depend on the values of n and n,):



Lemma 6. For any 0 < p < 1, the projector Angtl tends to the projector onto %t(ﬁ;(figfl’p) as n — oo

and ni/n — p. Moreover, the convergence is uniform for ¢ < p < 1 — ¢ where ¢ > 0 is any constant.
On the other hand, there exists a bound €. satisfying lim._.ge. = 0, such that ||A§?¢1 —Ctto—t:€;_¢y_t, | <

€c if ny is less than cn, and ||AE§)¢1 —ep—sef_4|| < ec if ny is more than (1 — ¢)n.

We prove the lemma at the end of the section. For now, let us show how the lemma can be used to
prove Theorem [El

Assume that ADVE(L,) = Q. As noticed in Section 2} Q < co. Then, for each n, let T be an
optimal solution to (). We may assume that ||I'(™|| is an eigenvalue of I'(™) otherwise replacing I'(")
by —I'™). By Schur’s lemma, we may also assume that

k
P = 3" d" (N, ). (13)
t=0

Consider the vectors d(™ = (di“’). As the absolute values of all dg") are bounded by @, the Bolzano-
Weierstrass theorem gives a convergent subsequence d(™),d(™2) . .. We define d = (d¢) as the limit of
this subsequence. Clearly, max; d; = Q.

Next, trIIx(N,t) = (?) — (tfl). Hence, trII; (N, k) overwhelms the traces of all other projectors

in (I3) as n — oco. Thus, by (2d),
- tr ()
oo i=oo () = (42)
This proves the first constraint in Theorem [l The second constraint follows from Lemma [6] and ([IT).
Now assume d is an optimal solution to the optimization problem in Theorem[d] and let ) = max; d;.

We define '™ as in (3], where dg") =d; for t < k, and d,(cn) is chosen so that tr(I'™) = 0. Then, due

to symmetry, all diagonal entries of '™ are equal to zero. Also, similarly to @), lim,— oo d,(cn) =0.
Choose ¢ > 0 so that . < 1/(2(k+ 1)Q), where €, is as in Lemma[6l If |S|/n < cor |S|/n > 1—¢,

then [T o Ag|| < 1/2 for any choice of d satisfying max; d; < Q. If |S|/n — p with ¢ < p < 1 —¢, then
lim,, o0 [T 0 Ag|| = 1 by Lemma [ and () again.

Proof of Lemmal@ Fix two sequences of pairwise distinct elements in Ny: a = (a1,...,a4) and b =
(b1,...,bs,), and two sequences a’ = (ai,...,a}, ) and b = (b},..., b}, ) in Ni. In order to find the vector

onto which Agz),tl projects, it suffices to find a linear combination of the vectors

{vko (No, o, a,b) @ vi, (N1, t1,0, ) ‘ ko, k1 satisfy (I0)}

that belongs to S (N, ).

Clearly, ({a1} —{b1}) ®- - ® ({as, } — {bs,}) and ({a}} —{b1}) ®--- @ ({a}, } — {b}, }) factor out in any
linear combination, so we can remove the elements in a,b,a’ and ¥, and consider the case tg = t; = 0.
The removal has the effect that t gets reduced by tg + t1, ko by to, k1 by t1, ng by 2tg, and ny by 2¢;.
The effect on ¢, kyp and k; is reflected in the statement of the lemma, and the change in ng and n; is not
substantial, as we assume n — oco.

So, it suffices to consider the case tyg = t; = 0. In this case, the vector

1
szk(Nvtﬂavb)ﬂ (15)
" ab

where the sum is over all sequences a in Ny and b in Nj, is a linear combination of the vectors
{vke (N0, 0,0,0) ® vi, (N1,0,0,0) ’ ko + ki =k}. More specifically, the coefficient of vk, (No,0,0,0) ®
ok (N1,0,0,0) i (IF) is

zt;(—l)i (tkol) (k;) (no — ko)* (1 — ki)™=, (16)

1=

where a® = a(a—1) - (a — b+ 1) denotes the falling power. That is, we claim that if A is a ko-subset of

Np and B is a ki-subset of Ny, then the coefficient of A ® B in (&) is (I6]). Indeed, ¢ is the number of



the elements of B used in the sequence b, (kll) is the number of ways to choose them, (ng — ko)t is the
number of ways to choose the elements of Ny \ A that serve as the corresponding element of the sequence
a (they do not appear in the product). Calculations for A are similar.

Taking the norm of the vector vy, (N, 0,0, 0) ® vk, (N1, 0,0, ) into account, we get that Aé% projects
onto the vector w; € R¥T! defined by (where we assumed ¢ = k;):

w[l] = (’21) (knog) i(—w(f) (’;f) (n1 — O=% (ng — k + 0)%.

=0

Let w; = wy/||we||. Assuming n — oo and ni/n — p, it is easy to check that w; — %t(k’p). Also, the

convergence is uniform if c <p <1 —c.

Notice that the largest power of ng in w:[] is (k — €)/2 + min{¢, ¢}, and the largest power of n; is
¢/2 4+ min{k — ¢, t}. Hence, w; is close to e; if ny/n is sufficiently small. Also, @w; is close to ej_; if ng/n
is small. O

5 Exact-Half Function

In this section, we apply Theorem [ to the exact-half function. The function EXACT-HALFy: {0,1}F —
{0,1} is defined by EXACT-HALF(x) = 1 iff |z| = | k/2]. This section is devoted to the proof of the
following result:

Theorem 7. The quantum query complexity of LexacT-HALF, 1S @(k1/4).

The lower bound can be shown using a simple positive-weighted adversary. Consider the adversary
matrix I for Ly yorpare, defined by T[4, B] =1 if A # B and T'[A, A] = 0. We have ||| = (}) — 1.
On the other hand, I" 0 Ag is the all-1 matrix, and a simple argument involving Lemma [I shows that it
has O((})/Vk) columns. Also, I'o Ag still has almost (}) rows, hence, ||T'o Ag|| = O((})k~*/*). Thus,
ADV(L}) = Q(k'/*). In the remaining part of this section, we show that this simple lower bound is
actually tight.

We do so by providing a feasible solution to the optimisation problem in Theorem dl Note that
this optimisation problem has the following self-reducibility property: For every k' < k, if we denote
d; = d;1r—1» and take an appropriate subset of the constraints, we obtain the optimisation problem for
the case h = EXACT-HALFy,. This has a number of consequences. The first one is that it suffices to
estimate dy only, because d; with larger values of ¢ have been already estimated for smaller values of k.

We only consider the constraints HMr(rj)l/Q,Lk/Qj—Lm/Qj H < 1, where m ranges from 1 to k. Let,

Am,é _ (%ém,l/Q) (%ém,l/Q) )*) [[WO (t), w, (t)]] (17)

in the notation of (Bl and (6)), where t = |k/2] — [m/2]. With this choice of parameters, A,,  is an
m x 1 matrix. Later in the proof, we shall treat it as a vector in R™. Note also that the matrices A4,, ¢
do not depend on k. Thus, we get the following optimization problem:

maximise do (18a)
subject to Hi di—i Amm—i|| <1 forallm=1,...,k; (18b)
i=1
d; € R fori=0,...,k—1. (18¢)
Applying semi-definite duality [14) Section 5.9], we obtain the following upper bound on (I8]):
minimise i | Al (19a)
m=1
subject to (Mg, Ako) = 1; (19b)
i (Ag—iy Ag—ip—i) =0 forall{=1,...,k—1; (19¢)
i=0
A, has the same size as A, ¢ form=1,...,k and any /. (19d)
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We are going to construct a feasible solution to this problem. We use the following elimination
strategy. Constraint (I9D) only uses Aj. So, we take some Ay that satisfies (A, Ag o) = 1, but may have
non-zero inner products with other Ay ;. Then we take Ay_; that satisfies (I9d) for ¢ = 1, then Ay_o
that satisfies (I9d) for £ = 2, and so on. We find Ay_; for i > 0 using self-reducibility.

More formally, we apply induction. Let A% = (Agk), e, A,(ck)) be our solution to ([[9) for a specific
value of k, and let g(k) denote the correspondmg value of ([9a). The base case, AV, is trivial to
construct. Assume we have constructed A" for all k& < k. Then, we take

B

-1
A(k) = (05 ) 05 Ak) - <Ak7 Ak,e> A(k72)7
1

~
[

where the first list has A in the kth position, and the remaining lists are padded with zeroes from the
right. Here A}, is some matrix satisfying ([9h). We shall define it later. It is easy to check that A(®)
satisfies (I9D) and (I9d). Using the triangle inequality for the trace norm, we obtain

k—1

g(k) < I Aklly + Y[ (Aks Are)] g(k = 0). (20)
(=1

So, it remains to choose A. For the remainder of this section and the next section, let s = %(k 12
Recall that {5} form an orthonormal basis of R¥*1. Let, for brevity, s = |k/2]. We have Akye =
s8] 34, where 3, denotes s with the sth element removed. We take

1
#o[s](1 = »0[s]?)

It is straightforward to check that (Ag, Ako) = 1. Also, for £ > 0, (30, Axe) = sls] (0, 50) =
— 0 [s] e[ s]?. Hence,

Ay =

—[s]?

<Ak; Ak,l> = W

(21)
Now we apply some additional properties of s¢. First of all, sez] = 4/ (l;) /2k. Thus, by Lemma [

sols] = O(k™1/*), and |[Axl,, = O(K'/*).
Another property [29, Eq. (32)] is s¢[s] = £sa—¢[s]. As {3z} form an orthonormal basis, we get

Z?:o %e[[S]]2 = 1, hence, by (1)),

k—1 k—1
_1- 2500[s]? 1 — sp[s]?
(Ap, A 1= 27l SO ST e — 0)] (A, Ape) | = =
| ky Ak, Z 1_ A S]]2 ) and 1 — 2%0[[8]]2 (k E)l < ks k7é> |
(=1 (=1

Let Cy be some constant such that g(k) < Cokt/* for small values of k, and let Cy be such that
| Akll,, < C1k'/* for all k. Then, we prove by induction that g(k) < Ck'/* for C = max{Co, 7£%; Cl}

Indeed, this is satisfied for the small values of k. Assume this is satisfied for all &’ < k. T hen by @)
and the concavity of k/4:

k—1 9 k—1 1/4
< 1/4 /4 < 1/4 #o[s] .
g(k) < Cuk +;| (Ar, Are) [C(k = 0)M* < Cuk +O( 2%0[[5]]2;|<Ak,Ak,e>|(k )

= C1EY* + O(k/2)Y* < CkMA.

6 Majority Function

In this section, we prove some partial results on the quantum query complexity of the LyvajoriTy,
function. The function is defined by MAJORITY(xz) = 1 iff |x| > k/2. First, the algorithm from
Section [ carries over to this case with minor modifications.

Theorem 8. The quantum query complexity of Lyajoriry, is O(k'*).

11



Proof. Again, we construct a feasible solution to (I9]) where A,, ¢ are as in ([I7)) with Wy and W; modified
accordingly. This time, we use different strategies to construct A% for odd and even values of k. We
need the following easy symmetry result about Krawtchouk polynomials [29, Eq. (31)]:

wx] = (,1)@%2[[]{ — ], (22)

where again s = %ék’l/Q). We also use notations Wy = Wy (0) and Wy = W1(0).

For the even values of k, we use the same elimination strategy, but we change the way we define the
matrix Ay. Let s = k/2, and let this time 3, denote the Wy x W; matrix having the elements of »[Wy]
in column s, and zeroes everywhere else. Intuitively, the non-zero elements of >z, form the upper half of
the vector 5z from the proof of Theorem [l We define

2 e
o [sJ0—sP?) ~

From 22), we get (Ag, Apo) = 1. Also, |[Agxll,, = O(kY/*). If £ is odd we get from [@2) that the
sth column of Ay consists of zeroes. If £ is even, using the same property, we get that (3, %) =
—so[s]5[s]/2. Either way, [2I)) holds. The proof further proceeds as in Section Bl Also, we have to
note that (Ay, Ag¢) = 0 if £ is odd, hence, we only need A®) with even values of k' < k to define A,

Now assume that k is odd. We know that d; = O(k1/4) by considering A®*~1. Thus, we change
our strategy and prove that dg — d; = O(1). If we replace ([I8al) by do — di, we get the problem (9]
with (I9h]) replaced by

(Ag, Ako) =1 and (Agy Ap1) + (Ap—1, Ag—1,0) = —1, (23)

A =

and £ ranging in (I9d) from 2 to k — 1. A possible feasible solution is

2
(s0[Wh], s [WA])

Ap = (50 [Wol) e [WA])

and A,,, = 0 for other values of m. Using (22]) and the orthogonality of {5}, we get that (3¢ [Wo], 3¢ [Wo]) =
0 for even £ > 2, and (51 [W1], s[W1]) = 0 for odd £ > 3, hence ([I9d) holds. We get (23] similarly.
Finally, K1[z] = k — 2z, ||[Ko|| = 1 and ||K;|| = Vk, where K is defined in @) [29, Eqs. (12, 33)], thus,
using the definition of s and the central limit theorem:

k
1 k/’ k—o00 4 /OO _9 2/k 1

Wil s [WA]) = —— k—ox)i2y 2 [ e dp— -
GaolWal. 2a WD) Qkﬂm—(zk/ﬂ <$)( g kv2r Jo v Vor

Hence, ||Agll,, = O(1). O

For the case when h is the OR or the exact-half function, we were able to prove tight lower bounds
using the positive-weighted adversary. In the next theorem, we show that it is not possible to prove a
polynomial (in k) lower bound using this technique, when h is the majority function. There are some
limitations known on the positive-weighted adversary, like the certificate complexity barrier [38] or the
property testing barrier [25]. Neither apply here, so we give a direct proof using the optimisation problem

given by (Ba), [@Bd) and (3d).

Theorem 9. The positive-weighted adversary bound ADV(LyajoriTy,) is O(logk).

Proof. Fix n. If X = (Xg) is a family of positive semi-definite matrices, let m(X) stand for the ob-
jective ([Bal), and ¢4 p(X) stand for the left-hand side of ([Bd). The proof is based on the following

lemma:

Lemma 10. For each 1 < d < k, there exist positive semi-definite matrices X = (Xg) with non-negative
entries such that m(X) = O(1) and £a,5(X) > 1 for all A, B € C satisfying d < |A\ B| < 2d.

The theorem immediately follows from Lemma [[0l Indeed, we cover the interval [1, k] with a loga-
rithmic number of intervals of the form [d, 2d]. For each of them, we apply Lemma [I0] and take the sum
of the resulting matrices.

12



So, it remains to prove the lemma. Consider the matrices Xg built in the following way. For
each S, Xg is a rank-1 matrix with Xg[A, B] = 27" if both |[A N S| and |B N S| lie in the interval
[k/2 —/d, k/2+ V/d], and zeroes elsewhere. Using Lemma [T we get that, for all A,

m(X):l?gr[g—\/ES 1SN A gg+\/ﬂ = 0(\/d/k), (24)

where S is taken uniformly at random from 2. Fix A, B € C, and let £ = |A\ B|. Assume d < ¢ < 2d.
Again, we have Prg[2£ — Vd <|ANnBNS| < bty \/E] = Q(+/d/k). Also, provided that the last
condition on AN BN.S holds, we get that ’; —Vd<|ANS| < % with probability £2(1), and similarly for
gg BN S| §§+\/E. Thus,

lap(X)=Q(\/d/k).

Combining this with ([24]), and rescaling the matrices Xg, we get the statement of Lemma [0l O

7 Further Observations

In this section, we prove two additional results about the problems studied in the previous sections.
First, we show that many of the above algorithms can be made exact.

Proposition 11. The quantum algorithms for Lor,, Lexacr-waLr, and Larajorrry, from Theo-
rems[3, [] and[8 can be made exact without increasing their complexity.

Proof. We use the same observation as in [26]. Inputs to all these problems are k-subsets of [n]. Due to
symmetry, the error probability of any of these algorithms is the same on all inputs. Also, for each of
the problems, there exists a deterministic procedure that efficiently tests whether a given k-subset A is
the true input. Indeed, for the OR function, query the complement of A. For exact-half, cover A by 3
subsets of size |k/2] and query each of them. Similarly for the majority function.

This means that we can apply the exact amplitude amplification algorithm from [I5], and get an
exact algorithm with an O(1) multiplicative overhead in complexity. O

Next, we show that the query complexity achieved in the previous sections cannot be obtained by a
non-adaptive quantum query algorithm. If h is the OR function, any non-adaptive quantum algorithm
requires (k) queries. This follows from Zalka’s result [41] and the fact that unstructured search can be
reduced to Logr. For the remaining problems, we obtain the following result:

Theorem 12. The non-adaptive quantum query complexity of LvajoriTy, and LEXACT-HALF, 5 Q(\/E)

Note that this result is nearly tight: Using Fourier sampling like in [7], it is possible to solve both
problems in O(\/E) quantum queries non-adaptively. Indeed, the Fourier spectrum of the majority and
the exact-half functions is concentrated on sets of size roughly vk, so, after O(\/E log k) Fourier samples,
it is likely to have seen all k relevant variables.

Proof of Theorem [IZ. Essentially, we use the non-adaptive version of the adversary bound from [27]. We
give a direct proof, however. Consider a non-adaptive T-query algorithm for one of these problems on n
variables. The state of the algorithm before the query is of the form

’l/): Z ag, ..., ST|Slv"'aST>|¢51 ..... ST>5

S1,..8T

where S; are subsets of [n], and ¢s,. s, are some unit vectors. Assuming T' = o(v/k), we are going to
construct two subsets A and B such that OfTw and O%T’L/J have large inner product. For the latter, we
have

’<O§Twa O%T¢>’ >2 Z |aS1,...,ST|2 - 1) (25)

where the summation is over all (Sy, ..., S7) such that f4(S;) = f5(S;) for all ¢ € [T].
The subsets A and B will be such that AN B = D with |D| = k — 1. Then, fa(S) = fp(S) if
|[SND| ¢ {[k/2] —1,[k/2]} for both cases of h equal to MAJORITY}, or EXACT-HALF},.
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It is easy to show, using Lemma [Tl that if D is a (k — 1)-subset of [n] taken uniformly at random,
and n is large enough, then, for any S C [n], the probability of |SND| € {[k/2] — 1, [k/2]} is O(1/VE).
By the union bound, the probability that f4(S;) = f5(S;) for all i € [T] is 1 — o(1). By the linearity of
expectation, the expectation of the right-hand side of (28] is 1 — o(1). Hence, there exist A and B such
that it is not possible to distinguish O%Tw and O%Tw with error probability less than 1/3. O

8 Discussion

In this paper, we studied the quantum query complexity of the function L, when h is the OR, the exact-
half, and the majority function. For the first two functions, we gave optimal algorithms. The algorithms
are based on the adversary bound, and attain at least quartic improvement in query complexity in
comparison to the randomised algorithms when h is the exact-half or the majority function. This shows
that the dual adversary bound can be an important tool for quantum learning algorithms.

One apparent open problem is the study of Q(Ly,) for other functions h. For instance, can our solution
in Section [B] be generalised to the exact-¢ or the ¢-threshold functions? For the majority function, there
is still an exponential gap between the lower and the upper bounds that we can prove. If the query
complexity is logarithmic, we would get an exponential separation using quantum walks. There is
already an example of such separation [19], but the problem studied in the latter paper is not so natural.
However, we believe that the complexity is polynomial in k. In this case, we would get an example of
a quantum query lower bound outperforming the positive-weighted adversary. There are not so many
cases known when a general adversary is strictly better than a positive-weighted adversary [34] [I1]. Of
course, it is also possible to use the polynomial method, as was done for the collision problem [I].

Another open problem is to use these ideas in the development of other learning or property testing
algorithms. For instance, the combinatorial group testing problem is related to junta testing. Is it
possible to use any ideas from the current paper to improve the algorithm in [7]?
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An algebra A over a field K is a vector space over K that is simultaneously a ring with the identity

element. Moreover, the algebra A has to satisfy the following associativity condition: a(uv) = (au)v =
u(aw) for all @ € K and u,v € A.

The only type of algebra we use in the paper is the group algebra. Let G be a finite group. The group

algebra K G is the vector space over K with the elements of G forming a basis. The ring multiplication
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operation for the basis elements of K G is inherited from the group GG, and then uniquely extended by
linearity for the remaining elements. That is, (deG agg) (ZheG Brh) = > g.nec QgPn(gh).

Assume that A is an algebra over K. A (left) A-module is a vector space M over K such that for all
u € A and m € M, the product um is defined that satisfies the following conditions:

uim+n)=um+un, (u+v)m=um-+ovm, (w)m=u(vm), em=m, (au)m=a(um),

foralla € K, u,v € A, and m,n € M, and e is the identity element of A. A submodule of M is a subspace
of M that is closed under multiplication by the elements of A. A module M is called irreducible if it does
not contain any submodule except for the trivial ones: M itself, and the zero-dimensional subspace {0}.

Assume that M and N are A-modules. An A-homomorphism from M to N is a linear operator
0: M — N that satisfies §(um) = uf(m) for all w € A and m € M. Let Hom(M, N) denote the linear
space of all A-homomorphisms from M to N. If an A-homomorphism 6 is also a linear isomorphism,
then 0 is called an A-isomorphism, and M and N are called A-isomorphic.

A direct sum M@®N of M and N as linear spaces is an A-module with the operation u(m®n) = um®un
forallu € A, me M andn € N.

A.1 Representations

We only consider RG-modules, where G is a finite group, and R is the field of real numbers. Such modules
are known as (real) representations. To define an RG-module M, it suffices to define the products gu,
where g € G, and u is a basis element of M. The operation u — gu is also known as group action. We
assume that M is equipped with an inner product satisfying (u,v) = (gu, gv) for all g € G and u,v € M.
Such an inner product can be always constructed [35] Proof of Theorem 1.5.3].

Lemma 13 (Schur’s Lemma, [36] Section 2.2], [35, Theorem 1.6.5]). Assume 6: V — W is an RG-
homomorphism between two irreducible RG-modules V' and W. Then, 6 = 0 if V and W are not
isomorphic. Otherwise, 6 is uniquely defined up to a scalar multiplier.

Maschke’s theorem [35] Theorem 1.5.3] implies that any RG-module is decomposable into a direct
sum of pairwise orthogonal irreducible RG-modules:

M=M&M&- - &M, (26)

However, this decomposition is not unique.

Let V be an irreducible RG-module. The number of components in (26) isomorphic to V is called
the multiplicity of V in M. Their direct sum is the canonical submodule of M associated with V. Both
the multiplicity and the canonical submodule do not depend on the decomposition in ([26) [36, Section
2.6].

Let N be a direct sum of ¢ copies of V', and let k be the multiplicity of V' in M. Then, Schur’s lemma
implies that, in a specifically chosen basis, any RG-homomorphism from N to M can be given by A® I,
where A is an arbitrary k x f-matrix, and [ is the d x d identity matrix, where d is the dimension of V.
In particular, the dimension of Hom(N, M) is k.

Assume that M is an RG-module and H is a subgroup of G. Then, M can be also considered as an
RH-module. It is called the restricted module and is denoted by M| ;.

Let G and H be finite groups, M be an RG-module, and N be an RH-module. Then, the tensor
product of M and N as vector spaces, M ® N, is an R(G x H)-module with the group action defined by
(9,h)(u®v) = (gu) ® (hv) for all (g,h) € G x H, w € M and v € N. This operation is called the outer
tensor product. The resulting module is irreducible if M and N are irreducible, and every irreducible
R(G x H)-module can be obtained in this way [36] Section 3.2].

A.2 Representations of the Symmetric Group

Throughout this section, X is a finite set of n elements. Let N denote the set of positive integers. The
symmetric group on X is denoted by Sx. It consists of all permutations on X. Clearly, Sx and Sy are
isomorphic if | X| = |Y.

A partition of n is a sequence A = (\;);en of non-increasing non-negative integers that sum up to n,
denoted A F n. In particular, A is eventually zero, and its description is usually truncated at the first
zero. The diagram of )\ is defined as X = {(i,7) € N? | j < \;}.
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A tableau of shape A, or A-tableau, is a bijection t: A — X. For example, if A = (3,1), and X = [4],

1 2 4
b= 3
is a tableau with ¢(1,1) = 1, #(1,2) = 2, #(1,3) = 4, and t(2,1) = 3. For m € Sx, the notation
7wt denotes the composition 7 o ¢, which is also a tableau of shape A\. The ith row of ¢ is defined by
Ri(t) = {t(i,4) | (4,4) € A}. The jth column of ¢ is C;(t) = {t(4,7) | (4,5) € A}. For each A-tableau ¢,
we define two subgroups of Sx: Ry = [[; Sg,+) and C; = Hj Se;t)-

The content of a function f: X — N is the sequence (|f‘1(i)|)i€N. Assume A F n. A A-tabloid is a
function f: X — Nof content A\. The set of all A-tabloids forms an orthonormal basis of the corresponding
permutation module M™. Let us, for greater clarity, denote the basis element corresponding to f by v -
The group action on the basis elements is given by mvy = vsor-1.

For each A-tableau ¢, denote vy = vy, where the A-tabloid f maps x to t~*(z)[1], i.e., to the number
of the row of ¢ that contains x. Note that mv; = v;;.  Define the element x; of the group algebra RSx

by
w= 3 san(m)m = H( 3 sgnmw),

welClt J ﬂ'EScj(t)

where sgn(7) denotes the sign of the permutation . The subspace of M?* spanned by k;v¢, as t ranges
over all M-tableaux, is an RSx-submodule. It is known as the Specht module S* corresponding to A [35]
Proposition 2.3.5]. Each irreducible RS x-module is isomorphic to exactly one of the Specht modules [35]
Theorem 2.4.6].

Our next aim is to give a description of Hom(S*, M*) for partitions A and p of n. For that, it is
easier to assume that X = A. As Sx = Sy, this is without loss of generality. In this case, the identity
function id: A — X is a valid A-tableau. A generalised tableau of shape A is a function T': A — N. The
tableau T is called semi-standard if T(i,5+ 1) > T(i,5) and T(i + 1,5) > T'(4,4) for all i, for which
these expressions are defined.

Theorem 14 (|35, Theorem 2.10.1]). For each generalised tableau T of shape A and content p, there exists
a unique RSx-homomorphism 01 : M> — M*" satisfying 07 (viq) = ZweR;d wor. The set of restricted
homomorphisms {01|g»}, where T runs through the set of all semi-standard generalised tableauz of shape
A and content u, forms a basis of Hom(S*, M*).

Assume X = YUZ is a partition. Let S*, S* and S” be Specht Sx-, Sy- and Sz-modules, respectively.
The Littlewood-Richardson rule [35, Section 4.9] gives the multiplicity of S* ® S” in S*|g s, . The
multiplicity is 0 unless & € A. Now assume that g C A, and consider a function f: A\ u — N. It
is known as a skew tableau. A semi-standard skew tableau is defined as for generalised tableaux. The
multiplicity of S* ® S¥ in S’\LSX «s, 18 equal to the number of semi-standard tableaux f: A\ p — N of
content v such that the content of the restriction of f onto {(4,j) € N? | j > a} is non-increasing for any
a€N.

A.3 Johnson Association Scheme

In this section, we apply the general theory from the previous section to the special case used in Section[4]
and prove some results from that section.

Let N = [n]. The permutation Sy-module M (N, k) corresponding to a partition u = (n — k, k) is
known as the Johnson association scheme. In this case, we identify a pu-tabloid f with the subset f=1(2).
That is, we assume that M (N, k) has the set of all k-subsets of [n] as its orthonormal basis. The tensor
product A ® B of two disjoint subsets is understood as their union. For example,

{1} = {2}) @ ({8} = {4}) = {1,3} = {1,4} - {23} + {2,4}
is an element of M(N,2) for n > 4.

Proof of Lemmalll We aim to apply Theorem [[4l Let A - n, and X = A. If A3 > 0, or if A3 = 0 but
Ao > k, then there is no semi-standard generalised tableaux of shape A and content . So, we shall
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further assume that A3 = 0, Ao =t < k. In this case, there is unique semi-standard generalised tableau
T of shape A and content u:

ro 1o a2 (27)

where there are ¢ occurrences of ‘2’ in the second row, and k —t occurrences in the first row. This proves
that M(N, k) = @}_, Sk(N, ).

It is easy to see that the dimension of M (N, k) is (}). As M (N, k) has only one additional irreducible
submodule, S*~%¥)compared to M (N, k — 1), the dimension of S(*~**) is (Z) — (kL)

By Theorem M4, Hom(S*, M*) is 1-dimensional. Moreover, the only (up to a scalar factor) RSx-
homomorphism 6: S* — M* maps kiqviq into Kiq Zwe Ry, TUT- Let us analyse the last expression in
more detail. The elements of Rig permute the elements in the rows of the tableau in ([27)), the elements
of Ciq permute the elements in its columns. Let 7 € Rjq, and U = T o~ !. Then, U(2,j) = 2 for
all j. If U(1,5) = 2 for some j < ¢, then xiquy = 0, because, for any o € Cig, ovy cancels out with
Tovy, where 7 is the transposition exchanging (1,j) and (2, j). Thus, Kida ) ¢, , Tvr is proportional to
a linear combination of generalised tableau U of the same form as T', where each of the first ¢ columns of
U contain one ‘1’ and one ‘2’, and some of the next k — ¢ columns contain ‘2’. Moreover, the coefficient
of U in this linear combination is 1 if its second row contains even number of ‘1’s, and —1 otherwise.

Let us now translate this to RSy. Let a = (a1, ...,a:) and b = (by, ..., b:) be two disjoint sequences of
pairwise distinct elements of N. We choose a bijection t: A — N such that ¢(1, j) = b; and ¢(2,j) = a;
for all j € [t]. In other words, we identify the positions in the tableau with integers in N. In our
interpretation, a generalised tableau U corresponds to the set of positions labelled by ‘2’. Thus, if we
apply the bijection ¢ to the homomorphism 6, we get that the only RSy-homomorphism from S* to M*

maps the vector
({ar} = {b1}) ® ({a2} — {b2}) -+ @ ({ae} — {bu})

(corresponding to kiquiq) into the vector

({ar} —{b1}) @ - @ ({ar} —{be}) ® ( > A)

ACN\{a1,..., as,bi,..., b} |Al=k—t
(corresponding to £iq EweR-d wor). O

Proof of {I8). Let N = NoUN; be a partition, and let Sy, (N, t) be the unique copy of S~ in M(N, k).
We aim to apply the Littlewood-Richardson rule in order to get the decomposition of Si(N, t)\I(SNO XSn,
into irreducible submodules S* ® SY. As before, the multiplicity is zero if ug > 0, v3 > 0, us > k, or
vo > k. Thus, let us assume psz = v3 = 0, and uy = to, Vo = t1 satisfy tg,t1 < k. Thus, if there is any
skew tableau satisfying the conditions of the Littlewood-Richardson rule, it must have the form

E S S A |
1 ... 2 ’

where the * stand for the elements of . (The crucial observation here is that the right-most element

of the first row must be equal to 1.) That is, the inequality ¢; + t2 < ¢ must hold, and in this case the
multiplicity is 1. O
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