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Abstract

Bit commitment schemes are at the basis of modern cryptography. Since information-
theoretic security is impossible both in the classical and the quantum regime, we examine com-
putationally secure commitment schemes. In this paper we study worst-case complexity assump-
tions that imply quantum bit-commitment schemes. First we show that QSZK 6⊆ QMA implies a
computationally hiding and statistically binding auxiliary-input quantum commitment scheme.
We then extend our result to show that the much weaker assumption QIP 6⊆ QMA (which is
weaker than PSPACE 6⊆ PP) implies the existence of auxiliary-input commitment schemes with
quantum advice. Finally, to strengthen the plausibility of the separation QSZK 6⊆ QMA we find
a quantum oracle relative to which honest-verifier QSZK is not contained in QCMA, the class of
languages that can be verified using a classical proof in quantum polynomial time.

1 Introduction

The goal of modern cryptography is to design protocols that remain secure under the weakest
possible complexity assumptions. Such fundamental protocols include commitment schemes, au-
thentication, one-way functions, and pseudorandom generators. All these primitives have been
shown equivalent: for example commitment schemes imply one-way functions [13] and one-way
functions imply commitments [10, 11, 25].

In this paper we study complexity assumptions that imply commitment schemes, which are
the basis for many cryptographic constructions, such as zero knowledge protocols for NP [3, 9]. A
commitment scheme is a two-phase protocol between a sender and a receiver. In the commit phase,
the sender interacts with the receiver so that by the end of the phase, the sender is bound to a
specific bit, which remains hidden from the receiver until the reveal phase of the protocol, where
the receiver learns the bit.

There are two security conditions for such schemes: binding (the sender cannot reveal more
than one value) and hiding (the receiver has no information about the bit before the reveal phase).
These conditions can hold statistically, i.e. against an unbounded adversary, or computationally, i.e.
against a polynomial-time adversary. Without further assumptions these conditions cannot both
hold statistically [21, 23].

1

http://arxiv.org/abs/1010.2793v2


The main complexity assumptions that have been used for the construction of one-way functions,
and hence commitments, involve the classes of Computational and Statistical Zero Knowledge.
Ostrovsky and Wigderson [27] proved that if Computational Zero Knowledge (ZK) is not trivial
then there exists a family of functions that are not ‘easy to invert’. The result was extended by
Vadhan [33] to show that if ZK does not equal Statistical Zero Knowledge (SZK), then there exists
an auxiliary-input one-way function, i.e. one can construct a one-way function given an auxiliary
input (or else advice). Auxiliary-input cryptographic primitives are natural when considering worst-
case complexity classes: the auxiliary input can encode a ‘hard’ instance of a problem known only
to be hard in the worst case. Last, Ostrovsky and Wigderson also showed that if ZK contains a
‘hard-on-average’ problem, then ‘regular’ one-way functions exist.

With the advent of quantum computation and cryptography, one needs to revisit computational
security, since many widely-used computational assumptions, such as the hardness of factoring or
the discrete logarithm problem, become false when the adversary is a polynomial-time quantum
machine [30].

In this paper, we study worst-case complexity assumptions under which quantum commitment
schemes exist. As in the classical case, we obtain auxiliary-input commitments: commitments
that can be constructed with classical and/or quantum advice. As our commitments are quantum,
we define the computational security properties against quantum poly-time adversaries (who also
receive an arbitrary quantum auxiliary input).

Our first result, involves the class of Quantum Statistical Zero Knowledge, QSZK.

Theorem 1.1. If QSZK 6⊆ QMA there exists a non-interactive auxiliary-input quantum commit-
ment scheme that is statistically-binding and computationally-hiding.

Before explaining this result, let us try to see what an equivalent classical result would mean.
At a high level, the classical statement would be of the following form: if SZK is not in MA, then
auxiliary-input commitments exist. However, under some derandomization assumptions, we have
that NP = MA = AM ([20, 24]) and since SZK ⊆ AM, we conclude that SZK ⊆ MA. Hence, the
equivalent classical assumption is quite strong and, if one believes in derandomization, possibly
false.

However, in the quantum setting, it would be surprising if QSZK is actually contained in QMA.
We know that QSZK ⊆ QIP[2] [37], where QIP[2] is the class of languages that have quantum
interactive proofs with two messages (note that one only needs three messages to get the whole
power of quantum interactive proofs). So far, any attempt to reduce QIP[2] or QSZK to QMA or
find any plausible assumptions that would imply it, have not been fruitful. This seems harder than
in the classical case. The main reason is that the verifier’s message cannot be reduced to a public
coin message nor to a pure quantum state. His message is entangled with his quantum workspace
and this seems inherent for the class QIP[2] as well as for QSZK. It would be striking if one can
get rid of this entanglement and reduce these classes to a single message from the prover.

If we weaken the security condition to hold against quantum adversaries with only classical
auxiliary input, then the above assumption also becomes weaker, i.e. QSZK 6⊆ QCMA, where
QCMA is the class where the quantum verifier receives a single classical message from the prover.
We give (quantum) oracle evidence for this by showing that

Theorem 1.2. There exists a quantum oracle A such that QSZKA
HV

6⊆ QCMAA.

Note that honest-verifier QSZKHV = QSZK [37] in the unrelativized case. Our proof of this result
extends Aaronson and Kuperberg’s result that there is a quantum oracle A such that QMAA 6⊆

2



QCMAA [2]. Subsequent to the completion of this work, Aaronson has shown the stronger result
that there is an oracle A such that SZKA 6⊆ QMAA [1]. This result implies that our assumption
that QSZK 6⊆ QMA is true relative to an oracle.

We then show the existence of commitment schemes based on a much weaker complexity as-
sumption about quantum interactive proofs. More precisely, we look at the class QIP, which was
first studied in [36]. This class is believed to be much larger than QSZK. We consider this class
and its relation to QMA to show the following

Theorem 1.3. If QIP 6⊆ QMA there exist non-interactive auxiliary-input quantum commitment
schemes (both statistically hiding and computationally binding as well as statistically binding and
computationally hiding) with quantum advice.

Note, that QIP = PSPACE [14] and QMA ⊆ PP [22], so our assumption is extremely weak,
in fact weaker than PSPACE 6⊆ PP. Of course, with such a weak assumption we get a weaker
form of commitment: the advice is now quantum. Thus, in order for the prover and the verifier
to efficiently perform the commitment for a security parameter n, they need to receive a classical
auxiliary input as well as quantum advice of size polynomial in n. This quantum advice is a
quantum state on poly(n) qubits that is not efficiently constructible (otherwise, we could have
reduced the quantum advice to classical advice by describing the efficient circuit that produces it).
Moreover, the quantum advice we consider does not create entanglement between the players.

The key point behind this result is the structure of QIP. More precisely, we use the fact that
there exists a QIP-complete problem where the protocol has only three rounds and the verifier’s
message is a single coin. The equivalent classical result would say that if three-message protocols
with a single coin as a second message are more powerful than MA then commitments exist. Again,
classically, if we believe that AM = MA, then this assumption is false. Taking this assumption to
the quantum realm, it becomes ‘almost’ true, unless PSPACE = PP.

All of our commitment schemes are non-interactive, a feature that is useful in many appli-
cations. From QIP 6⊆ QMA we construct both statistically hiding and computationally binding
commitments as well as statistically binding and computationally hiding ones, whose constructions
are conceptually different. In order to prove the security of the first construction, we prove a parallel
repetition theorem for protocols based on the swap test that may be of independent interest. From
the QSZK 6⊆ QMA assumption we show here only statistically binding and computationally hiding
commitments, but computationally binding and statistically hiding commitments can be similarly
shown.

2 Definitions

In order to define the statistical distance between quantum states, we use the trace norm, given
by ‖X‖tr = tr

√
X†X = maxU |trXU |, where the maximization is taken over all unitaries of

the appropriate size. Given one of two quantum states ρ, σ with equal probability, the optimal
measurement to distinguish them succeeds with probability 1/2 + ‖ρ− σ‖tr /4 [12]. Note that this
measurement is not generally efficient.

The diamond norm is a generalization of the trace norm to quantum channels that preserves the
distinguishability characterization. Given one of two channels Q0, Q1 with equal probability, then
the optimal distinguishing procedure that uses the channel only once succeeds with probability
1/2 + ‖Q0 −Q1‖⋄ /4. The diamond norm is more complicated to define than the trace norm,
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however, as the optimal distinguishing procedure may need to use an auxiliary space of size equal
to the input space [18, 31]. For a linear map Q : L(H) → L(K) with an auxiliary space F with
dimF = dimH, the diamond norm can be defined as ‖Q‖⋄ = maxX∈L(H⊗F) ‖Q(X)‖tr/‖X‖tr. One
inconvenient property of the diamond norm is that for some maps the maximum in the definition
may not be achieved on a quantum state. Fortunately, in the case of the difference of two completely
positive maps this maximum is achieved by a pure state.

Lemma 2.1 ([29]). Let Φ0,Φ1 : L(H) → L(K) be completely positive linear maps and let Φ =
Φ0 − Φ1. Then, there exists a space F and a state |φ∗〉 ∈ F ⊗H such that

‖Φ‖⋄ =
∥

∥(1L(F) ⊗ Φ)(|φ∗〉〈φ∗|)
∥

∥

tr
.

Closely related to the diamond norm is a norm studied in operator theory known as the com-
pletely bounded norm. An upper bound on this norm can be found in [28]. Since the diamond
norm is dual to this norm, this bound may also be applied to the diamond norm. See [15] for a
discussion of this bound and the relationship between the diamond and completely bounded norms.

Lemma 2.2. Let Φ: L(H) → L(K) be a linear map, then

‖Φ‖⋄ ≤ (dimH) ‖Φ‖tr = (dimH) sup
X∈L(H)

‖Φ(X)‖tr
‖X‖tr

.

In addition to these norms, we will also make use of the fidelity between two quantum states [16],
which is given by F(ρ, σ) = tr

√√
σρ

√
σ. One property that is important for the results in this

paper is that the fidelity only increases under the application of a quantum channel. Specifically,
tracing out a portion of two states can only increase their fidelity, i.e. for ρ, σ density matrices on
H⊗K, it holds that F(ρ, σ) ≤ F(trK ρ, trK σ).

We also make significant use of the following two properties of the fidelity.

Lemma 2.3 ([8]). For any density matrices ρ and σ, 1− F(ρ, σ) ≤ 1
2 ‖ρ− σ‖tr ≤

√

1− F(ρ, σ)2.

Lemma 2.4 ([26, 32]). For any density matrices ρ and σ, maxξ
(

F(ρ, ξ)2 + F(ξ, σ)2
)

= 1+F(ρ, σ).

2.1 Quantum Interactive Complexity Classes

The class QMA, first studied in [34], is informally the class of all problems that can be verified by
a quantum polynomial-time algorithm with access to a quantum proof.

Definition 2.5. A language L is in QMA if there is poly-time quantum algorithm V (called the
verifier) such that

1. if x ∈ L, then there exists a state ρ such that Pr[V (x, ρ) accepts] ≥ a,

2. if x 6∈ L, then for any state ρ, Pr[V (x, ρ) accepts] ≤ b,

where a, b are any efficiently computable functions of |x| with a > b with at least an inverse poly-
nomial gap [19, 22]. If ρ is restricted to be a classical string, the class is called QCMA.

The class QIP, first studied in [36], consists of those problems that can be interactively verified
in quantum polynomial time. A recent result is that QIP = PSPACE [14].
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Definition 2.6. A language L ∈ QIP if there is a poly-time quantum algorithm V exchanging
quantum messages with an unbounded prover P such that for any input x

1. if x ∈ L there exists a P such that, (V, P ) accepts with probability at least a.

2. if x 6∈ L, then for any prover P , (V, P ) accepts with probability at most b.

As in QMA, we require only that a > b with at least an inverse polynomial gap [17].

One key property of QIP is that any quantum interactive proof system can be simulated by one
using only three messages [17]. This is not expected to hold in the classical case, as it would imply
that PSPACE = AM. This property allows us to define simple problems involving quantum circuits
that are complete for QIP.

In what follows we consider quantum unitary circuits C that output a state in the space O⊗G.
These spaces can be different for each circuit. O corresponds to the output space and G to the
garbage space. For any circuit C, we define |φC〉 = C|0〉 in the space O ⊗ G to be the output of
the circuit before the garbage space is traced out, and ρC = TrG(|φC〉〈φC |) to be the mixed state
output by the circuit after the garbage space is traced out. We will also consider more general
mixed-state quantum circuits C, that on an input state σ and output a quantum state, denoted
by C(σ). Unlike unitary circuits, mixed-state circuits are allowed to introduce ancillary qubits
and trace out qubits during the computation. Note that circuits of this form can (approximately)
represent any quantum channel. The size of a circuit C is equal to the number of gates in the
circuit plus the number of qubits used by the circuit, denoted |C |. We will also use |H| to refer to
the size of a Hilbert space H i.e. |H| = ⌈log2 dimH⌉. We use L(H) to refer to the set of all linear
operators on H, and D(H) to denote the subset of these operators that are density matrices. We
consider two complete problems for QIP.

Definition 2.7 (QCD Problem). Let µ be a negligible function. We define the promise problem
QCD = {QCDY ,QCDN} with input two mixed-state quantum circuits C0, C1 of size n as

• (C0, C1) ∈ QCDY ⇔ ‖C0 − C1‖⋄ ≥ 2− µ(n)

• (C0, C1) ∈ QCDN ⇔ ‖C0 − C1‖⋄ ≤ µ(n)

Definition 2.8 (Π Problem). Let µ be a negligible function. We define the promise problem
Π = {ΠY ,ΠN} with input two mixed-state quantum circuits C0, C1 of size n, where for each i
Ci : D(X ⊗ Y) → {0, 1}, as

• (C0, C1) ∈ ΠY ⇔ ∃ρ0, ρ1 ∈ D(X ⊗ Y) with trX (ρ
0) = trX (ρ

1) such that

1

2

(

Pr[C0(ρ
0) = 1] + Pr[C1(ρ

1) = 1]
)

= 1

• (C0, C1) ∈ ΠN ⇔ ∀ρ0, ρ1 ∈ D(X ⊗ Y) with trX (ρ0) = trX (ρ
1) we have

1

2

(

Pr[C0(ρ
0) = 1] + Pr[C1(ρ

1) = 1]
)

≤ 1

2
+ µ(n)
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QCD is QIP-complete [29]. The QIP-completeness of Π follows from a characterization of QIP due
to Mariott and Watrous [22] that states that any problem in QIP has a three message protocol where
the challenge from the Verifier consists of a single coin flip. We may also assume that this protocol
has perfect completeness and soundness error negligibly larger than 1/2. Taking the circuits C0

and C1 as the final circuit of the Verifier in such a proof system when the challenge is either 0 or 1
results in an instance of the problem Π. The QIP-completeness of Π then follows directly from the
completeness and soundness conditions on the proof system.

The complexity class QSZK, introduced in [35], is the class of all problems that can be inter-
actively verified by a quantum verifier who learns nothing beyond the truth of the assertion being
verified. In the case that the verifier is honest, i.e. does not deviate from the protocol in an attempt
to gain information, this class can be defined as

Definition 2.9. A language L ∈ QSZKHV if

1. There is a quantum interactive proof system for L.

2. If x ∈ L, the state of the verifier in this proof system after the sending of each message can
be approximated, within negligible trace distance, by a polynomial-time preparable quantum
state.

If we insist that item 2 holds when the Verifier departs from the protocol, the result is the
class QSZK. Watrous has shown that QSZKHV = QSZK [37]. This class has complete problems.
We use the following QSZK-complete problem [35].

Definition 2.10 (QSD Problem). Let µ be a negligible function. QSD = {QSDY ,QSDN} is the
promise problem on input (C0, C1), unitary circuits of size n with m output qubits, such that

• (C0, C1) ∈ QSDY ⇔
∥

∥ρC0 − ρC1
∥

∥

tr
≥ 2− µ(n)

• (C0, C1) ∈ QSDN ⇔
∥

∥ρC0 − ρC1
∥

∥

tr
≤ µ(n)

2.2 Quantum Computational Distinguishability

The following definitions may be found in [37].

Definition 2.11. Two mixed states ρ0 and ρ1 on m qubits are (s, k, ε)-distinguishable if there
exists a mixed state σ on k qubits and a quantum circuit D of size s that performs a two-outcome
measurement on (m+ k) qubits, such that |Pr[D(ρ0 ⊗ σ) = 1]− Pr[D(ρ1 ⊗ σ) = 1]| ≥ ε. If ρ0 and
ρ1 are not (s, k, ε)-distinguishable, then they are (s, k, ε)-indistinguishable.

Let I ⊆ {0, 1}∗ and let an auxiliary-input state ensemble be a collection of mixed states {ρx}x∈I
on r(|x|) qubits for polynomial r with the property that ρx can be efficiently generated given x.

Definition 2.12. Two auxiliary-input state ensembles {ρ0x} and {ρ1x} on I are quantum compu-
tationally indistinguishable if for all polynomials p, s, k and for all but finitely many x ∈ I, ρ0x
and ρ1x are (s(|x|), k(|x|), 1/p(|x|))-indistinguishable. Ensembles {ρ0x} and {ρ1x} on I are quantum
computationally distinguishable if there exist polynomials p, s, k such that for all x ∈ I, ρ0x and ρ1x
are (s(|x|), k(|x|), 1/p(|x|))-distinguishable.
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At first glance these definitions of distinguishability and indistinguishability are not comple-
mentary. We require distinguishability for all x ∈ I, but require indistinguishability in only all
but finitely many x ∈ I. This is because |x| will be our security parameter, and so while a
polynomially-bounded adversary may be able to distinguish the two ensembles for a finite num-
ber of (small) values of |x|, as the parameter grows no efficient algorithm can distinguish the two
ensembles.

Key to this definition is that if two ensembles are computationally distinguishable, then for all
x there exists an efficient procedure in |x| that distinguishes ρ0x and ρ1x with probability at least
1/2 + 1/p(|x|). Note that this is not a uniform procedure: the circuit that distinguishes the two
states may depend on x.

Definition 2.13. Two auxiliary-input state ensembles {ρ0x} and {ρ1x} on I are quantum statistically
indistinguishable if for any polynomial p and for all but finitely many x ∈ I,

∥

∥ρ0x − ρ1x
∥

∥

tr
≤ 1/p(|x|).

Definition 2.14. Two admissible superoperators Φ0 and Φ1 from t qubits to m qubits are (s, k, ε)-
distinguishable if there exists a mixed state σ on t + k qubits and a quantum circuit D of size s
that performs a two-outcome measurement on (m + k) qubits, such that |Pr[D((Φ0 ⊗ 1k)(σ)) =
1]− Pr[D((Φ1 ⊗ 1k)(σ)) = 1]| ≥ ε, where 1k denotes the identity superoperator on k qubits. If the
superoperators Φ0 and Φ1 are not (s, k, ε)-distinguishable, then they are (s, k, ε)-indistinguishable.

Let I ⊆ {0, 1}∗ and let an auxiliary-input superoperator ensemble be a collection of superoper-
ators {Φx}x∈I from q(|x|) to r(|x|) qubits for some polynomials q, r, where as in the case of states,
given x the superoperators can be performed efficiently in |x|.

Definition 2.15. Two auxiliary-input superoperator ensembles {Φ0
x} and {Φ1

x} on I are quantum
computationally indistinguishable if for all polynomials p, s, k and for all but finitely many x ∈ I,
Φ0
x and Φ1

x are (s(|x|), k(|x|), 1/p(|x|))-indistinguishable. Auxiliary-input ensembles {Φ0
x} and {Φ1

x}
on I are quantum computationally distinguishable if there exist polynomials p, s, k such that for all
x ∈ I, Φ0

x and Φ1
x are (s(|x|), k(|x|), 1/p(|x|))-distinguishable.

If two superoperator ensembles are computationally distinguishable then there is an efficient
(nonuniform) procedure (in |x|) to distinguish them with probability at least 1/2 + 1/p(|x|) for
some polynomial p. If the property of being (s, k, ε)-indistinguishable holds for all (unbounded) s
and all polynomial k, 1/ε, then we call an ensemble statistically indistinguishable. Note that these
definitions provide a strong quantum analogue of the classical non-uniform notion of computational
indistinguishability, since the non-uniformity includes an arbitrary quantum state as advice to the
distinguisher.

We define a new notion that we will use later on. Intuitively, two circuits that take input in
the space X ⊗ Y and output a single bit are witnessable if there exist two input states that are
identical on Y and are accepted by the two circuits with high probability.

Definition 2.16. Two superoperators Φ0 and Φ1 from L(X ⊗ Y) to a single bit are (s, k, p)-
witnessable if there exist two input states ρ0, ρ1 ∈ L(X ⊗ Y) such that

1. 1
2

(

Pr[Φ0(ρ0) = 1] + Pr[Φ1(ρ1) = 1]
)

≥ 1/2 + 1/p(n)

2. there exists a state σ ∈ L(W ⊗X ⊗ Y) with |W| = k and trW σ = ρ0, and an admissible
superoperator Ψ : L(W ⊗X ) → L(X ) of size s, such that ρ1 = (Ψ ⊗ 1L(Y))(σ) where 1L(Y)

denotes the identity on L(Y).
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If Φ0 and Φ1 are not (s, k, p)-witnessable, then they are (s, k, p)-unwitnessable.

Let I ⊆ {0, 1}∗ and let an auxiliary-input superoperator ensemble be a collection of superoperators
{Φx}x∈I from q(|x|) to 1 bit for a polynomial q, where given x the superoperators can be performed
efficiently in |x|.

Definition 2.17. Auxiliary-input superoperator ensembles {Φ0
x} and {Φ1

x} on I are quantum
computationally witnessable if there are polynomials s, k, p such that for all x ∈ I, Φ0

x and Φ1
x

are (s(|x|), k(|x|), p(|x|))-witnessable. Ensembles {Φ0
x} and {Φ1

x} on I are quantum computation-
ally unwitnessable if for all polynomials s, k, p and all but finitely many x ∈ I, Φ0

x and Φ1
x are

(s(|x|), k(|x|), p(|x|))-unwitnessable.

2.3 Quantum Commitments

Definition 2.18. A quantum commitment scheme (resp. with quantum advice) is an interactive
protocol Com = (S,R) with the following properties

• The sender S and the receiver R have common input a security parameter 1n (resp. both S
and R have a copy of a quantum state |φ〉 of poly(n) qubits). The sender has private input
the bit b ∈ {0, 1} to be committed. Both S and R are quantum algorithms that run in time
poly(n) that may exchange quantum messages.

• In the commit phase, S interacts with R in order to commit to b.

• In the reveal phase, S interacts with R in order to reveal b. R decides to accept or reject
depending on the revealed value of b and his final state. We say that S reveals b, if R accepts
the revealed value. In the honest case, R always accepts.

A commitment scheme is non-interactive if the commit and the reveal phase each consist of a
single message from S to R. When the commit phase is non-interactive, we call ρbS the state sent
by the honest sender during the commit phase when his bit is b.

Definition 2.19. A non-interactive auxiliary-input quantum commitment scheme (with quantum
advice) on I is a collection of non-interactive quantum commitment schemes (with advice) C =
{Comx = (Sx, Rx)}x∈I such that

• there exists a quantum circuit Q of size polynomial in |x|, that given as input x for any
x ∈ I, can apply the same maps that Sx and Rx apply during the commitment scheme in time
polynomial in |x|.

• (statistically/computationally hiding) the two auxiliary-input state ensembles sent by the hon-
est sender when committing to 0 or 1, which are given by {ρ0Sx

}x∈I and {ρ1Sx
}x∈I , are quantum

statistically/computationally indistinguishable.

• (statistically/computationally binding) for all but finitely many x ∈ I, for all polynomial p
and for any unbounded/polynomial dishonest senders S∗

x,0, S
∗
x,1 that send the same state in

the commit phase

PS∗

x
=

1

2

(

Pr[S∗
x,0 reveals b = 0] + Pr[S∗

x,1 reveals b = 1]
)

≤ 1

2
+

1

p(|x|)
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When referring to a commitment scheme, we will use the (bs, hc) and (bc, hs) to denote schemes
that are statistically binding and computationally hiding and schemes that are computationally
binding and statistically hiding, respectively.

At a high level, the distinction between the two notions, without or with quantum advice, is the
following. We can assume that the two players decide to perform a commitment scheme and agree
on a security parameter n. Then, in the first case, a trusted party can give them the description
of the circuits (C0, C1) so that the players can perform the commitment scheme themselves. One
can think of the string (C0, C1) as classical advice to the players. In the second case, the trusted
party gives them the description of the circuits, as well as one copy of a quantum state each. This
quantum state is of polynomial size, however it is not efficiently constructible, otherwise the trusted
party could have given the players the classical description of the circuit that constructs it. Hence,
in the second notion the players receive both classical and quantum advice.

3 Quantum Commitments Unless QSZK ⊆ QMA

The idea of the proof is to start from pairs of circuits (C0, C1) which are in QSDY which means
that their mixed state outputs ρC0 and ρC1 are statistically far from each other. We want to
use ρCb as a commitment state for the bit b. Since the states are statistically far away, such a
commitment will be statistically binding. For the hiding property, we distinguish two cases. If the
Receiver can distinguish in polynomial time (with some quantum auxiliary input) the two states
for all but finitely many such pairs of circuits then we show that QSZK ⊆ QMA. If the Receiver
cannot distinguish the two states for an infinite set I of pairs of circuits, we show how to construct
a non-interactive auxiliary-input quantum (bs, hc)-commitment scheme on I. More formally:

Theorem 1.1. If QSZK 6⊆ QMA, then there exists a non-interactive auxiliary-input quantum
(bs, hc)-commitment scheme on an infinite set I.

Proof. First, we show the following

Lemma 3.1. If QSZK 6⊆ QMA then there exist two auxiliary-input state ensembles that are quantum
computationally indistinguishable on an infinite set I.

Proof. Let us consider the complete problem QSD = {QSDY ,QSDN} for QSZKHV. We may
restrict attention to the honest verifier case, since it is known that QSZK = QSZKHV [37]. Let
n = |(C0, C1)| and define |φCb

〉 = Cb(|0〉) in the space O ⊗ G to be the entire output state of the

circuit on input |0〉 and ρCb

(C0,C1)
= TrG(|φCb

〉〈φCb
|) be the output of circuit Cb on m(n) qubits for

a polynomial m.
Recall that the set QSDY consists of pairs of circuits (C0, C1), such that the trace norm satisfies

∥

∥ρC0

(C0,C1)
− ρC1

(C0,C1)

∥

∥

tr
≥ 2 − µ(n). We now consider the two auxiliary-input state ensembles

{ρC0

(C0,C1)
} and {ρC1

(C0,C1)
} for (C0, C1) ∈ QSDY . Assume for contradiction that they are quantum

computationally distinguishable on QSDY , i.e. for some polynomials p, s, k and for all (C0, C1) ∈
QSDY , the states ρC0

(C0,C1)
and ρC1

(C0,C1)
are (s(n), k(n), 1/p(n))-distinguishable. In other words, for

polynomials p, s, k and for all (C0, C1) ∈ QSDY there exists a state σ on k(n) qubits and a quantum
circuit Q of size s(n) that performs a two-outcome measurement on m(n) + k(n) qubits, such that

|Pr[Q(ρC0

(C0,C1)
⊗ σ) = 1]− Pr[Q(ρC1

(C0,C1)
⊗ σ) = 1]| ≥ 1

p(n)
.
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We now claim that this implies that QSZK ⊆ QMA, which is a contradiction. For any input (C0, C1)
the prover can send the classical polynomial size description of Q to the verifier as well as the mixed
state σ with polynomial number of qubits. Then, for all (C0, C1) ∈ QSDY , the verifier with the
help of Q and σ can distinguish between the two circuits with probability at least 1/2 + 1/(2p(n)).
On the other hand, for all (C0, C1) ∈ QSDN , no matter what Q and σ the prover sends, since
∥

∥ρC0

(C0,C1)
− ρC1

(C0,C1)

∥

∥

tr
≤ µ(n) the verifier can only distinguish the two circuits with probability at

most 1/2 + µ(n)/2. This implies that there is an inverse polynomial gap between the acceptance
probabilities in the two cases. By applying standard error reduction tools for QMA [19, 22], we
obtain a QMA protocol to solve QSD.

This implies that if QSZK 6⊆ QCMA then there exists a non empty set I ⊆ QSDY such that
the two auxiliary-input state ensembles {ρC0

(C0,C1)
} and {ρC1

(C0,C1)
} are quantum computationally

indistinguishable on I. Notice that we may take the set I to be infinite, since if I is finite, then
by hard-wiring this finite number of instances into the QMA verifier (who always accepts these
instances), we have again that QSZK ⊆ QMA.

We now show how to construct a commitment scheme from these ensembles.

Lemma 3.2. The two auxiliary-input state ensembles given by {ρC0

(C0,C1)
}(C0,C1)∈I and {ρC1

(C0,C1)
}(C0,C1)∈I

that are computationally indistinguishable on the infinite set I imply a non-interactive auxiliary-
input quantum (bs, hc)-commitment scheme on I.

Proof. For each (C0, C1) ∈ I we define a scheme with security parameter n = |(C0, C1)|.

• Commit phase: To commit to bit b, the sender S runs the quantum circuit Cb with input |0〉
to create |φCb

〉 = Cb(|0〉) and sends ρCb

(C0,C1)
to the receiver R, which is the portion of |φCb

〉
in the space O.

• Reveal phase: To reveal bit b, the sender S sends the remaining qubits of the state |φCb
〉 to

the receiver R, which lie in the space G (the honest sender sends |φ′〉 = Cb|0〉). The receiver

applies the circuit C†
b on his entire state and then measures all his qubits in the computational

basis. He accepts if and only if the outcome is |0〉.

Note that all operations of the sender and the receiver in the above protocol can be computed in
time polynomial in n given the input (C0, C1), including the receiver’s test during the reveal phase.
The protocol is computationally hiding since {ρC0

(C0,C1)
} and {ρC1

(C0,C1)
} are quantum computationally

indistinguishable.
The fact that the protocol is statistically binding follows from the fact that for the states

{ρC0

(C0,C1)
} and {ρC1

(C0,C1)
} (for (C0, C1) ∈ I ⊆ QSDY ) we know that ‖ρC0

(C0,C1)
−ρC1

(C0,C1)
‖tr ≥ 2−µ(n),

for a negligible function µ. More precisely, if ξ is the total quantum state sent by a dishonest sender
S∗ in the commit and reveal phases of the protocol, then the probability that ξ can be revealed as
the bit b is

Pr[S∗ reveals b from ξ] = tr(|0〉〈0|C†
b ξCb) = F(Cb|0〉, ξ)2 ≤ F(ρCb

(C0,C1)
, trG ξ)

2

using the monotonicity of the fidelity with respect to the partial trace. This calculation follows the
proof of Watrous that QSZK is closed under complementation [35]. In what follows we consider a
dishonest sender that, after the commit phase, sends one of two different states in the reveal phase,
so the state held by the Receiver is either ξ0 or ξ1. Notice that in either case the Sender sends the

10



same state in the commit phase, so that we have trG ξ0 = trG ξ1 = γ for some γ ∈ D(O). Using
this, as well as the previous equation and properties of the fidelity

PS∗ =
1

2
(Pr[S∗ reveals b = 0 from ξ0] + Pr[S∗ reveals b = 1 from ξ1])

≤ max
γ∈D(O)

1

2

(

F(ρC0

(C0,C1)
, γ)2 + F(ρC1

(C0,C1)
, γ)2

)

=
1

2

(

1 + F(ρC0

(C0,C1)
, ρC1

(C0,C1)
)
)

≤ 1

2
+

√

µ(n)

2
.

The final inequality follows from the relationship between the fidelity and the trace norm as well
as the fact that ‖ρC0

(C0,C1)
− ρC1

(C0,C1)
‖tr ≥ 2 − µ(n). This implies that the protocol is statistically

binding.

By combining the above Lemmas: if QSZK 6⊆ QMA, then there exists a non-interactive auxiliary-
input quantum (bs, hc)-commitment scheme on an infinite set I.

If we are willing to relax the indistinguishability condition, i.e. enforce the indistinguishability
against a quantum algorithm that has only classical auxiliary input (i.e. get rid of σ in Defini-
tion 2.11), then the condition becomes QSZK 6⊆ QCMA. In Section 6 we give oracle evidence that
this this condition is true. Notice also that the result of Crépeau, Légaré, and Salvail [7] allows this
commitment scheme to be used as a subroutine to construct a scheme that is statistically hiding
and computationally binding.

4 Quantum (bs, hc)-commitments unless QIP ⊆ QMA

First, let us note that QIP ⊆ QMA implies that PSPACE ⊆ PP which is widely believed not to
be true. Hence, the commitments we exhibit are based on a very weak assumption. Using this
weaker assumption, we obtain a weaker commitment scheme, in the sense that it requires quantum
advice. Note that our definitions of security are against quantum adversaries that also receive
arbitrary quantum advice, hence our honest players are never more powerful than the dishonest
ones. Moreover, the quantum advice does not create entanglement between the two players.

In our first construction, we start from pairs of circuits (Q0, Q1) in QCDY which means that
there is a common input |φ∗〉 such that their outputs ρQ0 and ρQ1 are statistically far from each
other. We use ρQb as a commitment state for b. The quantum advice needed for the commitment is
the following: the Sender receives a copy of |φ∗〉 to create the states ρQ0 and ρQ1 and the Receiver
also gets a copy of |φ∗〉 to check via a SWAP test that the Sender did not cheat. Using the fact
that the states are statistically far apart and a parallel repetition theorem for our swap-test based
protocol we obtain negligible binding error. Similarly to the QSZK construction, we show that if
QCD cannot be solved in QMA then our scheme is also computationally hiding.

The remainder of this section provides the proof of this result. As a first step, we give a scheme
with constant binding error based on the swap test (see [6] for an exposition of the swap test).
Following this result, we prove a parallel repetition theorem for non-interactive swap-test based
protocols, which we then use to obtain a scheme with negligible error.

Proposition 4.1. If QIP 6⊆ QMA, then there exists a non-interactive auxiliary-input quantum
(bs, hc)-commitment scheme with quantum advice on an infinite set I. This scheme has constant
binding error.
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Proof. We first show the following

Lemma 4.2. If QIP 6⊆ QMA, there exist two auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈I

and {Q1}(Q0,Q1)∈I that are quantum computationally indistinguishable on an infinite set I.

Proof. Suppose QIP 6⊆ QMA. Let us consider the complete problem QCD for QIP with input the
mixed-state circuits (Q0, Q1). Let n = |(Q0, Q1)|. Let I denote the input space, O the output
space and G the output garbage space of the circuits Q0, Q1.

Consider the set QCDY , whose elements are pairs of circuits (Q0, Q1), such that the dia-
mond norm satisfies

∥

∥Q0 −Q1
∥

∥

⋄
≥ 2−µ(n), and the two auxiliary-input superoperator ensembles

{Q0}(Q0,Q1)∈QCDY
and {Q1}(Q0,Q1)∈QCDY

. Assume for contradiction that they are quantum com-
putationally distinguishable on QCDY , i.e. for some polynomials p, s, k and all (Q0, Q1) ∈ QSDY ,
the superoperators Q0 and Q1 are (s(n), k(n), 1/p(n))-distinguishable. In other words, for polyno-
mials p, s, k and for all (Q0, Q1) ∈ QSDY there exists a mixed state σ on t(n) + k(n) qubits and a
quantum circuit D of size s(n) that performs a two-outcome measurement on (m(n)+k(n)) qubits,
such that

|Pr[D((Q0 ⊗ 1k)(σ)) = 1]− Pr[D((Q1 ⊗ 1k)(σ)) = 1]| ≥ 1

p(n)

We now claim that this implies that QIP ⊆ QMA, which is a contradiction. For any input (Q0, Q1)
the QMA-prover can send to the verifier the classical polynomial size description of D as well as
the mixed state σ with poly(n) qubits. Then, for all (Q0, Q1) ∈ QCDY , the verifier with the help
of D and σ can distinguish between the two circuits with probability higher than 1/2 + 1/(2p(n)).
On the other hand, for all (Q0, Q1) ∈ QCDN , no matter what D and σ the prover sends, since
∥

∥Q0 −Q1
∥

∥

⋄
≤ µ(n) the verifier can only distinguish the two circuits with probability at most

1/2 + µ(n)/2. Hence, there is at least an inverse polynomial gap between the two probabilities, so
we can use error reduction [19, 22] to obtain a QMA protocol that solves QCD with high probability.

Thus QIP 6⊆ QMA implies that there exists a non-empty set I ⊆ QCDY and two auxiliary-input
superoperator ensembles {Q0}(Q0,Q1)∈QCDY

and {Q1}(Q0,Q1)∈QCDY
which are quantum computa-

tionally indistinguishable on I. Once again, the set I must be infinite, as if I is finite then by
hard-wiring this finite number of instances into the QMA verifier (who always accepts these in-
stances), we have again that QIP ⊆ QMA.

We now need to show how to construct a commitment scheme on I based on these indistin-
guishable superoperator ensembles. The protocol we obtain has only constant binding error: the
average of the probability of successfully revealing 0 and the probability of successfully revealing
1 is negligibly larger than 3/4. Following this Lemma we prove a parallel repetition result for this
protocol that reduces this error to a negligible function.

Lemma 4.3. The two auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈I and {Q1}(Q0,Q1)∈I ,
which are quantum computationally indistinguishable on the infinite set I ⊆ QCDY , imply a non-
interactive auxiliary-input quantum (bs, hc)-commitment scheme with quantum advice on I. This
protocol has constant binding error.

Proof. For every (Q0, Q1) ∈ I we define a quantum commitment scheme with quantum advice. For
convenience we let U b be the unitary operation that simulates the admissible map Qb, in other
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words we have that Qb(ρ) = trG U
b(ρ⊗ |0〉〈0|)(U b)†. Note that any Qb can be efficiently converted

to a unitary circuit U b. Let also |φ∗〉 be the pure state from Lemma 2.1, such that

∥

∥Q0 −Q1
∥

∥

⋄
=
∥

∥(1L(F) ⊗ (Q0 −Q1))(|φ∗〉〈φ∗|)
∥

∥

tr
.

• Define n = |(Q0, Q1)| to be the security parameter. S and R also receive as advice a copy of
the state |φ∗〉 on poly(n) qubits.

• Commit phase: To commit to bit b, the sender S runs the quantum circuit 1F ⊗ U b with
input |φ∗〉|0〉. The entire output of the circuit is a state in the space F ⊗O ⊗ G. The sender
then sends the qubits in the space O ⊗F to the receiver R.

• Reveal phase: To reveal bit b, the sender S sends the remaining qubits of the state (1F ⊗
U b)(|φ∗〉|0〉) in the space G to the receiver R. The receiver first applies the operation 1F⊗(U b)†

to the entire state he received from the sender and then performs a swap test between this
state and his copy of |φ∗〉|0〉.

Let us analyze the above scheme. First, note that all operations of the sender and the receiver
in the above protocol can be computed in time polynomial in n given the input (Q0, Q1). This
includes the receiver’s test during the reveal phase, since given a description of a unitary circuit it
can be inverted by simply taking the inverse of each gate and running the circuit in reverse and
the swap test is also efficient.

The protocol is computationally hiding since the superoperators Q0 and Q1 are quantum com-
putationally indistinguishable.

The fact that the protocol is statistically binding (with constant error) follows from the fact
that we have

∥

∥Q0 −Q1
∥

∥

⋄
≥ 2 − µ(n) for a negligible function µ. More precisely, let σb be the

state sent by the sender with trG σ
0 = trG σ

1 = σOF (the honest sender sends the pure state
(1F ⊗U b)(|φ∗〉|0〉)). Then the receiver accepts if and only if the output of (1F ⊗ (U b)†)σb(1F ⊗Ub)
and his copy of |φ∗〉|0〉 pass the swap test. This probability is equal to

Pr[S∗ reveals b from σb] =
1

2
+

1

2
tr
[

(|φ∗〉〈φ∗| ⊗ |0〉〈0|)(1F ⊗ (U b)†)σb(1F ⊗ Ub)
]

=
1

2
+

1

2
F((1F ⊗ Ub)(|φ∗〉〈φ∗| ⊗ |0〉〈0|)(1F ⊗ (U b)†), σb)2

≤ 1

2
+

1

2
F(1F ⊗Qb(|φ∗〉〈φ∗|), trG σb)2

≤ 1

2
+

1

2
F(1F ⊗Qb(|φ∗〉〈φ∗|), σOF )

2

where we have used the fact that the swap test on a state ρ ⊗ σ returns the symmetric outcome
with probability 1

2 + 1
2 tr ρσ, as well as the monotonicity of the fidelity with respect to the partial

trace.
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Using this calculation, the binding property of the protocol is given by

PS∗ =
1

2
(Pr[S∗ reveals b = 0] + Pr[S∗ reveals b = 1])

≤ 1

2
+

1

4

(

F(1F ⊗Q0(|φ∗〉〈φ∗|), trG σ)2 + F(1F ⊗Q1(|φ∗〉〈φ∗|), trG σ)2
)

≤ 1

2
+

1

4

(

1 + F(1F ⊗Q0(|φ∗〉〈φ∗|),1F ⊗Q1(|φ∗〉〈φ∗|))
)

≤ 3

4
+

√

µ(n)

4
,

where we have used Lemma 2.1 and Lemma 2.4.

From the above two Lemmata, we have that if QIP 6⊆ QMA, then there exists a non-interactive
auxiliary-input quantum (bs, hc)-commitment scheme with quantum advice on an infinite set I,
with constant binding error.

In the remainder of this section we show how to reduce the cheating probability of the sender
to 1/2 + neg(n). To do this, we will use parallel repetition of the above protocol.

Proposition 4.4. Consider a k-fold repetition of the above bit commitment protocol. This is a
non-interactive auxiliary-input quantum (bs, hc)-commitment scheme with quantum advice on I.

Proof. The two things we have to make sure of is that the computationally hiding property remains
under parallel repetition and that the cheating probability of the sender decreases as a negligible
function in k. To show that the protocol is computationally hiding, we use the following Lemma.

Lemma 4.5 ([37]). Suppose that ρ1, . . . ρn and ξ1, . . . , ξn are m-qubit states such that ρ1 ⊗ · · · ⊗ ρn
and ξ1⊗ · · ·⊗ ξn are (s, k, ε)-distinguishable. Then there exists at least one choice of j ∈ {1, . . . , n}
for which ρj and ξj are (s, (n− 1)m+ k, ε/n)-distinguishable.

From this Lemma, we easily have that if the superoperators Q0 and Q1 are quantum com-
putationally indistinguishable then the output states of the superoperators Q⊗k

0 and Q⊗k
1 applied

to any product state are quantum computationally indistinguishable for any k of polynomial size.
This proves that the repeated protocol remains computationally hiding, since the honest Sender
prepares a product state.

We now need to prove that the statistical binding property decreases to 1/2 + neg(n). We first
prove the following Lemma that applies to the ideal case, i.e. the Receiver applies the swap test to
one of two states with orthogonal reduced states. The calculation that this strategy (approximately)
generalizes to the case of states that are almost orthogonal states follows the proof of the Lemma.

Lemma 4.6. Let |φ0〉, |φ1〉 ∈ A ⊗ B be states such that trB |φ0〉〈φ0| and trB |φ1〉〈φ1| are orthogonal,
and let ρ0, ρ1 be two states on (A⊗ B)⊗k = A1 ⊗ B1 ⊗ · · · ⊗ Ak ⊗Bk such that

trB1⊗···⊗Bk
ρ0 = trB1⊗···⊗Bk

ρ1.

Consider the following test:

Test b: Take k copies of |φb〉 and apply for each i ∈ {1, . . . , k} the swap test
between each copy and the state in Ai ⊗ Bi. Accept if all the swap tests accept.
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For any ρ0 and ρ1 with equal reduced states on A1 ⊗ · · · ⊗ Ak, we have

1

2
(Pr[ρ0 passes Test 0] + Pr[ρ1 passes Test 1]) ≤ 1

2
+

1

2k+1

Proof. We prove the result by induction on k. For k = 1. We have

Pr[ρb passes Test b] = 1/2 + 〈φb|ρb|φb〉/2
= 1/2 + F(|φb〉〈φb|, ρb)2/2
≤ 1/2 + F(trB |φb〉〈φb|, trB ρb)2/2.

Since trB ρ0 = trB ρ1, this implies that

1

2
(Pr[ρ0 passes Test 0] + Pr[ρ1 passes Test 1])

≤ 1

2
+

1

4
(F(trB |φ0〉〈φ0|, trB ρ0)2 + F(trB |φ1〉〈φ1|, trB ρ1)2)

≤ 1

2
+

1

4
(1 + F(trB |φ0〉〈φ0|, trB |φ1〉〈φ1|)) =

3

4

since the reduced states of |φ0〉, |φ1〉 are orthogonal.
Now we suppose the Lemma is true for k and show it for k + 1. For convenience we set

Si = Ai ⊗ Bi. We take a reference space R of sufficient size to consider purifications of ρ0 and ρ1.
Let ρb = trR |ψb〉〈ψb| be these (arbitrary) purifications. Using this notation, we write

|ψ0〉 = α0|φ0〉S1 |Ω0〉S2⊗···⊗Sk+1⊗R + α1|φ1〉S1 |Ω1〉S2⊗···⊗Sk+1⊗R + α2

n
∑

i=2

|φi〉|Ωi〉 (1)

and

|ψ1〉 = β0|φ0〉S1 |Γ0〉S2⊗···⊗Sk+1⊗R + β1|φ1〉S1 |Γ1〉S2⊗···⊗Sk+1⊗R + β2

n
∑

i=2

|φi〉|Γi〉 (2)

where each |φi〉, |φj〉 are orthogonal for i 6= j (for |φ0〉 and |φ1〉 this follows from the fact that the
reduced states on A1 are orthogonal). Since the goal is to pass swap tests with |φ0〉 and |φ1〉, we
can easily see that we can take α2 = β2 = 0 without loss of generality, since this state will only
have larger probability of passing the tests. As one final notational convenience, let pi = |αi|2 and
qi = |βi|2.

Before we analyze the probability that the swap tests pass, we show that the probabilities p0
and q1 satisfy p0 + q1 ≤ 1. By Equation (1) we have

p0 = |α0 |2 = tr((|φ0〉〈φ0| ⊗ 1)|ψ0〉〈ψ0|)
≤ F(|φ0〉〈φ0|, trS2...Sk+1R |ψ0〉〈ψ0|)2

≤ F(trB1 |φ0〉〈φ0|, trB1S2...Sk+1R |ψ0〉〈ψ0|)2.

By a similar calculation, we have

q1 = |β1 |2 ≤ F(trB1 |φ1〉〈φ1|, trB1S2...Sk+1R |ψ1〉〈ψ1|)2.
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Then, using the fact that trB1S2...Sk+1R |ψ0〉〈ψ0| = trB1S2...Sk+1R |ψ1〉〈ψ1|, as well as the fact that
trB1 |φ0〉〈φ0| and trB1 |φ1〉〈φ1| are orthogonal, we have

p0 + q1 ≤ F(trB1 |φ0〉〈φ0|, trB1S2...Sk+1R |ψ0〉〈ψ0|)2 + F(trB1 |φ1〉〈φ1|, trB1S2...Sk+1R |ψ1〉〈ψ1|)2

≤ 1 + F(trB1 |φ0〉〈φ0|, trB1 |φ1〉〈φ1|)
= 1. (3)

We now analyze the probability that the swap tests pass. Consider applying test 0 on |ψ0〉.
When applying the swap test between |φ0〉 and |φ0〉, the result is the state |0〉|φ0〉|φ0〉 where the first
register corresponds to the acceptance of the swap test (0 corresponds to accept). When applying
the swap test between the two states |φ0〉 and |φ1〉, the result before measuring the first qubit is

1√
2
(|0〉(|φ0〉|φ1〉+ |φ1〉|φ0〉) + |1〉(|φ0〉|φ1〉 − |φ1〉|φ0〉)) .

So the swap test on the space S1 accepts with probability p0 + p1/2. Conditioned on this test
passing, we have the state:

1
√

p0 + p1/2

[

α0|φ0〉|φ0〉|Ω0〉S2⊗···⊗Sk+1R +
α1√
2
(|φ0〉|φ1〉+ |φ1〉|φ0〉)|Ω1〉S2⊗···⊗Sk+1R

]

Discarding the first system results in the state in S2 ⊗ · · · ⊗ Sk+1 ⊗R (using orthogonality of |φ0〉
and |φ1〉) given by

σ =
p0

p0 +
p1
2

|Ω0〉〈Ω0|+
p1
2

p0 +
p1
2

|Ω1〉〈Ω1|

Let T0(ξ) be the probability that a state ξ ∈ S2⊗· · ·⊗Sk+1⊗R passes all swap tests in S2⊗· · ·⊗Sk+1

with |φ0〉. We include the space R for convenience only: notice that the choice of purification in
the space R has no effect on this probability. Using this notation, we have

Pr[ρ0 passes Test 0] = (p0 +
p1
2
) ·
(

p0
p0 +

p1
2

T0(|Ω0〉〈Ω0|) +
p1
2

p0 +
p1
2

T0(|Ω1〉〈Ω1|)
)

= p0T0(|Ω0〉〈Ω0|) +
p1
2
T0(|Ω1〉〈Ω1|)

Similarly, we define T1(ξ) for any ξ and we have

Pr[ρ1 passes Test 1] =
q0
2
T1(|Γ0〉〈Γ0|) + q1T1(|Γ1〉〈Γ1|)

which gives us

P =
1

2
(Pr[ρ0 passes Test 0] + Pr[ρ1 passes Test 1])

=
1

2

(

p0T0(|Ω0〉〈Ω0|) +
p1
2
T0(|Ω1〉〈Ω1|) +

q0
2
T1(|Γ0〉〈Γ0|) + q1T1(|Ω1〉〈Ω1|)

)

(4)

Consider the states ξ0 = p0|Ω0〉〈Ω0|+p1|Ω1〉〈Ω1| and ξ1 = q0|Γ0〉〈Γ0|+ q1|Γ1〉〈Γ1|. These states are
obtained from ρ0 and ρ1 by discarding the system in S1. This implies that they have the properties
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in the statement of the Lemma, i.e. the reduced states of ξ0 and x1 on A2 ⊗ · · · ⊗ Ak+1 are equal.
Thus, by induction, we know that 1

2 (T0(ξ0) + T1(ξ1)) ≤ 1
2 +

1
2k+1 . This means that:

1

2
(p0T0(|Ω0〉〈Ω0|) + p1T0(|Ω1〉〈Ω1|) + q0T1(|Γ0〉〈Γ0|) + q1T1(|Γ1〉〈Γ1|)) ≤

1

2
+

1

2k+1

Using this, as well as Equation (4), we have

P =
1

2

(

p0T0(|Ω0〉〈Ω0|) +
p1
2
T0(|Ω1〉〈Ω1|) +

q0
2
T1(|Γ0〉〈Γ0|) + q1T1(|Γ1〉〈Γ1|)

)

=
1

4
+

1

2k+2
+
p0
4
T0(|Ω0〉〈Ω0|) +

q1
4
T1(|Γ1〉〈Γ1|)

≤ 1

2
+

1

2k+2
,

where the final inequality is by Equation (3).

Notice that in the original bit commitment protocol the Receiver applies the swap test to |φ∗〉|0〉
and the output of (U †

b ⊗ 1)(σb)(Ub ⊗ 1) where σb is the state sent during the protocol. Since U †
b is

unitary, this is equivalent to applying the swap test between σb and the state |φb〉 = (Ub⊗1)|φ∗〉|0〉,
for whatever value of b the Sender has revealed. Viewed in this way, the receiver applies the swap
test between σb and one of two almost orthogonal states. Furthermore, these two states have the
property that the reduced states on the space O have negligible fidelity. Notice also that the Sender
may send one of two states σ0 and σ1 depending on the value that he wishes to reveal. Since we
are interested in the sum of the probabilities that the Sender can successfully reveal both 0 and
1 in a given instance of the protocol, we may assume that the first message stays the same, i.e.
that trG σ0 = trG σ1. This is exactly the condition in Lemma 4.6 with the exception that instead
of the orthogonality of the states |φi〉 we have only approximate orthogonality. We are able to
overcome this obstacle with the following Lemma, the proof of which makes significant use of the
fact that the trace norm can be written in terms of the projectors onto the positive and negative
eigenspaces of a matrix. In particular, when applied to a Hermitian operator X the trace norm is
given by tr(Π+X)− tr(Π−X), where Π+ and Π− are the projectors onto the positive and negative
eigenspaces of X, respectively. This fact follows from the definition of the trace norm.

Lemma 4.7. Let |φ0〉, |φ1〉 ∈ A ⊗ B such that ‖trB |φ0〉〈φ0| − trB |φ1〉〈φ1|‖tr ≥ 2 − ε. Then there
exist states |φ′0〉, |φ′1〉 ∈ A ⊗ B such that

1. 〈φ′i|φi〉 ≥ 1− ε for i ∈ {0, 1},

2. trB |φ′0〉〈φ′0| and trB |φ′1〉〈φ′1| are orthogonal.

Proof. For simplicity, let ρi = trB |φi〉〈φi|. We have

2− ε ≤ ‖ρ0 − ρ1‖tr = tr |ρ0 − ρ1 | = trΠ+(ρ0 − ρ1)− trΠ−(ρ0 − ρ1), (5)

where Π+ and Π− are the projectors onto the positive and negative eigenspaces of ρ0 − ρ1 respec-
tively. Notice that

tr(Π+ρ0) = tr(Π+(ρ0 − ρ1)) + tr(Π+ρ1) ≥ tr(Π+(ρ0 − ρ1)),
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and similarly tr(Π−ρ1) ≥ − tr(Π−(ρ0 − ρ1)), which implies that

tr(Π+ρ0) + tr(Π−ρ1) ≥ tr(Π+(ρ0 − ρ1))− tr(Π−(ρ0 − ρ1)) ≥ 2− ε,

by Equation (5). This implies that tr(Π+ρ0) ≥ 1− ε and tr(Π−ρ1) ≥ 1− ε.
We introduce the states ρ′i given by the (renormalized) projection of ρ0 and ρ1 into the spaces

spanned by Π+ and Π−, respectively. Since these are orthogonal projectors the states ρ′0 and ρ′1
are orthogonal. Notice also that

∥

∥ρ0 − ρ′0
∥

∥

tr
= tr

∣

∣ρ0 − ρ′0
∣

∣ = tr(Γ+(ρ0 − ρ′0))− tr(Γ−(ρ0 − ρ′0)) = 2 tr(Γ+(ρ0 − ρ′0)),

where Γ+,Γ− are the projectors onto the positive and negative eigenspaces of ρ0− ρ′0, and we have
also used the fact that tr(ρ0 − ρ′0) = 0, which implies that the positive portion of ρ0 − ρ′0 has the
same trace as the negative portion. Consider the positive eigenspace of ρ0 − ρ′0. This is precisely
the subspace spanned by the support of ρ0 that lies outside the support of ρ′0, i.e. this is exactly
the space spanned by the projector Π− = Γ+. Using this observation

∥

∥ρ0 − ρ′0
∥

∥

tr
= 2 tr(Γ+(ρ0 − ρ′0)) = 2 tr(Π−ρ0) ≤ 2ε, (6)

where we have used the fact that tr(Π−ρ0) = 1− tr(Π+ρ0) ≤ ε. A similar argument establishes the
fact that

∥

∥ρ1 − ρ′1
∥

∥

tr
= 2 tr(Π+ρ1) ≤ 2ε. (7)

Finally, we note that Equations (6) and (7) and Uhlmann’s theorem imply that there exist
purifications |φ′0〉, |φ′1〉 ∈ A ⊗ B of ρ′0 and ρ′1 such that

〈φ′i|φi〉 = F(ρ′i, ρi) ≥ 1− ε.

This, combined with the orthogonality of ρ′0 and ρ′1, completes the proof.

This Lemma shows that we may replace the two states that are almost orthogonal with nearby
states that have exactly the orthogonality property required by Lemma 4.6, which we can in turn
use to show that the protocol repeated k times is statistically binding. To do so, notice that the
two states |φ0〉 and |φ1〉, which are given by applying the circuits Q0 and Q1 to the state |φ∗〉|0〉,
satisfy

‖|φ0〉〈φ0| − |φ1〉〈φ1|‖tr ≥ ‖trG(|φ0〉〈φ0| − |φ1〉〈φ1|)‖tr
= ‖((Q0 −Q1)⊗ I)(|ψ∗〉〈ψ∗|)‖tr
= ‖Q0 −Q1‖⋄
≥ 2− µ(n),

These states are not orthogonal, but are nearly so. We may, however, use Lemma 4.7 to obtain
|φ′0〉 and |φ′1〉 that have the orthogonality property required by Lemma 4.6 that have inner product
at least 1− µ(n) with the original states |φ0〉 and |φ1〉, respectively.

We now relate the probability that the state ρ passes our Test 0, i.e. the k swap tests with
the state |φ0〉⊗k to the probability that the same state ρ passes the k swap tests with the state
|φ′0〉⊗k (denoted by Test′ 0). The difference of these probabilities is upper bounded by the trace

18



distance of the difference of the states |φ0〉⊗k and |φ′0〉⊗k, since we can view the swap test with ρ
as a measurement to distinguish these two states. This gives

|Pr[ρ passes Test 0]− Pr[ρ passes Test′ 0]| ≤
∥

∥

∥
(|φ0〉〈φ0|)⊗k − (|φ′0〉〈φ′0|)⊗k

∥

∥

∥

tr

= 2

√

1− |〈φ′0|φ0〉|2k

≤ 2
√

1− (1− µ(n))2k

≤ 2
√

2kµ(n),

where the final inequality is Bernoulli’s inequality. Similarly we have

|Pr[ρ passes Test 1]− Pr[ρ passes Test′ 1]| ≤ 2
√

2kµ(n)

Hence, for the binding property of our scheme we have

1

2
(Pr[ρ passes Test 0] + Pr[ρ passes Test 1])

≤ 1

2

(

Pr[ρ passes Test′ 0] + Pr[ρ passes Test′ 1]
)

+ 2
√

2kµ(n)

≤ 1

2
+

1

2k+1
+ 2
√

2kµ(n).

since, for the Test′ 0 and Test′ 1 we can use Lemma 4.6 for the perfect case. This quantity is
negligibly larger than 1/2, as we may take k any polynomial and µ is a negligible function.

This proposition, when combined with Proposition 4.1, gives the main result of this section.

Theorem 4.8. If QIP 6⊆ QMA, then there exists a non-interactive auxiliary-input quantum (bs, hc)-
commitment scheme with quantum advice on an infinite set I.

5 Quantum (bc, hs)-commitments unless QIP ⊆ QMA

To obtain protocols that are computationally binding and statistically hiding, we use instances
of the QIP-complete problem Π to construct a (bc, hs)-commitment scheme with quantum advice
under the assumption that QIP 6⊆ QMA. We start from pairs of circuits Q0, Q1 ∈ ΠY and the
corresponding input states ρ0, ρ1 (see Definition 2.8) that will be given to the Sender as quantum
advice. An honest Sender commits to b by sending half of ρb to the Receiver. By definition of ρ0, ρ1,
the protocol is statistically hiding (in fact it is perfectly hiding). During the reveal phase, the Sender
sends the second half of ρb. If Π 6∈ QMA, we show that this protocol is also computationally binding,
using our notion of computationally unwitnessable superoperators.

Theorem 5.1. If QIP 6⊆ QMA, then there exists a non-interactive auxiliary-input quantum (bc, hs)-
commitment scheme with quantum advice on an infinite set I.

Proof. Recall the Complete problem Π = {ΠY ,ΠN} from Definition 2.8 with inputs the mixed-state
circuits (Q0, Q1) from D(X ⊗ Y) to a single bit and n = |(Q0, Q1)|. To show this Theorem, we use
the following Lemma, the proof of which is very similar to the proof of Lemma 3.1.
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Lemma 5.2. If QIP 6⊆ QMA, there exist two auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈I

and {Q1}(Q0,Q1)∈I that are quantum computationally unwitnessable on an infinite set I.

Proof. Let us consider the set ΠY and suppose for contradiction that the two auxiliary-input super-
operator ensembles {Q0}(Q0,Q1)∈ΠY

and {Q1}(Q0,Q1)∈ΠY
are quantum computationally witnessable,

i.e. there exist polynomials (s, k, p) such that for all (Q0, Q1) ∈ ΠY the superoperators Q0 and Q1

are (s(n), k(n), p(n))-witnessable. In other words, there exist polynomials (s, k, p) such that for all
(Q0, Q1) ∈ ΠY there exist two input states ρ0, ρ1 ∈ L(X ⊗ Y) such that first, there exists a state
σ ∈ L(W ⊗X ⊗ Y) with |W| = k and trW σ = ρ0, and there exists an admissible superoperator
Ψ : L(W ⊗X ) → L(X ) of size s, such that ρ1 = (Ψ⊗ 1Y)(σ); and second

1

2

(

Pr[Q0(ρ0) = 1] + Pr[Q1(ρ1) = 1]
)

≥ 1

2
+

1

p(n)
.

Then, we provide a QMA protocol for the problem Π. Merlin sends σ (which is of size polynomial
in the input, since k(n) = |W|) and the classical description of Ψ (of size s(n)). Arthur with
probability 1/2 applies Q0 on ρ0 (which he obtains from σ by discarding the space W) and accepts
if he gets 1; and with probability 1/2 he first creates ρ1 from Ψ and σ, then applies Q1 on it and
also accepts if he gets 1.
(Completeness) If (Q0, Q1) ∈ ΠY , we have

Pr[Arthur accepts] =
1

2

(

Pr[Q0(ρ0) = 1] + Pr[Q1(ρ1) = 1]
)

≥ 1

2
+

1

p(n)

(Soundness) If (Q0, Q1) ∈ ΠN , then for any cheating Merlin, Arthur receives a state ρ0∗, from which
he constructs (with half probability) a state ρ1∗ each in space X ⊗ Y such that trX ρ

0
∗ = trX ρ

1
∗. By

the definition of ΠN , we have

Pr[Arthur accepts] =
1

2

(

Pr[Q0(ρ0∗) = 1] + Pr[Q1(ρ1∗) = 1]
)

≤ 1

2
+ µ(n)

We have an inverse polynomial gap between completeness and soundness and hence we conclude
that Π ∈ QMA. This proves that there is a nonempty I that satisfies the property of our Lemma.
Note that if I is finite, then by hard-wiring this finite number of instances into the QMA verifier
(who always accepts these instances), we have again that QIP ⊆ QMA. So if QIP 6⊆ QMA then the
set I can be taken to be infinite.

To finish the proof of the Theorem, we now need to show the following.

Lemma 5.3. Auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈I and {Q1}(Q0,Q1)∈I that are
quantum computationally unwitnessable on an infinite set I ⊆ ΠY imply a non-interactive quantum
(bc, hs)-commitment scheme with quantum advice on I.

Proof. Commitment scheme Each (Q0, Q1) ∈ I ⊆ ΠY gives the following scheme

• Let n = |(Q0, Q1)| be the security parameter. The sender receives as advice ρ0, ρ1 ∈ X i ⊗ Y i
such that trX ρ

0 = trX ρ
1 and 1

2

(

Pr[Q0(ρ0) = 1] + Pr[Q1(ρ1) = 1]
)

≥ 1 − µ(n). For consis-
tency with our definitions, we also suppose that the Receiver gets a copy of ρ0, ρ1. These
states will not be used in the honest case and they will not harm the security for a cheating
Receiver.
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• (Commit phase) To commit to b, the Sender sends the state in Yb to the Receiver.

• (Reveal phase) To reveal b, the Sender sends the state in X b. The Receiver applies Qb on the
space X b ⊗ Yb and accepts if he gets 1.

Statistical hiding property : The states that the receiver gets in the commit phase satisfy trX ρ
0 =

trX ρ
1 and hence our scheme is perfectly hiding.

Computationally binding property : The property follows from the fact that the two auxiliary-input
superoperator ensembles {Q0}(Q0,Q1)∈I and {Q1}(Q0,Q1)∈I are quantum computationally unwitness-

able. Fix (Q0, Q1) ∈ I with |(Q0, Q1)| = n. After the reveal phase, the Receiver has ρb∗ in space
X ⊗Y, where b is the revealed bit. Since we consider dishonest senders S∗

(Q0,Q1) that are quantum

polynomial time machines with quantum advice, the states ρ0∗ and ρ1∗ satisfy property 2 of Defini-
tion 2.16. Thus, for all but finitely many (Q0, Q1) ∈ I they do not have property 1 of Definition
2.16. Then, for such (Q0, Q1) ∈ I we have

PS∗

(Q0,Q1)
=

1

2

(

Pr[S∗
(Q0,Q1) reveals b = 0] + Pr[S∗

(Q0,Q1) reveals b = 1]
)

=
1

2

(

Pr[Q0(ρ
0
∗) = 1] + Pr[Q1(ρ

1
∗) = 1]

)

≤ 1

2
+

1

p(n)

for all polynomials p

From the above two Lemmas, unless QIP ⊆ QMA there exists a non-interactive auxiliary-input
quantum (bc, hs)-commitment scheme with quantum advice on infinite set I.

This result, combined with Theorem 4.8 completes the proof of Theorem 1.3.

6 Quantum Oracle Relative to Which QSZKHV 6⊆ QCMA

In order to prove the desired result we find a problem in QSZKHV and prove a black-box lower
bound in the QCMA model. We end up with a quantum oracle, as the constructed problem makes
essential use of quantum information. This approach is due to Aaronson and Kuperberg [2], who
prove a similar result for QMA versus QCMA. The argument given here is related to the argument
of Aaronson and Kuperberg, both in structure and in the fact that we make use of a bound on
the expected overlap of a state drawn from a p-uniform distribution with a fixed state. The main
difference is that in the problem we consider we need to extend the proof to the case where it is
a unitary operator that is hidden inside the oracle, not a pure state. Note that subsequent to the
completion of this work, Aaronson has shown the stronger result that there is an oracle relative to
which SZK 6⊆ QMA [1].

For our result we consider a black-box that takes as input a control qubit, chooses a random
pure state |ψ〉 and applies a fixed but hidden d by d unitary U to half of |ψ〉, controlled by the
input qubit. The hidden unitary U can be inverted by a QSZK prover, but in the QCMA model,
the Verifier cannot invert U and recover the input with making an exponential number of queries
to the black-box. We prove a lower bound on the number of queries needed by a QCMA Verifier to
distinguish this black-box from one that simply generates random pure states.

Theorem 1.2. There exists a quantum oracle A such that QSZKA
HV

6⊆ QCMAA.
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6.1 Background

Before proving the oracle result we review some background on measures on quantum states and
channels that will be used in the proof.

Let U(H) be the group of unitary matrices acting on a Hilbert space H. When no confusion
is likely to arise, we will also use the notation U(d), where dimH = d. The set of pure states
on H, i.e. the unit sphere in H, is given by S(H) or Sd−1. We refer to d-dimensional spaces for
convenience: in general d = 2n for some space of n qubits.

Throughout this section, the uniform measure on states and unitaries is given by the Haar
measure. In the case of unitaries, we use µU(H) to denote the Haar measure on the unitaries on H,
that is, the unique left and right invariant measure normalized so that µU(H)(U(H)) = 1. When
the space in question is clear we will drop the subscript and use only µ to refer to this measure.
The Haar measure on S(H) can be obtained by applying a random U ∈ U(H) to a fixed pure state
(the invariance of the Haar measure implies that the choice of the fixed state does not matter). We
will use µS(H) to refer to this measure.

Essential to our argument is the notion of a probability measure that is nearly uniform. Follow-
ing Aaronson and Kuperberg [2], given a measure σ we say that it is p-uniform if pσ ≤ µ, where µ
is the uniform measure over the space in question. This notion is directly related to the class QCMA
by the fact that if the verifier starts with a uniform measure and conditions on a m-bit classical
message, the result is a (2−m)-uniform measure. The main technical result of this section will be
to show that such a measure over U(d) does not help the verifier identify a particular unitary,
unless m ∈ Ω(d). This result follows by a reduction to the pure state case, which is the key to the
quantum oracle that separates QMA and QCMA [2].

Before doing this, we highlight two straightforward properties of p-uniform measures on U(d)
and Sd−1.

Proposition 6.1. Let σ be a p-uniform measure on U(d).

1. For any U ∈ U(d) the measure Uσ remains p-uniform.

2. For any |ψ〉 ∈ Sd−1, the measure τ on Sd−1 given by

τ(A) = σ({U : U |ψ〉 ∈ A})

is p-uniform.

Proof. The left-invariance of µU(d) gives the first property, since for any A ⊆ U(d),

p(Uσ)(A) = pσ(U †A) ≤ µ(U †A) = µ(A).

The second property follows from the definition of µSd−1 ,

pτ(A) = pσ({U : U |ψ〉 ∈ A}) ≤ µU(d)({U : U |ψ〉 ∈ A}) = µSd−1(A).

where right-invariance of µU(d) implies that the choice of |ψ〉 does not matter.
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6.2 Oracle Separation

We now define our problem.

Problem 6.2. Given a quantum oracle O : A → A⊗H⊗K, where dimH = dimK = d and
dimA = 2. The problem is to decide between the two cases

1. there exists a unitary U ∈ U(H) such that the oracle O performs the map

α|0〉 + β|1〉 7→ 1

d2

(

|α|2 |0〉〈0| ⊗ 1H⊗K + αβ̄|0〉〈1| ⊗ U † ⊗ 1K

+ ᾱβ|1〉〈0| ⊗ U ⊗ 1K + |β |2 |1〉〈1| ⊗ 1H⊗K

)

.

This map can be implemented in the following way: the oracle chooses a pure state |ψ〉 ∈
H ⊗ K from the Haar measure and then performs the map

α|0〉 + β|1〉 7→ α|0〉|ψ〉 + β|1〉(U ⊗ 1K)|ψ〉.

2. the oracle O preforms the map

α|0〉 + β|1〉 7→ 1

d2

(

|α|2 |0〉〈0| ⊗ 1H⊗K + |β |2 |1〉〈1| ⊗ 1H⊗K

)

.

for example by measuring the input qubit and appending the maximally mixed state.

We defined the oracles as superoperators, but one can think of them as unitaries in larger spaces.
The key idea is that in the first case the coherence of the input qubit can be recovered, provided
the hidden unitary U can be inverted, whereas in the second case this coherence is irretrievably
lost. The prover in a QSZK protocol, given only the portion of the state in the space H and a copy
of the input qubit, is able to apply U † in order to disentangle the input space from H⊗K. To
prove a lower bound on this problem, we argue that with at most a small amount of knowledge
about the hidden operator U , an oracle of the first type appears much the same as an oracle of the
second type.

Before proving this lower bound, we give an interactive protocol for the problem. The idea
behind the protocol is that when the input to the oracle is one half of a maximally entangled state
then in the first case a prover is able to assist the verifier in recovering the original input state, but
in the second case no action of the prover can recover the state.

Protocol 6.3. Let O be the oracle in Problem 6.2.

1. V , prepares the state |φ+〉 = (|00〉+ |11〉)/
√
2 ∈ B ⊗A, and uses as input to the oracle O the

portion of the state in A. V then sends the state in A⊗H to P .

2. P applies the unitary U † on H controlled on the qubit in A.

3. V receives a state from P in the space A⊗H and measures the operator |φ+〉〈φ+| on the
space B ⊗A, accepting if and only if the outcome is one.

In the following theorem we prove the completeness and soundness of Protocol 6.3. The fact
that it is also zero-knowledge is argued as part of the proof of Theorem 1.2.
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Theorem 6.4. Let V be the verifier in Protocol 6.3.

1. If the oracle is of type 1, there is a prover P that causes V to accept with certainty.

2. If the oracle is of type 2, then for any P , V accepts with probability at most 1/2.

Proof. To prove completeness (item 1), notice that when the oracle is of type 1, the state of the
verifier before sending the message to the prover is

1

2d2

[

|00〉〈00| ⊗ 1H⊗K + |00〉〈11| ⊗ U † ⊗ 1K + |11〉〈00| ⊗ U ⊗ 1K + |11〉〈11| ⊗ 1H⊗K.
]

If the honest prover applies U † on the space H, controlled on the qubit in A, the state of the verifier
at the start of Step 3 is

1

2d2
(

|00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11|
)

⊗ 1H⊗K = |φ+〉〈φ+| ⊗ 1H⊗K

d2

and so the projective measurement on A⊗ B given by {|φ+〉〈φ+|,1 − |φ+〉〈φ+|} always results in
the first outcome. This implies that the verifier can always be made to accept an oracle of type 1.

To prove soundness (item 2) we show that the verifier rejects an oracle of type 2 with probability
at least 1/2, regardless of the strategy of the prover. In this case the state of the verifier before
sending the message is given by the mixture

1

2d2
(|00〉〈00| ⊗ 1H⊗K + |11〉〈11| ⊗ 1H⊗K) .

After the prover applies an arbitrary transformation to A⊗H, the result is

1

2d
(|0〉〈0| ⊗ ρ0 ⊗ 1K + |1〉〈1| ⊗ ρ1 ⊗ 1K)

for some mixed states ρ0, ρ1 on A⊗H. The probability that the verifier’s measurement results in
the outcome |φ+〉〈φ+| on this state is given by

1

2d
tr
[

|φ+〉〈φ+| (|0〉〈0| ⊗ ρ0 ⊗ 1K + |1〉〈1| ⊗ ρ1 ⊗ 1K)
]

=
1

4
(〈0|ρ0|0〉+ 〈1|ρ1|1〉) ≤

1

2
,

which implies that the verifier accepts with probability at most 1/2 when O is of type 2. In fact,
the best strategy for a cheating prover is not to change the control bit in A at all.

A central component of the argument that a QCMA verifier cannot identify a pure state hidden
in an oracle is a geometric bound on the expected overlap between any fixed state and a state
drawn from a p-uniform distribution.

Lemma 6.5 (Aaronson and Kuperberg [2]). For any p-uniform measure σ on Sd−1 and any state
ρ

E
|ψ〉∈σ

[〈ψ|ρ|ψ〉] ∈ O

(

1 + log 1/p

d

)

Our argument requires a similar geometric bound, except that we have a p-uniform measure
over unitaries and not the pure states. We obtain a reduction from U(d) to Sd−1, which allows us
to extend the bound in Lemma 6.5.
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Lemma 6.6. If σ is a p-uniform measure on U(d), then

∥

∥

∥

∥

E
U∈σ

U

∥

∥

∥

∥

tr

∈ O
(

√

d(1 + log 1/p)
)

Proof. Let σ be an arbitrary p-uniform measure, then

∥

∥

∥

∥

E
U∈σ

[U ]

∥

∥

∥

∥

tr

= max
V ∈U(d)

∣

∣

∣

∣

tr E
U∈σ

[U ]V

∣

∣

∣

∣

= max
V ∈U(d)

∣

∣

∣

∣

E
U∈σ

[trUV ]

∣

∣

∣

∣

= max
V ∈U(d)

∣

∣

∣

∣

E
U∈σV

[trU ]

∣

∣

∣

∣

.

Notice however that the measure σV is p-uniform whenever σ is, and so by Proposition 6.1 we may,
since σ is arbitrary, discard the maximization over V . Doing so, the desired quantity is

∣

∣

∣

∣

E
U∈σ

trU

∣

∣

∣

∣

≤ E
U∈σ

|trU | = E
U∈σ

d
∑

i=1

|〈i|U |i〉| =
d
∑

i=1

E
|ψi〉∈τi

|〈i|ψi〉| , (8)

where for each i, τi is the p-uniform measure on Sd−1 obtained by applying a σ-distributed unitary
U to the state |i〉. Having reduced the problem to an expectation over a p-uniform measure on
pure states, we apply the bound in Lemma 6.5 to Equation (8) to get

∥

∥

∥

∥

E
U∈σ

[U ]

∥

∥

∥

∥

tr

≤
d
∑

i=1

O

(
√

1 + log 1/p

d

)

= O
(

√

d(1 + log 1/p)
)

,

as in the statement of the Lemma.

Theorem 6.7. Any QCMA protocol for problem 6.2 with an m-bit witness uses Ω(
√

d/(m+ 1))
calls to the oracle.

Proof. Consider any QCMA protocol with any m-bit witness. We will show that this protocol
requires at least Ω(

√

d/(m + 1)) calls to the oracle to determine whether it is an oracle of the first
or second type.

We use the hybrid approach of Bennet et al. [4]. Let ρ0 be the initial state of the algorithm. Let
ρi be the state of the algorithm immediately after the ith call to an oracle of type 2. After T calls
to such an oracle, we denote the final state of the algorithm (before the measurement of whether
or not to accept) as ρT . In the case that the algorithm is run on an oracle of type 1, we denote the
final state by ξT . Our goal is to show that the distance between ρT and ξT is small, unless T , the
number of oracle calls, is sufficiently large. We will do this by considering running the algorithm
for (i − 1) queries on an oracle of type 2 and then switching the oracle to type 1. We denote the
state obtained in this way by ρ′i. We prove that this state is very close to the state ρi, which will
give the desired result, since ‖ξT − ρT ‖tr ≤

∑T
i=1 ‖ρi − ρ′i‖tr by the triangle inequality.

Let |ν〉 = α|0〉 + β|1〉 and let ν = |ν〉〈ν| be the input to the (k + 1)st call to the oracle, after
the algorithm has been run for k queries to an oracle of type 2. Strictly speaking, ν may be mixed
state, but a convexity argument implies that a pure input state will maximize the distance between
the output states of the two oracles. The output of the O2 on the pure state ν is the mixed state

O2(ν) =
1

d2

(

|α|2 |0〉〈0| ⊗ 1H⊗K + |β |2 |1〉〈1| ⊗ 1H⊗K

)

. (9)
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The output of the oracle O1, for a fixed hidden unitary U , is

OU1 (ν) =
1

d2

(

|α|2 |0〉〈0| ⊗ 1H⊗K + αβ̄|0〉〈1| ⊗ U † ⊗ 1K + ᾱβ|1〉〈0| ⊗ U ⊗ 1K + |β |2 |1〉〈1| ⊗ 1H⊗K

)

.

However, since this is the first query the algorithm has made to the oracle O1, it has no information
about the hidden unitary U , except the m-bit classical message from the QCMA prover. This
information constrains the unitary U to a 2−m-uniform distribution σ, so that the output of oracle
O1 can be represented by the mixture of the previous equation over all U ∈ σ, which is

O1(ν) = E
U∈σ

[

OU1 (ν)
]

(10)

One way to think about this, is that the oracle O1 has another space which is initialized to be a
uniform superposition of descriptions of all possible unitaries. Then the oracle uses this register
as a control in order to apply the mapping OU1 . The classical QCMA message could be thought
of as an outcome to a partial measurement on this register, which resulted in the collapse of the
uniform superposition to a p-uniform superposition of the unitaries consistent with the measurement
outcome. The verifier’s view can be calculated by tracing out this register.

The remaining task is to compute the diamond norm of the difference of Equations (9) and (10),
which will measure the maximum probability that any measurement can distinguish whether or
not a single call to the oracle O1 has been replaced by a call to O2.

‖O1(ν)−O2(ν)‖tr =
1

d2

∥

∥

∥

∥

αβ̄|0〉〈1| ⊗ E
U∈σ

[U † ⊗ 1K] + ᾱβ|1〉〈0| ⊗ E
U∈σ

[U ⊗ 1K]

∥

∥

∥

∥

tr

We then use the fact that
∥

∥|0〉〈1| ⊗A† + |1〉〈0| ⊗A
∥

∥

tr
= 2 ‖A‖tr (see [5, Section II.1] for the

relationship between the eigenvalues of an operator of this form and the singular values of A). This
implies that

‖O1(ν)−O2(ν)‖tr =
2 |α| |β |
d2

∥

∥

∥

∥

E
U∈σ

[U ⊗ 1]

∥

∥

∥

∥

tr

=
2 |α| |β |

d

∥

∥

∥

∥

E
U∈σ

[U ]

∥

∥

∥

∥

tr

.

Finally, since σ is a 2−m uniform measure on U(d) we apply Lemma 6.6 to obtain

‖O1(ν)−O2(ν)‖tr ∈ O

(

√

1 +m

d

)

. (11)

This equation bounds the trace distance of the output states of the two oracles. The maximum
distance between the states ρi and ρ′i is upper bounded by the diamond norm, which takes into
account the fact that the algorithm may use an ancillary space to better distinguish the two
oracles. Using the fact that the diamond norm of the difference of two channels is achieved by
a pure quantum state [29], we have shown that there exists some pure state ν such that for all
i ∈ {1, . . . , T}

∥

∥ρi − ρ′i
∥

∥

tr
≤ ‖O1 −O2‖⋄ ≤ 2 ‖O1(ν)−O2(ν)‖tr ∈ O

(

√

(1 +m)/d
)

,

where we have used Lemma 2.2 to upper bound the diamond norm by the trace norm. The triangle
inequality implies that replacing all T calls to O1 with calls to O2 results in states ρT and ξT with
trace distance

‖ρT − ξT ‖tr ≤
T
∑

i=1

∥

∥ρi − ρ′i
∥

∥

tr
∈ O

(

T
√

(1 +m)/d
)

.
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This implies that in order for a black-box algorithm to distinguish O1 and O2 with constant prob-
ability it is required to make T = Ω(

√

d/(1 +m)) calls to the oracle.

We now use Protocol 6.3 and the lower bound in Theorem 6.7 to obtain an oracle relative to
which QSZK is not contained in QCMA. The proof of this follows very closely the argument of
Aaronson and Kuperberg [2], who establish an oracle relative to which QMA is not in QCMA.

Strictly speaking, we find a quantum oracle A such that QSZKAHV 6⊆ QCMAA, i.e. we deal only
with the honest verifier case. While it is known that QSZKHV = QSZK [37], we do not know if this
is still the case given access to the oracle A.

Theorem 1.2. There exists a quantum oracle A such that QSZKA
HV

6⊆ QCMAA

Proof. Let L be a random unary language that we will use to define the oracle A = {An}. For each
n, An takes 2n qubits as input (so that d = 2n in Problem 6.2). For each n there are two cases. If
1n ∈ L then An is an oracle of type 1 in Problem 6.2, i.e. An implements some hidden unitary U
on half of the input qubits. On the other hand, if 1n 6∈ L, then An is of type 2.

We use Theorem 6.4 to give an honest-verifier QSZK protocol for L, given access to the oracle
A. For a given input 1n, the Verifier first runs protocol 6.3 to determine the type of the oracle. The
verifier accepts that 1n ∈ L if and only if this protocol accepts. The completeness and soundness of
the protocol have already been shown. Last, it is easy to show that the protocol is zero knowledge
for the honest verifier. The state of the verifier after Step 1 can be simulated by the simulator,
since it has at its disposal both the honest verifier and the oracle. After the prover’s message, in
the ‘yes’ case, the state is equal to

|φ+〉〈φ+| ⊗ 1H⊗K/d
2

which can also be easily simulated, and so the protocol is (honest-verifier) zero-knowledge. This
implies that L ∈ QSZKA

HV
.

We then use the lower bound in Theorem 6.7 to show that L 6∈ QCMAA, with probability one
(over the choice of L and the hidden unitary U in the oracle). This portion of the proof is identical
to the proof in [2], but for clarity we repeat it here. Fix M an arbitrary QCMA verifier and let
SM (n) represent the event that the verifier M succeeds on the input 1n, i.e. either 1n ∈ L and
there exists a witness string w such that MA accepts with probability at least 2/3, or 1n 6∈ L and
no witness w causes M to accept with probability larger than 1/3. Theorem 6.7 implies that M
fails for large enough n, i.e. that for some N it holds that for all n ≥ N

Pr
L,V

[SM (n)|SM (1), . . . , SM (n− 1)] ≤ 2

3
.

This implies that the probability that M works on all n is 0, i.e.

Pr
L,V

[SM (1) ∧ SM(2) · · · ] = 0.

Finally, since there are only a countably infinite number of QCMA verifiers (by the Solovay-Kitaev
Theorem [18]), the union bound implies that with probability one we have L 6∈ QCMA.
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