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Abstract

“Help bits” are some limited trusted information about an instance or instances
of a computational problem that may reduce the computational complexity of solving
that instance or instances. In this paper, we study the value of help bits in the settings
of randomized and average-case complexity.

Amir, Beigel, and Gasarch (1990) show that for constant k, if k instances of
a decision problem can be efficiently solved using less than k bits of help, then the
problem is in P/poly. We extend this result to the setting of randomized computation:
We show that the decision problem is in P/poly if using ℓ help bits, k instances of the
problem can be efficiently solved with probability greater than 2ℓ−k. The same result
holds if using less than k(1−h(α)) help bits (where h(·) is the binary entropy function),
we can efficiently solve (1− α) fraction of the instances correctly with non-vanishing
probability. We also extend these two results to non-constant but logarithmic k. In
this case however, instead of showing that the problem is in P/poly we show that
it satisfies “k-membership comparability,” a notion known to be related to solving k
instances using less than k bits of help.

Next we consider the setting of average-case complexity: Assume that we can solve
k instances of a decision problem using some help bits whose entropy is less than k
when the k instances are drawn independently from a particular distribution. Then
we can efficiently solve an instance drawn from that distribution with probability
better than 1/2.

Finally, we show that in the case where k is super-logarithmic, assuming k-
membership comparability of a decision problem, one cannot prove that the problem
is in P/poly by a “black-box proof.”

1 Introduction

In computational complexity theory, “advice” can be thought of as an extra input (in
addition to the input instance) to algorithms that try to solve a computational problem.
Advice depends only on the size of the input instance and captures the non-uniform
model of computation. In this paper, we are interested in an extra input that unlike
advice depends on the particular instance of the problem to be solved. Such extra inputs
(given as a string of bits) are called “help bits” following [8]. Thus help bits are inputs of
an algorithm that similar to advice are generated by a trusted computationally-unbounded
party, but unlike advice depend on the instance of the problem and not only on its size.
We call the trusted party who provides us with the help bits the “helper.”
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Help bits can be understood from the point of view of the oracle model as well. Given
an instance of the problem, we may ask an oracle about the help bits corresponding
to that instance and then try to solve it. Indeed, for k bits of help, k yes/no queries
from an oracle are enough to find the help bits. Here the oracle plays the role of the
helper. Nevertheless, oracles can be used adaptively: A query to an oracle may depend
on the answers to previous queries, but help bits cannot be requested adaptively and are
given only at the beginning of the algorithm. This difference should be more carefully
considered in the probabilistic as well as non-deterministic models of computation. The
other issue here is the length of the help bits. For k help bits, we should limit the use of
the oracle to k yes/no queries and not (say) polynomially many queries.

Any decision problem can be efficiently solved with one help bit since we may ask the
helper to give us the yes/no answer to the decision problem through that one bit of help.
Therefore, to obtain meaningful questions we consider the power of less than one help
bit per instance. For example one may ask: Can we simultaneously solve k instances of
an NP-hard decision problem in polynomial time with k − 1 help bits? That is, can we
design this k − 1 help bits cleverly in such a way that all the k instances can be solved
efficiently?

Suppose that there is an efficient algorithm that given k instances x1, . . . , xk of a
decision problem L and ℓ < k help bits, can output the bit-string (L(x1), . . . , L(xk))
where L(xi) = 1 if xi is in the language and L(xi) = 0 otherwise. The question is what
can we do without having access to the true help bits? To this end, assuming that ℓ is
constant (or at most logarithmic), we may enumerate over all 2ℓ possible help bits, and
feed them to the algorithm. For each of these 2ℓ possible help bits, the output of the
algorithm would be a bit-string of size k. Then we obtain a set of size at most 2ℓ which
contains (L(x1), . . . , L(xk)). Equivalently, without having access to the true help bits, we
have an efficient algorithm to reject 2k − 2ℓ possibilities for (L(x1), . . . , L(xk)).

The notion of k-membership comparability defined in [20] is related to the above ob-
servation. A decision problem is called k-membership comparable if there exists an ef-
ficient algorithm that for every k instances x1, . . . , xk computes (b1, . . . , bk) such that
(L(x1), . . . , L(xk)) 6= (b1, . . . , bk). Now we may ask the same question about k-member
comparable sets: How hard can a k-membership comparable language be?

Previous works: Amir, Beigel and Gasarch [2, 3], though using the terminology of the
bounded query model discussed above, have studied the above questions.1 They show
that for constant k, if k instances of a decision problem can be solved efficiently using
only k − 1 help bits, then the decision problem is in the class P/poly. Their result holds
even with the weaker assumption of k-membership comparability, i.e., for constant k, a
k-membership comparable set is in P/poly.

The authors of [3] also show that for k polynomial in the size of input instances,
k-membership comparable languages are in NP/poly ∩ coNP/poly.2

It is also shown in [3] that for constant k, if 2k instances of a self-reducible decision

1Here we should mention that before the work of Amir, Beigel and Gasarch, bounded query model had
been used to classify functions (see e.g., [16], [9], and [11] for queries to NP oracles) and also had been
studied in the theory of computability (see e.g., Beigel’s thesis [4]).

2 We note that in the presentation of [5] of the results of [3], it is said that k-membership comparable
languages for polynomial k are in Σ2/poly. However, Theorem 4.4 of [3] implies the stronger result that
the problem is in NP/poly ∩ coNP/poly. This stronger result in particular shows that NP-hard decision
problems cannot be k-membership comparable for polynomial k unless the polynomial hierarchy collapses.
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problem can be efficiently solved using k help bits, then the original decision problem is
in the class P.3

Ogihara [20], Beigel, Kummer, and Stephan [7], and Agrawal and Arvind [1] show that
if SAT is k-membership comparable for k = c lg2 n where c < 1, then NP = P. Moreover,
Sivakumar [22] shows that if SAT is O(lg n)-membership comparable, then NP = RP by
solving Unique-SAT in deterministic polynomial time.

Classes of decision problems related to k-membership comparable problems include P-
selective sets and verbose sets. The class of P-selective sets is a sub-class of 2-membership
comparable languages, and the notion of a verbose set is a generalization of k-membership
comparability. See, for example, [21] and [15] for some results on the power of oracles for
such sets.

The computational value of help bits have been considered in other models of compu-
tation as well, e.g., see [18] and [6] for the decision tree model and [8] for bounded depth
circuits.

Our results: In the following we briefly discuss our contributions on the computational
value of help bits in the two models of randomized and average-case computation. We
also discuss k-membership comparable problems for k that is super-logarithmic.

Randomized complexity: Having ℓ help bits, we can always solve k instances of a
decision problem with probability at least 2ℓ−k. This is simply because the ℓ help bits
could be chosen to be the answers to the first ℓ instances and we guess the answer of the
rest of the instances randomly. Our first result (Theorem 5) says that if for k = O(lg n),
given ℓ help bits we can solve k instances of size n of a decision problem with probability
non-negligibly better than 2ℓ−k, then the language is k-membership comparable.

Our next result (Theorem 6) is related to the classical problem of rate distortion in
information theory. Suppose that instead of demanding correct answers for all of the k
instances, we only require that (1−α) fraction of our answers to the k instances be correct.
However the solver need not know which of the answers are correct. For instance, if the
solver simply randomly guesses the answer to the k instances, he can solve about 1/2 of
the instances with high probability for large enough k, without knowing exactly which
of his guesses are correct. The question is how much better we can do with limited help
bits. By employing the rate distortion theory, it is possible to get the correct answers for
at least (1 − α) fraction of the k instances with about k(1 − h(α)) help bits, where h(·)
is the binary entropy function.4 Our main result here is the converse, showing that for
logarithmic k, unless the decision problem is k-membership comparable, we cannot solve
(1−α) fraction of k instances with fewer help bits, with any constant (independent of k)
positive probability.

Average-case complexity: A computational problem may be easier on some instances
compared to other instances. Therefore, we may allow that harder instances receive more

3This latter result in particular applies to NP-complete problems since SAT is self-reducible. It also
applies to some problems that are probably not NP-complete such as the decision version of integer
factoring which is self-reducible, and also to graph isomorphism which is equivalent to a self-reducible
problem.

4The rate-distortion results tells us that with high probability (1 − α) fraction of correct answers can
be found with about k(1 − h(α)) help bits. Nonetheless, via a more refined argument, we show that for
our particular case of interest, the same result can be obtained with probability one. Further this can be
done to some degree efficiently.
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help, e.g., harder instances may receive longer help bits. But we still want to limit the
average amount of information that the help bits may contain. To this end we require
that the help bits have limited information-theoretic entropy.

For the definition of entropy to make sense, we need to have a distribution on the
instances. This way, we are in the realm of average-case complexity of the decision
problem. Our result here (Theorem 7) says that if we start with a distribution on instances
such that one cannot guess the answer to an instance efficiently with probability quite
more than 1/2, then we cannot solve k instances efficiently with help bits whose entropy
is less than k. More precisely, we show that if 1/2+δ is the success probability of the best
efficient algorithm on an average instance, then minimum-entropy help bits for efficiently
solving k instances of the problem have between k(1− Θ(δ)) +O(lg k) and k(1− Θ(δ2))
bits of entropy.

k-Membership comparability for large k: Consider the predicate

P(k) =“If a decision problem is k-membership comparable, then it is in P/poly.”

As discussed above P(k) it true for constant k by [3]. Here we first note (in Example 11)
that P(k) is not true for super-polynomial k. Second, we show (in Theorem 12) that
for super-logarithmic k, we cannot prove P(k) in a “black-box” manner, i.e., there is no
proof of P(k) for super-logarithmic k in which the algorithm that excludes a k-tuple for
answers is used as a black-box. We emphasize that the proofs of all the previous results
mentioned above have this black-box form.

This latter result is interesting since [20] first claimed that the proof of P(k) for
constant k by [3] can be generalized to polynomial k, but later (according to [5]) retracted
the claim. Now, using our result, we know that the proof of [3] did not generalize to
polynomial k for the stronger reason that it was a black-box proof.

2 Preliminaries

We begin by a formal definition of k-membership comparability. This notion is the main
topic of discussion in Section 5. It is also used in the results of Sections 3.

For a decision problem L and instance x we let L(x) = 1 if x is in L, and L(x) = 0
otherwise.

Definition 1 (k-membership comparable sets) A language L is k-membership com-
parable if given k instances (x1, . . . , xk) each of size n, we can find in time polynomial in
n and k, a bit-string (b1, . . . , bk) ∈ {0, 1}k such that (b1, . . . , bk) 6= (L(x1), . . . , L(xk)).

The language L is called non-uniform k-membership comparable if the algorithm that
finds (b1, . . . , bk) is allowed to be non-uniform, i.e., it can receive polynomial advice.

The language L is called randomized k-membership comparable if given any k instances
(x1, . . . , xk) each of size n, we can find in time polynomial in n and k, a bit string
(b1, . . . , bk) ∈ {0, 1}k such that

Pr
[

(b1, . . . , bk) 6= (L(x1), . . . , L(xk))
]

≥ (1− 2−k) + 1/nO(1),

where the probability is only over the randomness of the algorithm.

The notion of k-membership comparability is not new to this paper, but the non-uniform
and randomized versions of k-membership comparability had not appeared before.
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Note that choosing a random vector (b1, . . . , bk), it is unequal to (L(x1), . . . , L(xk))
with probability 1− 2−k. The definition of randomized k-membership comparability asks
that we beat this probability with a non-negligible advantage. Note also that according to
our definition, randomized k-membership comparability is possible only when k = O(lg n).

In [3], it is proved that k-membership comparable problems, for constant k, are in
P/poly. Looking at their proof, it is clear that their result is true for non-uniform k-
membership comparable problems as well:

Theorem 2 ([3]) If a decision problem is non-uniform k-membership comparable for
constant k, then it is in P/poly.

In the following lemma, we show that randomized k-membership comparable problems
are non-uniform k-membership comparable.

Lemma 3 Let L be a decision problem. If L is randomized k-membership comparable,
then it is non-uniform k-membership comparable.

Proof: By assumption there is an algorithm that finds a vector (b1, . . . , bk) that is equal
to (L(x1), . . . , L(xk)) with probability ǫ ≤ 2−k − 1/nO(1). If we iterate this algorithm
for suitably poly(n) many times, then by Chernoff bound the vector (b1, . . . , bk) that
has appeared with the most frequency is equal to (L(x1), . . . , L(xk)) with probability
< 2−nk. Let r be the randomness used in these many iterations. Since there are only
2nk vectors (x1, . . . , xk), by the union bound we can hardwire the randomness r into the
iterated algorithm to get a polynomial-size circuit that outputs a vector (b1, . . . , bk) 6=
(L(x1), . . . , L(xk)) given (x1, . . . , xk). �

In Section 3 we show that certain problems are randomized k-membership comparable.
By the above, they are also in P/poly for constant k.

We will use the following direct product theorem in our proof of Theorem 7.

Lemma 4 ([10]) Fix a language L and a probability distribution D on n-bit strings. As-
sume that circuits of size s(n) cannot compute L(x) for x chosen according to D with prob-
ability better than p(n) ∈ [1/2, 1]. Then for any ǫ(n) > 0, circuits of size poly(ǫ(n)/n)s(n)
cannot compute (L(x1), . . . , L(xk)) for i.i.d. x1, . . . , xk ∈ {0, 1}n, where each xi is chosen
according to D, with probability better than p(n)k + ǫ.

Entropy, mutual information: In the following we review the definition and properties
of some information theoretic quantities that will be used in Section 4.

For a discrete random variable X, the entropy of X denoted by H(X) is defined by

H(X) =
∑

x

p(x) lg2
1

p(x)
.

Clearly,

H(X) ≥ lg2
1

maxx p(x)
. (1)

When X is a Bernoulli random variable with parameter p, the entropy function is written
as

h(p) = p lg
1

p
+ (1− p) lg

1

1− p
.
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Fixing the size of the alphabet set of X to be m, the maximum of H(X) is attained at
uniform distribution and is equal to lg(m).

For two discrete random variables X,Y , the conditional entropy H(X|Y ) is defined
by

H(X|Y ) =
∑

y

p(y)H(X|Y = y),

where H(X|Y = y) is the entropy of the random variable having distribution p(x|y). The
conditional entropy H(X|Y ) is zero if X is a function of Y . It is also easy to see that
H(X|Y ) = H(X,Y )−H(Y ).

Mutual information between two random variables X and Y is defined by

I(X;Y ) = H(X) −H(Y |X) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y ).

We always have I(X;Y ) ≥ 0.
Given three random variables, the conditional mutual information is defined by

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) = H(Y |Z)−H(Y |X,Z).

We again have I(X;Y |Z) ≥ 0. Observe that I(X;Y |Z) = 0 if for instance X is a function
of Z. The following equation which can easily be verified is known as the chain rule:

I(X;Y Z) = I(X;Y ) + I(X;Z|Y ).

3 Randomized Complexity

In the following theorem, we show that ℓ help bits cannot increase the probability of
correctly finding (L(x1), . . . , L(xk)) by a factor of more than 2l unless L is non-uniform
k-membership comparable.

Theorem 5 Let ℓ < k = O(lg n) and p ≥ 2ℓ−k + 1/nO(1). If for a language L, we
can correctly solve k instances of size n using ℓ help bits with probability ≥ p, then L is
randomized k-membership comparable.

Proof: Suppose that we guess the value of the ℓ help bits uniformly at random. Then
with probability 2−ℓ our guess of the help bits will be correct, and hence with probability
q = 2−ℓp ≥ 2−k + 1/nO(1) we can correctly guess the answer to the k instances without
any help bits.

Assume that (c1, . . . , ck) is our guess for the k instances. If we choose (b1, . . . , bk)
uniformly at random among all 2k − 1 instances which are different from (c1, . . . , ck),
the probability that (b1, . . . , bk) is equal to the correct answer to the k instances is (1 −
q)/(2k − 1) ≤ 2−k − 1/nO(1). �

As mentioned in the previous section using Theorem 2 and Lemma 3 we find that
with the assumptions of the above theorem if k is constant, then L is in P/poly.

Rate distortion theory studies the minimum number of bits required for recovering,
with some bounded distortion, a target bit-string. More precisely, to recover (1 − α)
fraction of a bit-string of length k correctly we need about k(1−h(α)) bits of information
about that bit-string. The following theorem shows that we cannot decrease this minimum
number of required bits even if we know that the bits in the target bit-string are the yes/no
answers to k instances of a hard decision problem.
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Theorem 6 Let p > 0 and 0 < α, ǫ < 1/2 be some constants, and L be some language.
Also let k = O(lg n). We are given k arbitrary instances x1, . . . , xk of L.

(i) Assume that using ℓ < k(1−h(α)−ǫ) help bits, we can efficiently and with probability
p find a bit-string which matches (L(x1), . . . , L(xk)) in at least (1 − α) fraction of
positions. Then L is randomized k-membership comparable if k ≥ lg(3/(2p))/ǫ.

(ii) Using ℓ ≥ ⌈k(1−h(α)+ǫ)⌉ help bits, it is possible to efficiently find a bit-string which
matches (L(x1), . . . , L(xk)) in at least (1 − α) fraction of positions with probability
one, if k ≥ 6(ǫ−1 lg(ǫ−1)).

Proof: (i) Without access to the help bits, we can try all the 2ℓ bit-strings of length ℓ
for the help bits. For each such bit-string, we run the randomized algorithm many times
(say t times), forming a large table whose rows are k-bit strings. We denote these rows
by wij for i ∈ {1, 2, · · · , t}, j ∈ {0, 1}ℓ, i.e., each wij is a row vector of k bits. Therefore
we have 2ℓ tables of size t× k, with the j-th table having rows w1j , w2j , . . . , wtj .

Let j∗ ∈ {0, 1}ℓ be the correct string of help bits. Take p′ = 2p/3, and δ = 2−(k+1). By
Chernoff bound, for sufficiently large (yet linear in k) t, with probability 1− δ, p′ fraction
of rows w1j∗ , w2j∗ , . . . , wtj∗ are within hamming distance αk from (L(x1), . . . , L(xk)). We
will use this property to find some (b1, . . . , bk) unequal to (L(x1), . . . , L(xk)).

For any j ∈ {0, 1}ℓ define

Mj =
{

v ∈ {0, 1}k : ∃I ⊆ {1, 2, · · · , t} : |I| ≥ p′t, dH(v,wij) ≤ αk, ∀i ∈ I
}

,

where dH(·, ·) denotes the hamming distance. By the above discussion with probability
≥ 1− δ, the correct answer (L(x1), . . . , L(xk)) belongs to Mj∗ . Observe that Mj’s can be
computed efficiently because 2k and t are of size polynomial in n.

We claim that for any j,

|Mj | ≤ 2k(h(α)+ǫ). (2)

To this end consider a bipartite graph with vertex set {1, 2, . . . , t} for one part and vertex
setMj for the other. We draw an edge i ∼ v for i ∈ {1, 2, . . . , t} and v ∈ Mj if dH(wij , v) ≤
αk. Then by the definition of Mj, for any v ∈ Mj we have deg(v) ≥ p′t. On the other
hand, the number of sequences that are within hamming distance αk of any given bit-
string of size k is at most 2kh(α) (see e.g., [17, page 310, Lemma 8]). This means that for
every 1 ≤ i ≤ t we have deg(i) ≤ 2kh(α). Double counting the number of edges of the
bipartite graph we obtain

p′t|Mj | ≤
∑

v∈Mj

deg(v) =
∑

i

deg(i) ≤ t2kh(α).

This gives (2) if k ≥ lg(1/p′)/ǫ.
Now using equation (2) and the union bound, we get that

∣

∣

∣

∣

⋃

j

Mj

∣

∣

∣

∣

≤ 2ℓ2k(h(α)+ǫ) < 2k.

Therefore we can find (b1, . . . , bk) ∈ {0, 1}k that does not belong to
⋃

j Mj . Since with

probability at least 1−δ = 1−2−k+2−k−1 = 1−2−k+1/nO(1) we have (L(x1), . . . , L(xk)) ∈
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Mj∗ , then (b1, . . . , bk) 6= (L(x1), . . . , L(xk)) with probability 1 − 2−k + 1/nO(1). Thus, L
is randomized k-membership comparable.

(ii) We claim that there is a subset R ⊆ {0, 1}k of size |R| = 2k(1−h(α)+ǫ) such that
for any v ∈ {0, 1}k there is w ∈ R such that dH(v,w) ≤ αk. This requires a more
refined argument than the one given by the standard rate distortion theory which is only
telling us that for most sequences v ∈ {0, 1}k there is w ∈ R such that dH(v,w) ≤ αk.
Furthermore, we show that we can construct R in time polynomial in 2k. Assuming this,
the helper can give the sequence w ∈ R whose hamming distance from (L(x1), . . . , L(xk))
is at most αk, and the algorithm may just output this sequence. Note that the helper
would need ⌈lg |R|⌉ ≤ ℓ bits to send w.

For a point v ∈ {0, 1}k and r, let B(v, r) denote the hamming ball of radius r around v.
With this definition, we are looking for a set R of points in {0, 1}k whose union of hamming
balls cover the entire set {0, 1}k . To construct the set R, we start with an empty set and
use a greedy algorithm to add points v1, . . . , v|R| in this order as follows: Having added
points v1, . . . , vj for 0 ≤ j < |R|, we choose point vj+1 ∈ {0, 1}k such that B(vj+1, kα)
covers the most number of points not covered by B(v1, kα), . . . , B(vj , kα). In case there
are multiple choices of vj+1 with this property, choose vj+1 to be the lexicographically
smallest one.

Let q = q(k, αk) be the probability that a random point is in hamming distance kα of
a given point. Any point not in

⋃j
i=1 B(vi, kα) is covered by q fraction of balls of radius

kα. Then there is B(v, kα) that covers at least q fraction of points not in
⋃j

i=1 B(vi, kα).
Based on this observation and by a simple induction we find that the number of points
not covered by B(v1, kα), . . . , B(v|R|, kα) is ≤ 2k(1− q)|R|. By [17, page 310, Lemma 8],
we have

q ≥ 2k(−1+h(α))

√

8kα(1 − α)
≥ 2k(−1+h(α))

√
2k

.

When k ≥ 6ǫ−1 lg(ǫ−1), we have 2k(1 − q)|R| ≤ 2ke−q|R| < 1. Hence no point in {0, 1}k
remains uncovered. We are done. �

Again with the assumption of part (i) of this theorem, if k is constant then L is in
P/poly.

We note that given k instances of a computational problem, the task of solving at least
a given fraction of the instances correctly had been studied before (e.g., see [13]). What
is new to our work (Theorem 6) is allowing that the task be done using some limited help
bits and also with some bounded probability of error.

4 Average-case Complexity

As motivated earlier, the length of the help bits may depend on the instances of the
problem since for easy instances we do not need any help. In this section we measure the
amount of help on average over all choices of the k instances. For this to make sense we
need a distribution on instances, so we fall in the setting of average-case complexity.

Let us fix some notation before stating our results. Let Dn be a distribution on
instances of length n. We assume that the k instances x1, . . . , xk are drawn i.i.d. according
to Dn. We denote the random variables associated to these randomly chosen instances by
X1, . . . ,Xk. Let ℓ be the maximum length of the help bits. This means that the alphabet
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set of the help bits is Σ =
⋃ℓ

i=0{0, 1}i. Here we allow ℓ to be at most ℓ = O(lg n) so
that the size of its alphabet set be |Σ| = nO(1). Since x1, . . . , xk are chosen randomly,
the string of help bits is a random variable too. We denote this random variable by
S = S(X1, . . . ,Xk) which takes its values in Σ.

We may measure the amount of the help bits in two different ways: entropy of the help
bits random variable, and its average length. In the following we first consider entropy,
and later comment on average length.

Theorem 7 Let L be a language. For every integer n fix a distribution Dn on instances
of size n, i.e., on {0, 1}n. Let k = O(lg n), and let Σ =

⋃ℓ
i=0{0, 1}i such that |Σ| = nO(1).

Suppose that there is an efficient algorithm such that for every x1, . . . , xk ∈ {0, 1}n and
using help bits s = s(x1, . . . , xk) ∈ Σ outputs (L(x1), . . . , L(xk)). Assume further that for
1/nO(1) < δ(n, k) < 1/2,

H(S) ≤ k − 3kδ,

where S = S(X1, . . . ,Xk) is the random variable corresponding to the help bits of the
randomly chosen x1, . . . , xk ∈ {0, 1}n according to Dn. Then there exist polynomial size
circuits that correctly solve a randomly chosen x ∈ {0, 1}n with probability ≥ 1/2 + δ
without having access to the help bits.

Notice that by hardness-amplification techniques such as [19] and [12], it is plausible
to find problems in NP with average-case hardness such that it is not possible to solve
them efficiently with probability better than 1/2 + o(1). For such problems, the above
theorem becomes relevant.

Proof: Let {Cn : n ≥ 1} be the polynomial size circuits that solve k instances of L
with help bits, i.e., for all x1, . . . , xk ∈ {0, 1}n and the appropriate s ∈ Σ we have
Cn(x1, . . . , xk, s) = (L(x1), . . . , L(xk)). In the following we drop the subscript n in Cn

and Dn as they are clear from the context. We prove the theorem in a few steps.

(Step 1) Let us define

t = t(x1, . . . , xk) =
(

C(x1, . . . , xk, σ1), . . . , C(x1, . . . , xk, σ|Σ|)
)

,

where Σ = {σ1, . . . , σ|Σ|}, and let T be its corresponding random variable (when xi’s
are chosen randomly). Note that t can be computed by a polynomial size circuit since
|Σ| = nO(1). We claim that

H
(

L(X1), . . . , L(Xk)|T
)

≤ k − 3δk.

For any x1, . . . , xk, if we are given the true help symbol s = σi, we can compute
(L(x1), . . . , L(xk)) from t by taking its i-th element. Thus

H
(

L(X1), . . . , L(Xk)|S, T
)

= 0. (3)
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Therefore,

H(L(X1), . . . , L(Xk))

= I(L(X1), . . . , L(Xk);S, T ) (4)

= I(L(X1), . . . , L(Xk);T ) + I(L(X1), . . . , L(Xk);S|T ) (5)

≤ I(L(X1), . . . , L(Xk);T ) + I(L(X1), . . . , L(Xk), T ;S) (6)

≤ I(L(X1), . . . , L(Xk);T ) + I(X1, . . . ,Xk, L(X1), . . . , L(Xk), T ;S)

= I(L(X1), . . . , L(Xk);T ) + I(X1, . . . ,Xk;S) + I(L(X1), . . . , L(Xk), T ;S|X1, . . . ,Xk)

= I(L(X1), . . . , L(Xk);T ) + I(X1, . . . ,Xk;S) (7)

≤
(

H(L(X1), . . . , L(Xk))−H(L(X1), . . . , L(Xk)|T )
)

+H(S)

≤
(

H(L(X1), . . . , L(Xk))−H(L(X1), . . . , L(Xk)|T )
)

+ k − 3δk.

Here (4) follows from (3) and the definition of mutual information. (5) and (6) follow from
the chain rule. Moreover, (7) follows from the fact thatH(L(X1), . . . , L(Xk), T |X1, . . . ,Xk) =
0. We conclude that

H(L(X1), . . . , L(Xk)|T ) ≤ k − 3δk. (8)

(Step 2) We have

∑

t

Pr(T = t)

[

max
c1,...,ck

Pr(L(X1) = c1, . . . , L(Xk) = ck|T = t)

]

≥
∑

t

Pr(T = t)2−H(L(X1),...,L(Xk)|T=t) (9)

≥ 2−
∑

tPr(T=t)H(L(X1),...,L(Xk)|T=t)

= 2−H(L(X1),...,L(Xk)|T )

≥ 2−k+3δk, (10)

where (9) follows from equation (1).

(Step 3) In this step, we show how we can construct binary random variables B1, . . . , Bk

using polynomial-size circuits such that Pr[L(X1) = B1, . . . , L(Xk) = Bk] ≥ 2−k+3δk.
For any t, let vt denote the vector (c1, . . . , ck) ∈ {0, 1}k that maximizes Pr[L(X1) =

c1, . . . , L(Xk) = ck|T = t]. Observe that there are at most poly(n) possible t’s for any n
since k = O(lg n). Therefore, we can give vt for all t as advice to our algorithm.

Now given x1, . . . , xk, we can compute t = t(x1, . . . , xk) as in Step 1 using a polynomial
size circuit (because |Σ| = nO(1)). Then we give vt = (b1, . . . , bk) as the solution for
(L(x1), . . . , L(xk)). Inequality (10) basically says that

Pr(L(x1) = b1, . . . , L(xk) = bk) ≥ 2−k+3δk.

(Step 4) Assume that we cannot efficiently solve an instance chosen according to distribu-
tion D with probability better than 1/2 + δ. By the direct product lemma of Goldreich,
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Nisan, and Wigderson (Lemma 4), we cannot compute (L(X1), . . . , L(Xk)) with prob-
ability better than (1/2 + δ)k + 1/p(n) for any polynomial p in time polynomial in n.
But

2(−1+3δ)k − (1/2 + δ)k ≥ 2−k((23δ)k − (1 + 2δ)k)

= 2−k((e3 ln(2)δ)k − (1 + 2δ)k)

≥ 2−k((1 + 3 ln(2)δ)k − (1 + 2δ)k)

≥ 2−k(3 ln(2)− 2)δ(1 + 2δ)k−1

≥ 1/nO(1),

because both 2−k and δ are 1/nO(1). Therefore, we cannot compute (L(X1), . . . , L(Xk))
with probability as good as 2−k+3δk. This is in contradiction with Step 3. We are done.
�

We may measure the amount of help by its mutual information (as a measure of
correlation) with the input instances. In this case the same theorem as above holds when
we replace the assumption H(S) ≤ k(1 − 3δ) with I(X1, . . . ,Xk;S) ≤ k(1 − 3δ). Indeed
in the above proof we use I(X1, . . . ,Xk;S) ≤ H(S) ≤ k(1− 3δ) in Step 1, which holds if
we assume I(X1, . . . ,Xk;S) ≤ k(1− 3δ) in the first place.

The following proposition is in the converse direction of Theorem 7.

Proposition 8 Let L be a language. Suppose that there exist polynomial size circuits Cn

that correctly solve a randomly chosen x ∈ {0, 1}n with probability ≥ 1/2+δ without having
access to any help bits. Then for any k ∈ N, there are help bits s = s(x1, . . . , xk) ∈ {0, 1}k
and a polynomial-size circuit that outputs (L(x1), . . . , L(xk)) using these help bits, such
that

H(S) ≤ kh(1/2 + δ) = k(1−O(δ2)),

where h(·) is the binary entropy function.

Proof: Given an instance x, let B(x) = L(x)⊕Cn(x) where ⊕ denotes summation modulo
2. Then by the assumption Pr[B(X) = 0] ≥ 1/2 + δ where X is the random variable
corresponding to the randomly chosen x. By the monotonicity of h(·) on [1/2, 1] we
conclude that H(B(X)) ≤ h(1/2 + δ).

Now given k instances x1, · · · , xk, consider the help bits

s =
(

B(x1), · · · , B(xk)
)

.

Observe that using s we can efficiently compute L(x1), · · · , L(xk) as follows: We first use
Cn to compute (Cn(x1), · · · , Cn(xk)) and then XOR it with s to recover L(x1), · · · , L(xk).
Moreover the entropy of the random variable associated with s is

H(S) =

k
∑

i=1

H(B(Xi)) ≤ k · h(1/2 + δ).

We are done. �

Let L be an arbitrary language and fix a distribution on its input instances as above.
Let δ ≥ 0 be the largest number such that a randomly chosen x can be correctly solved
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with polynomial size circuits with probability 1/2+δ. Now suppose that we want to solve
k randomly chosen instances. Theorem 7 says that to solve these k instance correctly we
need help bits of entropy at lease k−3δk = k(1−Θ(δ)). On the other hand, Proposition 8
says that there are help bits with entropy kh(1/2 + δ) = k(1− Θ(δ2)) which given them
we can solve the k instances efficiently. Here the question is which of the two bounds are
tight. The following example shows that in some cases the lower bound is closer to the
actual required entropy.

Example 9 Let L be a random decision problem defined on instances of size n as follows.
Let F be the lexicographically first 2δ fraction of instances. We let L(x) = 0 if x ∈ F ,
and otherwise we choose L(x) ∈ {0, 1} uniformly at random. Then with high probability
over the random choice of L, no polynomial size circuit can solve the decision problem on
more than 1/2 + δ + 2−Θ(n) fraction of the instances. On the other hand, we can solve
k uniformly random independent instances of the problem using help bits with entropy
≤ k(1− 2δ) + lg2(k + 1).

Proof: The first part, that the average-case complexity of the problem is high, can be
shown by a counting argument similar to [23].

For the second part we define the help bits as follows: For an instance x, let B(x) be a
string of length at most 1, where B(x) is the empty string when x ∈ F , and B(x) = L(x)
otherwise. Now let the help bits for k instances x1, . . . , xk be s = (B(x1), . . . , B(xk)).

Given x1, . . . , xk we can check which of x1, . . . , xk are among the 2δ lexicographically
first fraction of instances. We trivially know the answer to these instances. For the rest of
the instances, we can read off their answers from the help bits (since we know for which
values of i the string B(xi) is empty.)

Let S denote the random variable associated to s, and let M be its length. Since
0 ≤ M ≤ k, and M is a function of S we have

H(S) = H(S,M)

= H(M) +H(S|M)

≤ lg2(k + 1) +

k
∑

j=0

Pr[M = j]H(S|M = j)

≤ lg2(k + 1) +

k
∑

j=0

Pr[M = j]j

= lg2(k + 1) + k(1− 2δ).

�

In the above example, we used the fact that there is a 1− 2δ fraction hard-core set of
instances and the rest of the instances are easy. In general, by Impagliazzo’s hard-core set
lemma [14], such a hard-core set always exists. However, we cannot utilize this hard-core
set, since unlike the example above there does not exist a general procedure to test which
instances are in the hard-core set.

We now turn our attention to measuring the amount of help by its average length. As
above, let S be the random variable corresponding to help bits, and let M be its length.
Here the crucial observation is that with no loss of generality we may assume that M ≤ k.
Indeed if for some x1, . . . , xk the length of s = s(x1, . . . , xk) is larger than k, then we may
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replace s with (L(x1), . . . , L(xk)). There is a problem here if we do this conversion for
one particular sequence: the solver should know that the k-bit help is (L(x1), . . . , L(xk)).
For this reason, we should do the conversion for all sequences whose help bit string has
length at least k, so that the solver knows what to do whenever he sees such a sequence.
Clearly these new help bits are as useful as s, and have a shorter length. Note that this
procedure may increase the entropy of S because in computing the entropy, it is only the
probabilities assigned to sequences that matter, not their length.

Corollary 10 Use the notation of Theorem 7. Assume that

E[M ] ≤ k − 3kδ − lg(k + 1),

We further assume that M ≤ k. Then there exist polynomial size circuits that correctly
solve a randomly chosen x ∈ {0, 1}n with probability ≥ 1/2 + δ without having access to
the help bits.

Proof: We compute

H(S) = H(S,M)

≤ H(M) +H(S|M)

≤ lg(k + 1) +
k

∑

j=0

Pr[M = j]H(S|M = j)

≤ lg(k + 1) +
k

∑

j=0

Pr[M = j]j

= lg(k + 1) + E[M ]

≤ k − 3kδ.

The result then follows by applying Theorem 7. �

5 k-Membership Comparability for Large k

In this section we study k-membership comparability for non-constant values of k. More
precisely, we look at extensions of Theorem 2 for larger k. In the following we first show
that k-membership comparable languages do not necessarily have polynomial-size circuits.

Example 11 For every function k = k(n) = nω(1), there exists a decision problem which
is k-membership comparable but is not in P/poly.

Proof: Let k′(n) = 2ℓ(n) be the largest power of 2 such that k′ ≤ min{k − 1, 2n}. Then
k′ = nω(1). Let fn : {0, 1}ℓ → {0, 1} be a sequence of functions that cannot be computed
by circuits of size O(k′/ℓ), (see [23]). Now let L be the language that for x = (b1, . . . , bn) ∈
{0, 1}n is given by L(x) = f(b1, . . . , bℓ). Then clearly L is not in P/poly.

We now show that L is k-membership comparable. Given x1, . . . , xk ∈ {0, 1}n, there
are i 6= j such that xi and xj coincide on their first ℓ bits. Such indices i, j can be found
efficiently. Then, we know that (L(x1), . . . , L(xk)) is not equal to the bit-string that has
0 in position i, and 1 in position j (and arbitrary values in other positions). �
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Whether Theorem 2 can be extended all the way to k = poly(n) is an open question.
In the following we argue that for super-logarithmic k, no “black-box proof” shows k-
membership comparable problems are in P/poly. Note that the proof of Theorem 2 for
constant k is a black-box proof.

Theorem 12 For k(n) = ω(lg n) we cannot show in a black-box way that k-membership
comparability of a decision problem L implies L ∈ P/poly. In other words, there ex-
ist a language L and an oracle O that given x1, . . . , xk ∈ {0, 1}n outputs a bit-string
(b1, . . . , bk) 6= (L(x1), . . . , L(xk)), but no algorithm can compute L using oracle O in
poly(n) time even given poly(n) bits of advice (that can depend on both L and O).

Proof: Consider the restrictions of L and O on inputs of size n, i.e., Ln = L ∩ {0, 1}n
and On = O ∩ ({0, 1}n)k. There are 22

n

possibilities for Ln, and once Ln is fixed there
are (2k − 1)2

nk for the value of O on k-tuples of n-bit strings. In total, the number of
acceptable pairs (Ln, On) is 2

2n(2k − 1)2
nk.

Assume that for each pair (L,O), there exists an algorithm that computes L using
s(n) = nO(1) number of queries to O and a(n) = nO(1) bits of advice. We will use this
assumption to upper-bound the number of acceptable pairs (Ln, On).

Fix a particular advice. Suppose that we want to compute L(x) for all x ∈ {0, 1}n.
For each such instance we make s(n) queries from O, so in total the number of all queries
is q(n) ≤ 2ns(n). Each of these queries (once L is not fixed) has 2k possible answers.
Therefore, for a fixed value of advice, there are (2k)q(n) possible query answers for these
q(n) queries. (Note that this is true even if the queries may be adaptive.) Now fixing these
query answers, Ln becomes fixed too. Then each of the remaining 2nk − q(n) possible
queries from the oracle have only 2k − 1 valid answers. Since there are 2a(n) possible
advices, the number of pairs (Ln, On) is at most

2a(n)(2k)q(n)(2k − 1)2
nk−q(n) = 2a(n)2Θ(2−ks(n)2n)(2k − 1)2

nk

< 22
n

(2k − 1)2
nk

,

where we used 2−ks(n) = o(1). This last inequality is in contradiction with the number
of pairs (Ln, On) computed above. �

6 Open Problems

We studied the computational benefit of help bits in some new settings, namely in ran-
domized and average-case complexity frameworks. We also discussed k-membership com-
parability for superlogarithmic k.

We mention a few open problems here: In Theorem 7, it is open whether we can
get non-trivial results when δ is close to 1/2. For that to work, we need to improve the
assumption H(S) ≤ k − 3kδ to something like H(S) ≤ k − 2kδ.

Another open problem is classifying decision problems for which Theorem 7 is tight
vs. decision problems for which Proposition 8 is tight. We already gave an example that
shows Theorem 7 is tight for some cases.

Finally, it is interesting to better understand the relationship between k-membership
comparability and non-uniform complexity, especially for logarithmic k.
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