
Deterministic Identity Testing for Sum of
Read-once Oblivious Arithmetic Branching
Programs
Rohit Gurjar∗1, Arpita Korwar1, Nitin Saxena†1, and
Thomas Thierauf‡2

1 Department of Computer Science and Engineering, IIT Kanpur, India
{rgurjar, arpk, nitin}@iitk.ac.in

2 Aalen University, Germany
thomas.thierauf@htw-aalen.de

Abstract
A read-once oblivious arithmetic branching program (ROABP) is an arithmetic branching pro-
gram (ABP) where each variable occurs in at most one layer. We give the first polynomial time
whitebox identity test for a polynomial computed by a sum of constantly many ROABPs. We
also give a corresponding blackbox algorithm with quasi-polynomial time complexity nO(logn).
In both the cases, our time complexity is double exponential in the number of ROABPs.

ROABPs are a generalization of set-multilinear depth-3 circuits. The prior results for the sum
of constantly many set-multilinear depth-3 circuits were only slightly better than brute-force, i.e.
exponential-time.

Our techniques are a new interplay of three concepts for ROABP: low evaluation dimension,
basis isolating weight assignment and low-support rank concentration. We relate basis isolation
to rank concentration and extend it to a sum of two ROABPs using evaluation dimension (or
partial derivatives).

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.2.1 Numerical
Algorithms and Problems

Keywords and phrases PIT, hitting-set, Sum of ROABPs, Evaluation Dimension, Rank Con-
centration

Digital Object Identifier 10.4230/LIPIcs.CCC.2015.323

1 Introduction

Polynomial Identity Testing (PIT) is the problem of testing whether a given n-variate
polynomial is identically zero or not. The input to the PIT problem may be in the form
of arithmetic circuits or arithmetic branching programs (ABP). They are the arithmetic
analogues of boolean circuits and boolean branching programs, respectively. It is well known
that PIT can be solved in randomized polynomial time, see e.g. [29]. The randomized
algorithm just evaluates the polynomial at random points; thus, it is a blackbox algorithm. In
contrast, an algorithm is a whitebox algorithm if it looks inside the given circuit or branching
program. We consider both, whitebox and blackbox algorithms.

∗ Supported by TCS Ph.D research fellowship.
† Supported by DST-SERB.
‡ Supported by DFG grant TH 472/4-1.

© Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf;
licensed under Creative Commons License CC-BY

30th Conference on Computational Complexity (CCC’15).
Editor: David Zuckerman; pp. 323–346

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2015.323
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

324 Identity Testing for Sum of ROABPs

Since all problems with randomized polynomial-time solutions are conjectured to have
deterministic polynomial-time algorithms, we expect that such an algorithm exists for PIT. It
is also known that any sub-exponential time algorithm for PIT implies a lower bound [15, 2].
See also the surveys [25, 26, 30].

An efficient deterministic solution for PIT is known only for very restricted input models,
for example, sparse polynomials [5, 19], constant fan-in depth-3 (ΣΠΣ) circuits [7, 18, 17, 16,
27, 28], set-multilinear circuits [22, 10, 4], read-once oblivious ABP (ROABP) [22, 12, 9, 3].
This lack of progress is not surprising: Gupta et al. [13] showed that a polynomial time
test for depth-3 circuits would imply a sub-exponential time test for general circuits. For
now, even a sub-exponential solution for depth-3 circuits seems elusive. However, an efficient
test for depth-3 multilinear circuits looks within reach as a lower bound against this class
of circuits is already known [23]. A circuit is called multilinear if all its gates compute a
multilinear polynomial, i.e. polynomials such that the maximum degree of any variable is
one.

A depth-3 multilinear circuit is called set-multilinear if all the product gates in it induce
the same partition on the set of variables. It is easy to see that a depth-3 multilinear circuit
is a sum of polynomially many set-multilinear circuits. Hence, a natural first step to attack
depth-3 multilinear circuit is to find an efficient test for the sum of two set-multilinear
polynomials. Before this work, the only non-trivial test known for sum of two set-multilinear
circuits was a sub-exponential whitebox algorithm by Agrawal et al. [3]. Subsequently, a sub-
exponential time blackbox test was also given for depth-3 multilinear circuits [6]. Our results
imply the first polynomial-time whitebox algorithm, and the first quasi-polynomial-time
blackbox algorithm, for the sum of two set-multilinear circuits.

In this paper, we deal with ROABPs, a model which subsumes set-multilinear circuits;
see for example [3, Lemma 14]. A read-once oblivious ABP (ROABP) is an arithmetic
branching program, where each variable occurs in at most one layer. There has been a long
chain of work on identity testing for ROABP, see the thesis of Michael Forbes [8] for an
excellent overview. In 2005, Raz and Shpilka [22] gave a polynomial-time whitebox test for
ROABP. Then, Forbes and Shpilka [12] gave an sO(logn)-time blackbox algorithm for ROABP
with known variable order, where s is the size of the ROABP and n is number of variables.
This was followed by a complete blackbox test [9] that took sO(d log2 s) steps, where d is the
syntactic degree bound of any variable. This was further improved by Agrawal et al. [3]
to sO(logn) time. They removed the exponential dependence on the degree d. Their test is
based on the idea of basis isolating weight assignment. Given a polynomial over an algebra,
it assigns weights to the variables, and naturally extends it to monomials, such that there is
a unique minimum weight basis among the coefficients of the polynomial.

In another work, Jansen et al. [14] gave a blackbox test for a sum of constantly many
“ROABPs”. Their definition of “ROABP” is much weaker. They assume that a variable
appears on at most one edge in the ABP.

We consider the sum of ROABPs. Note that there are polynomials P (x) computed by
the sum of two ROABPs such that any single ROABP that computes P (x) has exponential
size [20]. Hence, the previous results on single ROABPs do not help here. In Section 3 we
show our first main result (Theorem 3.2):

PIT for the sum of constantly many ROABPs is in polynomial time.

The exact time bound we get for the PIT-algorithm is (ndw2c)O(c), where n is the number
of variables, d is the degree bound of the variables, c is the number of ROABPs and w is
their width. Hence our time bound is double exponential in c, but polynomial in ndw.

R. Gurjar, A. Korwar, N. Saxena, and T. Thierauf 325

Our algorithm uses the fact that the evaluation dimension of an ROABP is equal to
the width of the ROABP [21, 11]. Namely, we consider a set of linear dependencies derived
from partial evaluations of the ROABPs 1. We view identity testing of the sum of two
ROABPs as testing the equivalence of two ROABPs. Our idea is inspired from a similar result
in the boolean case. Testing the equivalence of two ordered boolean branching programs
(OBDD) is in polynomial time [24]. OBDDs too have a similar property of small evaluation
dimension, except that the notion of linear dependence becomes equality in the boolean
setting. Our equivalence test, for two ROABPs A and B, takes linear dependencies among
partial evaluations of A and verifies them for the corresponding partial evaluations of B. As
B is an ROABP, the verification of these dependencies reduces to identity testing for a single
ROABP.

In Section 3.2, we generalize this test to the sum of c ROABPs. There we take A as one
ROABP and B as the sum of the remaining c− 1 ROABPs. In this case, the verification of
the dependencies for B becomes the question of identity testing of a sum of c− 1 ROABPs,
which we solve recursively.

The same idea can be applied to decide the equivalence of an OBDD with the XOR
of c− 1 OBDDs. We skip these details here as we are mainly interested in the arithmetic
case.

In Section 4, we give an identity test for a sum of ROABPs in the blackbox setting. That
is, we are given blackbox access to a sum of ROABPs and not to the individual ROABPs.
Our main result here is as follows (Theorem 4.9):

There is a blackbox PIT for the sum of constantly many ROABPs that works in
quasi-polynomial time.

The exact time bound we get for the PIT-algorithm is (ndw)O(c 2c log(ndw)), where n is the
number of variables, d is the degree bound of the variables, c is the number of ROABPs and
w is their width. Hence our time bound is double exponential in c, and quasi-polynomial
in n, d, w.

Here again, using the low evaluation dimension property, the question is reduced to
identity testing for a single ROABP. But, just a hitting-set for ROABP does not suffice
here, we need an efficient shift of the variables which gives low-support concentration in any
polynomial computed by an ROABP. An `-concentration in a polynomial P (x) means that
all of its coefficients are in the linear span of its coefficients corresponding to monomials with
support < `. Essentially we show that a shift, which achieves low-support concentration
for an ROABP of width w2c , also works for a sum of c ROABPs (Lemma 4.8). This is
surprising, because as mentioned above, a sum of c ROABPs is not captured by an ROABP
with polynomially bounded width [20].

A novel part of our proof is the idea that for a polynomial over a k-dimensional F-
algebra Ak, a shift by a basis isolating weight assignment achieves low-support concentration.
To elaborate, let w: x→ N be a basis isolating weight assignment for a polynomial P (x) ∈
Ak[x] then P (x+ tw) has O(log k)-concentration over F(t). As Agrawal et al. [3] gave a basis
isolating weight assignment for ROABPs, we can use it to get low-support concentration.
Forbes et al. [9] had also achieved low-support concentration in ROABPs, but with a
higher cost. Our concentration proof significantly differs from the older rank concentration
proofs [4, 9], which always assume distinct weights for all the monomials or coefficients.

1 Equivalently, we work with the dependencies of the partial derivatives.

CCC 2015

326 Identity Testing for Sum of ROABPs

Here, we only require that the weight of a coefficient is greater than the weight of the basis
coefficients that it depends on.

2 Preliminaries

2.1 Notation
Let x = (x1, x2, . . . , xn) be a tuple of n variables. For any a = (a1, a2, . . . , an) ∈ Nn, we
denote by xa the monomial

∏n
i=1 x

ai
i . The support size of a monomial xa is given by

supp(a) = |{ai 6= 0 | i ∈ [n]}|.
Let F be some field. Let A(x) be a polynomial over F in n variables. A polynomial

A(x) is said to have individual degree d, if the degree of each variable is bounded by d for
each monomial in A(x). When A(x) has individual degree d, then the exponent a of any
monomial xa of A(x) is in the set

M = {0, 1, . . . , d}n .

By coeffA(xa) ∈ F we denote the coefficient of the monomial xa in A(x). Hence, we can
write

A(x) =
∑

a∈M
coeffA(xa)xa .

The sparsity of polynomial A(x) is the number of nonzero coefficients coeffA(xa).
We also consider matrix polynomials where the coefficients coeffA(xa) are w×w matrices,

for some w. In an abstract setting, these are polynomials over a w2-dimensional F-algebra A.
Recall that an F-algebra is a vector space over F with a multiplication which is bilinear and
associative, i.e. A is a ring. The coefficient space is then defined as the span of all coefficients
of A, i.e., spanF{coeffA(xa) | a ∈M}.

Consider a partition of the variables x into two parts y and z, with |y| = k. A
polynomial A(x) can be viewed as a polynomial in variables y, where the coefficients are
polynomials in F[z]. For monomial ya, let us denote the coefficient of ya in A(x) by
A(y,a) ∈ F[z]. For example, in the polynomial A(x) = x1 + x1x2, we have A({x1},1) = 1 + x2,
whereas coeffA(x1) = 1.

Thus, A(x) can be written as

A(x) =
∑

a∈{0,1,...,d}k
A(y,a) y

a . (1)

The coefficient A(y,a) is also sometimes expressed in the literature as a partial derivative ∂A
∂ya

evaluated at y = 0 (and multiplied by an appropriate constant), see [11, Section 6].
For a set of polynomials P, we define their F-span as

spanF P =
{∑
A∈P

αAA | αA ∈ F for all A ∈ P
}
.

The set of polynomials P is said to be F-linearly independent if
∑
A∈P αAA = 0 holds only

for αA = 0, for all A ∈ P. The dimension dimF P of P is the cardinality of the largest
F-linearly independent subset of P.

For a matrix R, we denote by R(i, ·) and R(·, i) the i-th row and the i-th column of R,
respectively. For any a ∈ Fk×k′ , b ∈ F`×`′ , the tensor product of a and b is denoted by a⊗ b.
The inner product is denoted by 〈a, b〉. We abuse this notation slightly: for any a,R ∈ Fw×w,
let 〈a,R〉 =

∑w
i=1
∑w
j=1 aijRij .

R. Gurjar, A. Korwar, N. Saxena, and T. Thierauf 327

2.2 Arithmetic branching programs
An arithmetic branching program (ABP) is a directed graph with ` + 1 layers of vertices
(V0, V1, . . . , V`). The layers V0 and V` each contain only one vertex, the start node v0 and the
end node v`, respectively. The edges are only going from the vertices in the layer Vi−1 to the
vertices in the layer Vi, for any i ∈ [d]. All the edges in the graph have weights from F[x],
for some field F. The length of an ABP is the length of a longest path in the ABP, i.e. `. An
ABP has width w, if |Vi| ≤ w for all 1 ≤ i ≤ `− 1.

For an edge e, let us denote its weight by W (e). For a path p, its weight W (p) is defined
to be the product of weights of all the edges in it,

W (p) =
∏
e∈p

W (e).

The polynomial A(x) computed by the ABP is the sum of the weights of all the paths from
v0 to v`,

A(x) =
∑

p path v0 v`

W (p).

Let the set of nodes in Vi be {vi,j | j ∈ [w]}. The branching program can alternately
be represented by a matrix product

∏`
i=1 Di, where D1 ∈ F[x]1×w, Di ∈ F[x]w×w for

2 ≤ i ≤ `− 1, and D` ∈ F[x]w×1 such that

D1(j) = W (v0, v1,j), for 1 ≤ j ≤ w,
Di(j, k) = W (vi−1,j , vi,k), for 1 ≤ j, k ≤ w and 2 ≤ i ≤ n− 1,
D`(k) = W (v`−1,k, v`), for 1 ≤ k ≤ w.

Here we use the convention that W (u, v) = 0 if (u, v) is not an edge in the ABP.

2.3 Read-once oblivious arithmetic branching programs
An ABP is called a read-once oblivious ABP (ROABP) if the edge weights in every layer are
univariate polynomials in the same variable, and every variable occurs in at most one layer.
Hence, the length of an ROABP is n, the number of variables. The entries in the matrix Di

defined above come from F[xπ(i)], for all i ∈ [n], where π is a permutation on the set [n].
The order (xπ(1), xπ(2), . . . , xπ(n)) is said to be the variable order of the ROABP.

We will view Di as a polynomial in the variable xπ(i), whose coefficients are w-dimensional
vectors or matrices. Namely, for an exponent a = (a1, a2, . . . , an), the coefficient of

x
aπ(1)
π(1) in D1(xπ(1)) is the row vector coeffD1(xaπ(1)

π(1)) ∈ F1×w,
x
aπ(i)
π(i) in Di(xπ(i)) is the matrix coeffDi(x

aπ(i)
π(i)) ∈ Fw×w, for i = 2, 3, . . . , n− 1, and

x
aπ(n)
π(n) in Dn(xπ(n)) is the vector coeffDn(xaπ(n)

π(n)) ∈ Fw×1.

The read once property gives us an easy way to express the coefficients of the polyno-
mial A(x) computed by an ROABP.

I Lemma 2.1. For a polynomial A(x) = D1(xπ(1))D2(xπ(2)) · · ·Dn(xπ(n)) computed by an
ROABP, we have

coeffA(xa) =
n∏
i=1

coeffDi(x
aπ(i)
π(i)) ∈ F . (2)

CCC 2015

328 Identity Testing for Sum of ROABPs

We also consider matrix polynomials computed by an ROABP. A matrix polynomial
A(x) ∈ Fw×w[x] is said to be computed by an ROABP if A = D1D2 · · ·Dn, where Di ∈
Fw×w[xπ(i)] for i = 1, 2, . . . , n and some permutation π on [n]. Similarly, a vector polynomial
A(x) ∈ F 1×w[x] is said to be computed by an ROABP if A = D1D2 · · ·Dn, where D1 ∈
F 1×w[xπ(1)] and Di ∈ Fw×w[xπ(i)] for i = 2, . . . , n. Usually, we will assume that an ROABP
computes a polynomial in F[x], unless mentioned otherwise.

Let A(x) be the polynomial computed by an ROABP and let y and z be a partition
of the variables x such that y is a prefix of the variable order of the ROABP. Recall from
equation (1) that A(y,a) ∈ F[z] is the coefficient of monomial ya in A(x). Nisan [21] showed
that for every prefix y, the dimension of the set of coefficient polynomials A(y,a) is bounded
by the width of the ROABP2. This holds in spite of the fact that the number of these
polynomials is large.

I Lemma 2.2 ([21], Prefix y). Let A(x) be a polynomial of individual degree d, computed by
an ROABP of width w with variable order (x1, x2, . . . , xn). Let k ≤ n and y = (x1, x2, . . . , xk)
be the prefix of length k of x. Then dimF{A(y,a) | a ∈ {0, 1, . . . , d}k} ≤ w.

Proof. Let A(x) = D1(x1)D2(x2) · · · Dn(xn), where D1 ∈ F1×w[x1], Dn ∈ Fw×1[xn] and
Di ∈ Fw×w[xi], for 2 ≤ i ≤ n− 1. Let z = (xk+1, xk+2, . . . , xn) be the remaining variables
of x. Define P (y) = D1D2 · · ·Dk and Q(z) = Dk+1Dk+2 · · ·Dn. Then P and Q are vectors
of length w,

P (y) = [P1(y) P2(y) · · · Pw(y)]
Q(z) = [Q1(z) Q2(z) · · · Qw(z)]T

where Pi(y) ∈ F[y] and Qi(z) ∈ F[z], for 1 ≤ i ≤ w, and we have A(x) = P (y)Q(z).
We get the following generalization of equation (2): for any a ∈ {0, 1, . . . , d}k, the

coefficient A(y,a) ∈ F[z] of monomial ya can be written as

A(y,a) =
w∑
i=1

coeffPi(ya)Qi(z). (3)

That is, every A(y,a) is in the F-span of the polynomials Q1, Q2, . . . , Qw. Hence, the claim
follows. J

Observe that equation (3) tells us that the polynomials A(y,a) can also be computed by
an ROABP of width w: by equation (2), we have coeffPi(ya) =

∏
xi∈y coeffDi(x

ai
i). Hence,

in the ROABP for A we simply have to replace the matrices Di which belong to P by the
coefficient matrices coeffDi(x

ai
i). Here, y is a prefix of x. But this is not necessary for the

construction to work. The variables in y can be arbitrarily distributed in x. We summarize
the observation in the following lemma.

I Lemma 2.3 (Arbitrary y). Let A(x) be a polynomial of individual degree d, computed by an
ROABP of width w and y = (xi1 , xi2 , . . . , xik) be any k variables of x. Then the polynomial
A(y,a) can be computed by an ROABP of width w, for every a ∈ {0, 1, . . . , d}k. Moreover, all
these ROABPs have the same variable order, inherited from the order of the ROABP for A.

For a general polynomial, the dimension considered in Lemma 2.2 can be exponentially
large in n. We will next show the converse of Lemma 2.2: if this dimension is small for a

2 Nisan [21] showed it for non-commutative ABP, but the same proof works for ROABP.

R. Gurjar, A. Korwar, N. Saxena, and T. Thierauf 329

polynomial then there exists a small width ROABP for that polynomial. Hence, this property
characterizes the class of polynomials computed by ROABPs. Forbes et al. [11, Section 6]
give a similar characterization in terms of evaluation dimension, for polynomials which can
be computed by an ROABP, in any variable order. On the other hand, we work with a fixed
variable order.

As a preparation to prove this characterization we define a characterizing set of de-
pendencies of a polynomial A(x) of individual degree d, with respect to a variable order
(x1, x2, . . . , xn). This set of dependencies will essentially give us an ROABP for A in the
variable order (x1, x2, . . . , xn).

I Definition 2.4. Let A(x) be polynomial of individual degree d, where x = (x1, x2, . . . , xn).
For any 0 ≤ k ≤ n and yk = (x1, x2, . . . , xk), let

dimF{A(yk,a) | a ∈ {0, 1, . . . , d}k} ≤ w,

for some w.
For 0 ≤ k ≤ n, we define the spanning sets spank(A) and the dependency sets dependk(A)

as subsets of {0, 1, . . . , d}k as follows.
For k = 0, let depend0(A) = ∅ and span0(A) = {ε}, where ε = () denotes the empty

tuple. For k > 0, let
dependk(A) = {(a, j) | a ∈ spank−1(A) and 0 ≤ j ≤ d}, i.e. dependk(A) contains all
possible extensions of the tuples in spank−1(A).
spank(A) ⊆ dependk(A) is any set of size ≤ w, such that for any b ∈ dependk(A), the
polynomial A(yk,b) is in the span of {A(yk,a) | a ∈ spank(A)}.

The dependencies of the polynomials in {A(yk,a) | a ∈ dependk(A)} over {A(yk,a) | a ∈
spank(A)} are the characterizing set of dependencies.

The definition of spank(A) is not unique. For our purpose, it does not matter which of the
possibilities we take, we simply fix one of them. We do not require that spank(A) is of minimal
size, i.e. the polynomials associated with spank(A) constitute a basis for the polynomials
associated with dependk(A). This is because in the whitebox test in Section 3, we will
efficiently construct the sets spank(A), and there we cannot guarantee to obtain a basis. We
will see that it suffices to have | spank(A)| ≤ w. It follows that | dependk+1(A)| ≤ w(d+ 1).
Note that for k = n, we have yn = x and therefore A(yn,a) = coeffA(xa) is a constant for
every a. Hence, the coefficient space has dimension one in this case, and thus | spann(A)| = 1.

Now we are ready to construct an ROABP for A.

I Lemma 2.5 ([21], Converse of Lemma 2.2). Let A(x) be a polynomial of individual degree d
with x = (x1, x2, . . . , xn), such that for any 1 ≤ k ≤ n and yk = (x1, x2, . . . , xk), we have

dimF{A(yk,a) | a ∈ {0, 1, . . . , d}k } ≤ w .

Then there exists an ROABP of width w for A(x) in the variable order (x1, x2, . . . , xn).

Proof. To keep the notation simple, we assume3 that | spank(A)| = w for each 1 ≤ k ≤
n − 1. The argument would go through even when | spank(A)| < w. Let spank(A) =
{ak,1,ak,2, . . . ,ak,w} and spann(A) = {an,1}.

To prove the claim, we construct matrices D1, D2, . . . , Dn, where D1 ∈ F[x1]1×w, Dn ∈
F[xn]w×1, and Di ∈ F[xi]w×w, for i = 2, . . . , n − 1, such that A(x) = D1 D2 · · ·Dn. This
representation shows that there is an ROABP of width w for A(x).

3 Assuming d + 1 ≥ w, spank(A) can be made to have size = w for each k.

CCC 2015

330 Identity Testing for Sum of ROABPs

The matrices are constructed inductively such that for k = 1, 2 . . . , n− 1,

A(x) = D1D2 · · ·Dk [A(yk,ak,1) A(yk,ak,2) · · · A(yk,ak,w)]T . (4)

To construct D1 ∈ F[x1]1×w, consider the equation

A(x) =
d∑
j=0

A(y1,j) x
j
1. (5)

Recall that depend1(A) = {0, 1, . . . , d}. By the definition of span1(A), every A(y1,j) is in the
span of the A(y1,a)’s for a ∈ span1(A). That is, there exists constants {γj,i}i,j such that for
all 0 ≤ j ≤ d we have

A(y1,j) =
w∑
i=1

γj,iA(y1,a1,i). (6)

From equations (5) and (6) we get, A(x) =
∑w
i=1

(∑d
j=0 γj,i x

j
1

)
A(y1,a1,i). Hence, we define

D1 = [D1,1 D1,2 · · · D1,w], where D1,i =
∑d
j=0 γj,i x

j
1, for all i ∈ [w]. Then we have

A = D1 [A(y1,a1,1) A(y1,a1,2) · · · A(y1,a1,w)]T . (7)

To construct Dk ∈ F[xk]w×w for 2 ≤ k ≤ n− 1, we consider the equation

[A(yk−1,ak−1,1) · · ·A(yk−1,ak−1,w)]T = Dk [A(yk,ak,1) · · ·A(yk,ak,w)]T . (8)

We know that for each 1 ≤ i ≤ w,

A(yk−1,ak−1,i) =
d∑
j=0

A(yk,(ak−1,i,j)) x
j
k. (9)

Observe that (ak−1,i, j) is just an extension of ak−1,i and thus belongs to dependk(A). Hence,
there exists a set of constants {γi,j,h}i,j,h such that for all 0 ≤ j ≤ d we have

A(yk,(ak−1,i,j)) =
w∑
h=1

γi,j,hA(yk,ak,h). (10)

From equations (9) and (10), for each 1 ≤ i ≤ w we get

A(yk−1,ak−1,i) =
w∑
h=1

 d∑
j=0

γi,j,h x
j
k

A(yk,ak,h) .

Hence, we can define Dk(i, h) =
∑d
j=0 γi,j,h x

j
k, for all i, h ∈ [w]. Then Dk is the desired

matrix in equation (8).
Finally, we obtain Dn ∈ Fw×1[xn] in an analogous way. Instead of equation (8) we

consider the equation

[A(yn−1,an−1,1) · · ·A(yn−1,an−1,w)]T = D′n [A(yn,an,1)] . (11)

Recall that A(yn,an,1) ∈ F is a constant that can be absorbed into the last matrix D′n, i.e.
we define Dn = D′nA(yn,an,1). Combining equations (7), (8), and (11), we get A(x) =
D1 D2 · · ·Dn. J

R. Gurjar, A. Korwar, N. Saxena, and T. Thierauf 331

Consider the polynomial Pk defined as the product of the first k matrices D1, D2, . . . , Dk

from the above proof; Pk(yk) = D1D2 · · ·Dk. We can write Pk as

Pk(yk) =
∑

a∈{0,1,...,d}k
coeffPk(ya

k)ya
k ,

where coeffPk(ya
k) is a vector in F1×w. We will see next that it follows from the proof of

Lemma 2.5 that the coefficient space of Pk, i.e., spanF{coeffPk(ya
k) | a ∈ {0, 1, . . . , d}k} has

full rank w.

I Corollary 2.6 (Full Rank Coefficient Space). Let D1, D2, . . . , Dn be the matrices constructed
in the proof of Lemma 2.5 with A = D1D2 · · ·Dn. Let spank(A) = {ak,1,ak,2, . . . ,ak,w}.
For k ∈ [n], define the polynomial Pk(yk) = D1D2 · · ·Dk.

Then for any ` ∈ [w], we have coeffPk(yak,`
k) = e`, where e` is the `-th elementary unit

vector, e` = (0, . . . , 0, 1, 0, . . . , 0) of length w, with a one at position `, and zero at all other
positions. Hence, the coefficient space of Pk has full rank w.

Proof. In the construction of the matrices Dk in the proof of Lemma 2.5, consider the
special case in equations (6) and (10) that the exponent (ak−1,i, j) is in spank(A), say
(ak−1,i, j) = ak,` ∈ spank(A). Then the γ-vector to express A(yk,(ak−1,i,j)) in equation (6)
and (10) can be chosen to be e`, i.e. (γi,j,h)h = e`. By the definition of matrix Dk, vector e`
becomes the i-th row of Dk for the exponent j, i.e., coeffDk(i,·)(xjk) = e`.

This shows the claim for k = 1. For larger k, it follows by induction because for
(ak−1,i, j) = ak,` we have coeffPk(yak,`

k) = coeffPk−1(yak−1,i
k−1) coeffDk(xjk) . J

3 Whitebox Identity Testing

We will use the characterization of ROABPs provided by Lemmas 2.2 and 2.5 in Section 3.1
to design a polynomial-time algorithm to check if two given ROABPs are equivalent. This is
the same problem as to check whether the sum of two ROABPs is zero. In Section 3.2, we
extend the test to check whether the sum of constantly many ROABPs is zero.

3.1 Equivalence of two ROABPs
Let A(x) and B(x) be two polynomials of individual degree d, given by two ROABPs. If the
two ROABPs have the same variable order then one can combine them into a single ROABP
which computes their difference. Then one can apply the test for one ROABP (whitebox
[22], blackbox [3]). So, the problem is non-trivial only when the two ROABPs have different
variable order. W.l.o.g. we assume that A has order (x1, x2, . . . , xn). Let w bound the width
of both ROABPs. In this section we prove that we can find out in polynomial time whether
A(x) = B(x).

I Theorem 3.1. The equivalence of two ROABPs can be tested in polynomial time.

The idea is to determine the characterizing set of dependencies among the partial derivative
polynomials of A, and verify that the same dependencies hold for the corresponding partial
derivative polynomials of B. By Lemma 2.5, these dependencies essentially define an ROABP.
Hence, our algorithm is to construct an ROABP for B in the variable order of A. Then it
suffices to check whether we get the same ROABP, that is, all the matrices D1, D2, . . . , Dn

constructed in the proof of Lemma 2.5 are the same for A and B. We give some more details.

CCC 2015

332 Identity Testing for Sum of ROABPs

Construction of spank(A)

Let A(x) = D1(x1)D2(x2) · · ·Dn(xn) of width w. We give an iterative construction, starting
from span0(A) = {ε}. Let 1 ≤ k ≤ n. By definition, dependk(A) consists of all possible
one-step extensions of spank−1(A). Let b = (b1, b2, . . . , bk) ∈ {0, 1, . . . , d}k. Define

Cb =
k∏
i=1

coeffDi(x
bi
i) .

Recall that coeffD1(xb1
1) ∈ F1×w and coeffDi(x

bi
i) ∈ Fw×w, for 2 ≤ i ≤ k. Therefore

Cb ∈ F1×w for k < n. Since Dn ∈ Fw×1, we have Cb ∈ F for k = n. By equation (3), we
have

A(yk,b) = Cb Dk+1 · · ·Dn . (12)

Consider the set of vectors Dk = {Cb | b ∈ dependk(A)}. This set has dimension bounded
by w since the width of A is w. Hence, we can determine a set Sk ⊆ Dk of size ≤ w of
such that Sk spans Dk. Thus we can take spank(A) = {a | Ca ∈ Sk}. Then, for any
b ∈ dependk(A), vector Cb is a linear combination

Cb =
∑

a∈spank(A)

γa Ca .

Recall that |dependk(A)| ≤ w(d + 1), i.e. this is a small set. Therefore we can efficiently
compute the coefficients γa for every b ∈ dependk(A) . Note that by equation (12) we have
the same dependencies for the polynomials A(yk,b). That is, with the same coefficients γa,
we can write

A(yk,b) =
∑

a∈spank(A)

γa A(yk,a) . (13)

Verifying the dependencies for B

We want to verify that the dependencies in equation (13) computed for A hold as well for B,
i.e. that for all k ∈ [n] and b ∈ dependk(A),

B(yk,b) =
∑

a∈spank(A)

γa B(yk,a) . (14)

Recall that yk = (x1, x2, . . . , xk) and the ROABP for B has a different variable order.
By Lemma 2.3, every polynomial B(yk,a) has an ROABP of width w and the same order on
the remaining variables as the one given for B. It follows that each of the w + 1 polynomials
that occur in equation (14) has an ROABP of width w and the same variable order. Hence,
we can construct one ROABP for the polynomial

B(yk,b) −
∑

a∈spank(A)

γaB(yk,a) . (15)

Simply identify all the start nodes and all the end nodes and put the appropriate constants γa

to the weights. Then we get an ROABP of width w(w + 1). In order to verify equation (14),
it suffices to make a zero-test for this ROABP. This can be done in polynomial time [22].

R. Gurjar, A. Korwar, N. Saxena, and T. Thierauf 333

Correctness

Clearly, if equation (14) fails to hold for some k and b, then A 6= B. So assume that
equation (14) holds for all k and b.

Recall Lemma 2.5 and its proof. There we constructed an ROABP just from the
characterizing dependencies of the given polynomial. Hence, the construction applied to B
will give an ROABP of width w for B with the same variable order (x1, x2, . . . , xn) as for A.
The matrices Dk will be the same as for A because their definition uses only the dependencies
provided by equation (14), and they are the same as for A in equation (13).

Note that when we construct the last matrix Dn by equation (11), for A we have
A(x) = D1D2 · · ·Dn, where Dn = D′nA(yn,an,1). The dependencies define matrix D′n.
Therefore, for B we will obtain B(x) = D1D2 · · ·D′nB(yn,an,1). Since we also check that we
get the same matrix Dn for A and B, we also have A(yn,an,1) = B(yn,an,1), and therefore
A(x) = B(x). This proves Theorem 3.1.

3.2 Sum of constantly many ROABPs
Let A1(x), A2(x), . . . , Ac(x) be polynomials of individual degree d, given by c ROABPs. Our
goal is to test whether A1 +A2 + · · ·+Ac = 0. Here again, the question is interesting only
when the ROABPs have different variable orders. We show how to reduce the problem to
the case of the equivalence of two ROABPs from the previous section. For constant c this
will lead to a polynomial-time test.

We start by rephrasing the problem as an equivalence test. Let A = −A1 and B =
A2 + A3 + · · · + Ac. Then the problem has become to check whether A = B. Since A is
computed by a single ROABP, we can use the same approach as in Section 3.1. Hence,
we get again the dependencies from equation (13) for A. Next, we have to verify these
dependencies for B, i.e. equation (14). Now, B is not given by a single ROABP, but is
a sum of c − 1 ROABPs. For every k ∈ [n] and b ∈ dependk(A), define the polynomial
Q = B(yk,b) −

∑
a∈spank(A) γaB(yk,a). By the definition of B we have

Q =
c∑
i=2

Ai(yk,b) −
∑

a∈spank(A)

γaAi(yk,a)

 . (16)

As explained in the previous section for equation (15), for each summand in equation (16)
we can construct an ROABP of width w(w + 1). Thus, Q can be written as a sum of c− 1
ROABPs, each having width w(w + 1). To test whether Q = 0, we recursively use the same
algorithm for the sum of c− 1 ROABPs. The recursion ends when c = 2. Then we directly
use the algorithm from Section 3.1.

To bound the running time of the algorithm, let us see how many dependencies we need
to verify. There is one dependency for every k ∈ [n] and every b ∈ dependk(A). Since
|dependk(A)| ≤ w(d+ 1), the total number of dependencies verified is ≤ nw(d+ 1). Thus,
we get the following recursive formula for T (c, w), the time complexity for testing zeroness of
the sum of c ≥ 2 ROABPs, each having width w. For c = 2, we have T (2, w) = poly(n, d, w),
and for c > 2,

T (c, w) = nw(d+ 1) · T (c− 1, w(w + 1)) + poly(n, d, w).

As solution, we get T (c, w) = wO(2c)poly(nc, dc), i.e. polynomial time for constant c.

CCC 2015

334 Identity Testing for Sum of ROABPs

I Theorem 3.2. Let A(x) be an n-variate polynomial of individual degree d, computed
by a sum of c ROABPs of width w. Then there is a PIT for A(x) that works in time
wO(2c)(nd)O(c).

4 Blackbox Identity Testing

In this section, we extend the blackbox PIT of Agrawal et. al [3] for one ROABP to the
sum of constantly many ROABPs. In the blackbox model we are only allowed to evaluate a
polynomial at various points. Hence, for PIT, our task is to construct a hitting-set.

I Definition 4.1. A set H = H(n, d, w) ⊆ Fn is a hitting-set for ROABPs, if for every
nonzero n-variate polynomial A(x) of individual degree d that can be computed by ROABPs
of width w, there is a point a ∈ H such that A(a) 6= 0.

For polynomials computed by a sum of c ROABPs, a hitting-set is defined similarly. Here,
H = H(n, d, w, c) additionally depends on c.

For a hitting-set to exist, we will need enough points in the underlying field F. Henceforth,
we will assume that the field F is large enough such that the constructions below go through
(see [1] for constructing large F). To construct a hitting-set for a sum of ROABPs we use
the concept of low support rank concentration defined by Agrawal, Saha, and Saxena [4]. A
polynomial A(x) has low support concentration if the coefficients of its monomials of low
support span the coefficients of all the monomials.

I Definition 4.2 ([4]). A polynomial A(x) has `-support concentration if for all monomials xa

of A(x) we have

coeffA(xa) ∈ spanF{coeffA(xb) | supp(b) < `}.

The above definition applies to polynomials over any F-vector space, e.g. F[x], Fw[x] or
Fw×w[x]. If A(x) ∈ F[x] is a non-zero polynomial that has `-support concentration, then
there are nonzero coefficients of support < `. Then the assignments of support < ` are a
hitting-set for A(x).

I Lemma 4.3 ([4]). For n, d, `, the set H = {h ∈ {0, β1, . . . , βd}n | supp(h) < `} of size
(nd)O(`) is a hitting-set for all n-variate `-concentrated polynomials A(x) ∈ F[x] of individual
degree d, where {βi}i are distinct nonzero elements in F.

Hence, when we have low support concentration, this solves blackbox PIT. However,
not every polynomial has a low support concentration, for example A(x) = x1x2 · · ·xn is
not n-concentrated. However, Agrawal, Saha, and Saxena [4] showed that low support
concentration can be achieved through an appropriate shift of the variables.

I Definition 4.4. Let A(x) be an n-variate polynomial and f = (f1, f2, . . . , fn) ∈ Fn. The
polynomial A shifted by f is A(x+ f) = A(x1 + f1, x2 + f2, . . . , xn + fn).

Note that a shift is an invertible process. Therefore it preserves the coefficient space of a
polynomial.

In the above example, we shift every variable by 1. That is, we consider A(x + 1) =
(x1 + 1)(x2 + 1) · · · (xn + 1). Observe that A(x+ 1) has 1-support concentration. Agrawal,
Saha, and Saxena [4] provide an efficient shift that achieves low support concentration for
polynomials computed by set-multilinear depth-3 circuits. Forbes, Saptharishi and Shpilka [9]
extended their result to polynomials computed by ROABPs. However their cost is exponential

R. Gurjar, A. Korwar, N. Saxena, and T. Thierauf 335

in the individual degree of the polynomial. Any efficient shift for ROABPs will suffice for
our purposes. Here, we will give a new shift for ROABPs with quasi-polynomial cost.
Namely, in Theorem 5.6 below we present a shift polynomial f(t) ∈ F[t]n in one variable t of
degree (ndw)O(logn) that can be computed in time (ndw)O(logn). It has the property that
for every n-variate polynomial A(x) ∈ Fw×w[x] of individual degree d that can be computed
by an ROABP of width w, the shifted polynomial A(x+ f(t)) has O(logw)-concentration.
We can plug in as many values for t ∈ F as the degree of f(t), i.e. (ndw)O(logn) many. For
at least one value of t, the shift f(t) will O(logw)-concentrate A(x + f(t)). That is, we
consider f(t) as a family of shifts. The same shift also works when the ROABP computes a
polynomial in F[x] or F1×w[x].

The rest of the paper is organized as follows. The construction of a shift to obtain low
support concentration for single ROABPs is postponed to Section 5. We start in Section 4.1
to show how the shift for a single ROABP can be applied to obtain a shift for the sum of
constantly many ROABPs.

4.1 Sum of ROABPs
Let polynomial A ∈ F[x] of individual degree d have an ROABP of width w, with variable
order (x1, x2, . . . , xn). Let B ∈ F[x] be another polynomial. We start by reconsidering the
whitebox test from the previous section. The dependency equations (13) and (14) were used
to construct an ROABP for B ∈ F[x] in the same variable order as for A, and the same
width. If this succeeds, then the polynomial A + B has one ROABP of width 2w. Since
there is already a blackbox PIT for one ROABP [3], we are done in this case. Hence, the
interesting case that remains is when B does not have an ROABP of width w in the variable
order of A.

Let k ∈ [n] be the first index such that the dependency equations (13) for A do not carry
over to B as in equation (14). In the following Lemma 4.5 we decompose A and B into a
common part up to layer k, and the remaining different parts. That is, for yk = (x1, x2, . . . , xk)
and zk = (xk+1, . . . , xn), we obtain A = RP and B = RQ, where R ∈ F[yk]1×w′ and
P,Q ∈ F[zk]w′×1, for some w′ ≤ w(d+ 1). The construction also implies that the coefficient
space of R has full rank w′. Since the dependency equations (13) for A do not fulfill
equation (14) for B, we get a constant vector Γ ∈ F1×w′ such that ΓP = 0 but ΓQ 6= 0.
From these properties we will see in Lemma 4.6 below that we get low support concentration
for A+B when we use the shift constructed in Section 5 for one ROABP.

I Lemma 4.5 (Common ROABP R). Let A(x) be polynomial of individual degree d, computed
by a ROABP of width w in variable order (x1, x2, . . . , xn). Let B(x) be another polynomial
for which there does not exist an ROABP of width w in the same variable order.

Then there exists a k ∈ [n] such that for some w′ ≤ w(d + 1), there are polynomials
R ∈ F[yk]1×w′ and P,Q ∈ F[zk]w′×1, such that
1. A = RP and B = RQ,
2. there exists a vector Γ ∈ F1×w′ with supp(Γ) ≤ w + 1 such that ΓP = 0 and ΓQ 6= 0,
3. the coefficient space of R has full rank w′.

Proof. Let D1, D2, . . . , Dn be the matrices constructed in Lemma 2.5 for A. Assume again
w.l.o.g. that spank(A) = {ak,1,ak,2, . . . ,ak,w} has size w for each 1 ≤ k ≤ n − 1, and
spann(A) = {an,1}. Then we have D1 ∈ F1×w[x1], Dn ∈ Fw×1[xn] and Di ∈ Fw×w[xi], for
2 ≤ i ≤ n− 1.

In the proof of Lemma 2.5 we consider the dependency equations for A and carry them
over to B. By the assumption of the lemma, there is no ROABP of width w for B now.

CCC 2015

336 Identity Testing for Sum of ROABPs

Therefore there is a smallest k ∈ [n] where a dependency for A is not followed by B. That is,
the coefficients γa computed for equation (13) do not fulfill equation (14) for B. Since the
dependencies carry over up to this point, the construction of the matrices D1, D2, . . . , Dk−1
work out fine for B. Hence, by equation (4), we can write

A(x) = D1 D2 · · ·Dk−1 [A(yk−1,ak−1,1) A(yk−1,ak−1,2) · · · A(yk−1,ak−1,w)]T (17)

B(x) = D1 D2 · · ·Dk−1 [B(yk−1,ak−1,1) B(yk−1,ak−1,2) · · · B(yk−1,ak−1,w)]T (18)

Since the difference between A and B occurs at xk, we consider all possible extensions
from xk−1. That is, by equation (9), for every i ∈ [w] we have

A(yk−1,ak−1,i) =
d∑
j=0

A(yk,(ak−1,i,j))x
j
k . (19)

Recall that our goal is to decompose polynomial A into A = RP . We first define
polynomial P as the vector of coefficient polynomials of all the one-step extensions of
spank−1(A), i.e., P =

(
A(yk,(ak−1,i,j))

)
1≤i≤w, 0≤j≤d is of length w′ = w(d + 1). Written

explicitly, this is

P = [A(yk,(ak−1,1,0)) · · ·A(yk,(ak−1,1,d)) · · · A(yk,(ak−1,w,0)) · · ·A(yk,(ak−1,w,d))]T .

To define R ∈ F[yk]1×w′ , let Iw be the w×w identity matrix. Define matrix Ek ∈ F[xk]w×w′

as the tensor product

Ek = Iw ⊗
[
x0
k x

1
k · · · xdk

]
.

From equation (19) we get that

[A(yk−1,ak−1,1) · · ·A(yk−1,ak−1,w)]T = Ek P.

Thus, equation (17) can be written as A(x) = D1 D2 · · ·Dk−1EkP . Hence, when we
define

R(yk) = D1 D2 · · ·Dk−1Ek

then we have A = RP as desired. By an analogous argument we get B = RQ for Q =(
B(yk,(ak−1,i,j))

)
1≤i≤w, 0≤j≤d.

For the second claim of the lemma let b ∈ dependk(A) such that the dependency
equation (13) for A is fulfilled, but not equation (14) for B. Define Γ ∈ F1×w′ to be the
vector that has the values γa used in equation (13) at the position where P has entry A(yk,a),
and zero at all other positions. Then supp(Γ) ≤ w + 1 and we have ΓP = 0 and ΓQ 6= 0.

It remains to show that the coefficient space of R has full rank. By Corollary 2.6, the
coefficient space of D1 D2 · · ·Dk−1 has full rank w. Namely, for any ` ∈ [w], the coefficient
of the monomial yak−1,`

k−1 is e`, the `-th standard unit vector. Therefore the coefficient of
R(yk) = D1 D2 · · ·Dk−1Ek at monomial y(ak−1,`,j)

k is

coeffR(yak−1,`,j
k) = e` coeffEk(xjk),

for 1 ≤ ` ≤ w and 0 ≤ j ≤ d. By the definition of Ek, we get coeffR(yak−1,`,j
k) =

e(`−1)(d+1)+j+1. Thus, the coefficient space of R has full rank w′. J

Lemma 4.5 provides the technical tool to obtain low support concentration for the sum
of several ROABPs by the shift developed for a single ROABP. We start with the case of the
sum of two ROABPs.

R. Gurjar, A. Korwar, N. Saxena, and T. Thierauf 337

I Lemma 4.6. Let A(x) and B(x) be two n-variate polynomials of individual degree d, each
computed by an ROABP of width w. Define Ww,2 = (d+ 1)(2w)2 and `w,2 = log(W 2

w,2 + 1).
Let fw,2(t) ∈ F[t]n be a shift that `w,2-concentrates any polynomial (or matrix polynomial)
that is computed by an ROABP of width ≤Ww,2.

Then (A+B)′ = (A+B)(x+ fw,2) is 2 `w,2-concentrated.

Proof. If B can be computed by an ROABP of width w in the same variable order as the
one for A, then there is an ROABP of width 2w that computes A + B. In this case the
lemma follows because 2w ≤ Ww,2. So let us assume that there is no such ROABP for B.
Thus the assumption from Lemma 4.5 is fulfilled. Hence, we have a decomposition of A
and B at the k-th layer into A(x) = R(yk)P (zk) and B(x) = R(yk)Q(zk), and there is a
vector Γ ∈ F1×w′ such that ΓP = 0 and ΓQ 6= 0, where w′ = (d+ 1)w and supp(Γ) ≤ w + 1.

Define R′, P ′, Q′ as the polynomials R,P,Q shifted by fw,2, respectively. Since ΓP = 0,
we also have ΓP ′ = 0.

By the definition of R, there is an ROABP of width w′ that computes R. Since w′ ≤Ww,2,
polynomial R′ is `w,2-concentrated by the assumption of the lemma.

We argue that also ΓQ′ is `w,2-concentrated: let Q = [Q1 Q2 · · ·Qw′]T ∈ F[zk]w′×1. By
Lemma 2.3, from the ROABP for B we get an ROABP for each Qi of the same width w and
the same variable order. Therefore we can combine them into one ROABP that computes
ΓQ =

∑w′

i=1 γiQi. Its width is w(w + 1) because supp(Γ) ≤ w + 1. Since w(w + 1) ≤Ww,2,
polynomial ΓQ′ is `w,2-concentrated.

Since ΓQ 6= 0 and ΓQ′ is `w,2-concentrated, there exists at least one b ∈ {0, 1, . . . , d}n−k
with supp(b) < `w,2 such that Γ coeffQ′(zb

k) 6= 0. Because ΓP = 0, we have Γ coeffP ′(zb
k) = 0,

and therefore

Γ coeffP ′+Q′(zb
k) 6= 0. (20)

Recall that the coefficient space of R has full rank w′. Since a shift preserves the coefficient
space, also R′ has a full rank coefficient space. Because R′ is `w,2-concentrated, already the
coefficients of the < `w,2-support monomials of R′ have full rank w′. That is, for M`w,2 =
{a ∈ {0, 1, . . . , d}k | supp(a) < `w,2}, we have rankF(t){coeffR′(ya

k) | a ∈ M`w,2} = w′.
Therefore, we can express Γ as a linear combination of these coefficients,

Γ =
∑

a∈M`w,2

αa coeffR′(ya
k),

where αa is a rational function in F(t), for a ∈M`w,2 . Hence, from equation (20) we get

Γ coeff(P ′+Q′)(zb
k) =

 ∑
a∈M`w,2

αa coeffR′(ya
k)

 coeffP ′+Q′(zb
k)

=
∑

a∈M`w,2

αa coeffR′(P ′+Q′)(ya
k z

b
k)

=
∑

a∈M`w,2

αa coeff(A+B)′(x(a,b))

6= 0 .

Since supp(a, b) = supp(a)+supp(b) < 2`w,2, it follows that there is a monomial in (A+B)′ of
support < 2`w,2 with a nonzero coefficient. In other words, (A+B)′ is 2`w,2-concentrated. J

CCC 2015

338 Identity Testing for Sum of ROABPs

In Section 5, Theorem 5.6, we will show that the shift polynomial fw,2(t) ∈ F[t]n used
in Lemma 4.6 can be computed in time (ndw)O(logn). The degree of fw,2(t) has the same
bound. Recall that when we say that we shift by fw,2(t), we actually mean that we plug in
values for t up to the degree of fw,2(t). That is, we have a family of (ndw)O(logn) shifts, and
at least one of them will give low support concentration. By Lemma 4.3, we get for each t, a
potential hitting-set Ht of size (nd)O(`w,2) = (nd)O(log dw),

Ht = {h+ f(t) | h ∈ {0, β1, . . . , βd}n and supp(h) < 2`w,2} .

The final hitting-set is the union of all these sets, i.e. H =
⋃
tHt, where t takes (ndw)O(logn)

distinct values. Hence, we have the following main result.

I Theorem 4.7. Given n, d, w, in time (ndw)O(logndw) one can construct a hitting-set for all
n-variate polynomials of individual degree d, that can be computed by a sum of two ROABPs
of width w.

We extend Lemma 4.6 to the sum of c ROABPs.

I Lemma 4.8. Let A = A1 + A2 + · · · + Ac, where the Ai’s are n-variate polynomials of
individual degree d, each computed by an ROABP of width w. Define Ww,c = (d+ 1)(2w)2c−1

and `w,c = log(W 2
w,c + 1). Let fw,c(t) ∈ F[t]n be a shift that `w,c-concentrates any polynomial

(or matrix polynomial) that is computed by an ROABP of width Ww,c.
Then A′ = A(x+ fw,c) is c `w,c-concentrated.

Proof. The proof is by induction on c. Lemma 4.6 provides the base case c = 2. For the
induction step let c ≥ 3. We follow the proof of Lemma 4.6 with A = A1 and B =

∑c
j=2 Aj .

Consider again the decomposition of A and B at the k-th layer into A = RP and B = RQ,
and let Γ ∈ F1×w′ such that ΓP = 0 and ΓQ 6= 0, where w′ = (d+ 1)w and supp(Γ) ≤ w+ 1.

The only difference to the proof of Lemma 4.6 is Q = [Q1 Q2 · · ·Qw′]T . Recall from
Lemma 4.5 that Qi = B(yk,ai) =

∑c
j=2 Aj(yk,ai)

, for ai ∈ dependk(A). Hence,

ΓQ =
w′∑
i=1

γi

 c∑
j=2

Aj(yk,ai)

 =
c∑
j=2

w′∑
i=1

γiAj(yk,ai)
.

By Lemma 2.3, ΓQ can be computed by a sum of c− 1 ROABPs, each of width w(w + 1) ≤
2w2 = w′′, because supp(Γ) ≤ w + 1. Our definition of Ww,c was chosen such that

Ww′′,c−1 = (d+ 1)(2w′′)2c−2
= (d+ 1)(2 · 2w2)2c−2

= (d+ 1)(2w)2c−1
= Ww,c .

Hence, fw,c(t) is a shift that `w′′,c−1-concentrates any polynomial that is computed by an
ROABP of width Ww′′,c−1. By the induction hypothesis, we get that ΓQ′ = ΓQ(x+ fw,c(t))
is (c− 1) `w′′,c−1-concentrated, which is same as (c− 1) `w,c-concentrated.

Now we can proceed as in the proof of Lemma 4.6 and get that (A+B)′ =
∑c
j=1 A

′
j has

a monomial of support < `w,c + (c− 1) `w,c = c `w,c. J

We combine the lemmas similarly as for Theorem 4.7 and obtain our main result for the
sum of constantly many ROABPs.

I Theorem 4.9. Given n,w, d, in time (ndw)O(c·2c logndw) one can construct a hitting-set
for all n-variate polynomials of individual degree d, that can be computed by the sum of c
ROABPs of width w.

R. Gurjar, A. Korwar, N. Saxena, and T. Thierauf 339

4.2 Concentration in matrix polynomials
As a by-product, we show that low support concentration can be achieved even when
we have a sum of matrix polynomials, each computed by an ROABP. For a matrix poly-
nomial A(x) ∈ Fw×w[x], an ROABP is defined similar to the standard case. We have
layers of nodes V0, V1, . . . , Vn connected by directed edges from Vi−1 to Vi. Here, also
V0 = {v0,1, v0,2, . . . , v0,w} and Vn = {vn,1, vn,2, . . . , vn,w} consist of w nodes. The polyno-
mial Ai,j(x) at position (i, j) in A(x) is the polynomial computed by the standard ROABP
with start node v0,i and end node vn,j .

Note that Definition 4.2 for `-support concentration can be applied to polynomials over
any F-algebra.

I Corollary 4.10. Let A = A1 + A2 + · · · + Ac, where each Ai ∈ Fw×w[x] is an n-variate
matrix polynomials of individual degree d, each computed by an ROABP of width w. Let `w,c
be defined as in Lemma 4.8.

Then A(x+ fw2,c) is c`w2,c-concentrated.

Proof. Let α ∈ Fw×w and consider the dot-product 〈α,Ai〉 ∈ F[x]. This polynomial can be
computed by an ROABP of width w2: we take the ROABP of width w for Ai and make w
copies of it, and two new nodes s and t. We add the following edges.

Connect the new start node s to the h-th former start node of the h-th copy of the
ROABP by edges of weight one, for all 1 ≤ h ≤ w.
Connect the j-th former end node of the h-th copy of the ROABP to the new end node t
by an edge of weight αh,j , for all 1 ≤ h, j ≤ w.

The resulting ROABP has width w2 and computes 〈α,Ai〉.
Now consider the polynomial 〈α,A〉 = 〈α,A1〉+〈α,A2〉+· · ·+〈α,Ac〉. It can be computed

by a sum of c ROABPs, each of width w2, for every α ∈ Fw×w. Hence, by Lemma 4.8, the
polynomial 〈α,A〉 (x+ fw2,c) is c`w2,c-concentrated, for every α ∈ Fw×w. By Lemma 4.11
below, it follows that A(x+ fw2,c) is c`w2,c-concentrated. J

The following lemma is also of independent interest.

I Lemma 4.11. Let A ∈ Fw×w[x] be an n-variate polynomial and f(t) be a shift. Then
A(x+ f(t)) is `-concentrated iff ∀α ∈ Fw×w, 〈α,A〉 (x+ f(t)) is `-concentrated.

Proof. Assume that A′(x) = A(x+f) is not `-concentrated. Then there exists a monomial xb

such that coeffA′(xb) /∈ spanF(t){coeffA′(xa) | supp(a) < `}. Hence, there exists an α ∈
Fw×w such that 〈α, coeffA′(xa)〉 = 0, for all a with supp(a) < `, but 〈α,A′〉 6= 0. We thus
found an α ∈ Fw×w such that 〈α,A〉 (x+ f(t)) is not `-concentrated.

For the other direction, let A(x+f) be `-concentrated. Hence, any coefficient coeffA′(xa)
can be written as a linear combination of the small support coefficients,

coeffA′(xa) =
∑

b
supp(b)<`

γb coeffA′(xb),

for some γb ∈ F. Hence, for any α ∈ Fw×w, we also have

〈α, coeffA′(xa)〉 =
〈
α,

∑
b

supp(b)<`

γb coeffA′(xb)
〉
.

That is, 〈α,A〉 (x+ f(t)) is `-concentrated. J

CCC 2015

340 Identity Testing for Sum of ROABPs

5 Low Support Concentration in ROABPs

Recall that a polynomial A(x) over an F-algebra A is called low-support concentrated if its
low-support coefficients span all its coefficients. We show an efficient shift which achieves
concentration in matrix polynomials computed by ROABPs. We use the quasi-polynomial
size hitting-set for ROABPs given by Agrawal et al. [3]. Their hitting-set is based on a basis
isolating weight assignment which we define next.

Recall that M = {0, 1, . . . , d}n denotes the set of all exponents of monomials in x of
individual degree bounded by d. For a weight function w: [n]→ N and a = (a1, a2, . . . , an) ∈
M , let the weight of a be w(a) =

∑n
i=1 w(i)ai. Let Ak be a k-dimensional algebra over field

F.

I Definition 5.1. A weight function w: [n]→ N is called a basis isolating weight assignment
for a polynomial A(x) ∈ Ak[x], if there exists S ⊆M with |S| ≤ k such that
∀a 6= b ∈ S, w(a) 6= w(b) and
∀a ∈ S := M − S, coeffA(xa) ∈ spanF{coeffA(xb) | b ∈ S and w(b) < w(a)}.

Agrawal et al. [3, Lemma 8] presented a quasi-polynomial time construction of such a
weight function for any polynomial A(x) ∈ Fw×w[x] computed by an ROABP. The hitting-set
is then defined by points (tw(1), tw(2), . . . , tw(n)) for poly(n, d, w)logn many t’s. Our approach
now is to use this weight function for a shift of A(x) by

(
tw(i))n

i=1. Let A′(x) denote the
shifted polynomial,

A′(x) = A(x+ tw) = A(x1 + tw(1), x2 + tw(2), . . . , xn + tw(n)) .

We will prove that A′ has low support concentration.
The coefficients of A′ are linear combinations of coefficients of A, which are given by the

equation

coeffA′(xa) =
∑
b∈M

(
b

a

)
tw(b−a) · coeffA(xb), (21)

where
(

b
a

)
=
∏n
i=1
(
bi
ai

)
for any a, b ∈ Nn.

Equation (21) can be expressed in terms of matrices. Let C be the coefficient matrix
of A, i.e. the M × [k] matrix with the coefficients coeffA(xa) as rows,

C(a, ·) = coeffA(xa)T .

Similarly, let C ′ be the M × [k] with the coefficients coeffA′(xa) as rows. Let furthermore T
be the M ×M transfer matrix given by

T (a, b) =
(
b

a

)
,

and D be the M ×M diagonal matrix given by

D(a,a) = tw(a) .

The inverse of D is the diagonal matrix given by D−1(a,a) = t−w(a). Now equation (21)
becomes

C ′ = D−1TDC . (22)

As shifting is an invertible operation, the matrix T is also invertible and rank(C ′) = rank(C).

R. Gurjar, A. Korwar, N. Saxena, and T. Thierauf 341

I Lemma 5.2 (Isolation to concentration). Let A(x) be a polynomial over a k-dimensional
algebra Ak. Let w be a basis isolating weight assignment for A(x). Then A(x + tw) is
`-concentrated, where ` = dlog(k + 1)e.

Proof. Let A′(x) = A(x+ tw). We reconsider equation (22) with respect to the low support
monomials: let M` = {a ∈ M | supp(a) < `} be the exponents of low support. Then we
define matrices

C′
` : the M` × [k] submatrix of C′ that contains the coefficients of A′ of support < `,

T` : the M` ×M submatrix of T restricted to the rows a ∈M`,
D` : the M` ×M` submatrix of D restricted to the rows and columns from M`.

To show that A′ is `-concentrated, we need to prove that rank(C ′`) = rank(C). By equa-
tion (22), matrix C ′` can be written as C ′` = D−1

` T`DC. Since D` and D−1
` are diagonal

matrices, they have full rank. Hence, it suffices to show that rank(T`DC) = rank(C).
W.l.o.g. we assume that the order of the rows and columns in all the above matrices that

are indexed by M or M` is according to increasing weight w(a) of the indices a. The rows
with the same weight can be arranged in an arbitrary order.

Now, recall that w is a basis isolating weight assignment. Hence, there exists a set S ⊆M
such that the coefficients coeffA(b), for b ∈ S, span all coefficients coeffA(a), for a ∈M . In
terms of the coefficient matrix C, for any a ∈M we can write

C(a, ·) ∈ span{C(b, ·) | b ∈ S and w(b) < w(a)}. (23)

Let S = {s1, s2, . . . , sk′} for some k′ ≤ k. Let C0 be the k′ × k submatrix of C whose
i-th row is C(si, ·), i.e. C0(i, ·) = C(si, ·). By (23), for every a ∈ M , there is a vector
γa = (γa,1, γa,2, . . . , γa,k′) ∈ Fk′ such that C(a, ·) =

∑k′

j=1 γa,j C0(j, ·). Let Γ = (γa,j)a,j be
the M × [k′] matrix with these vectors as rows. Then we get

C = ΓC0 .

Observe that the si-th row of Γ is simply ei, the i-th standard unit vector. By (23),
the coefficient C(si, ·) is used to express C(a, ·) only when w(a) > w(si). Recall that the
rows of the matrices indexed by M , like Γ, are in order of increasing weight of the index.
Therefore, when we consider the i-th column of Γ from top, the entries are all zero down to
row si, where we hit on the one from ei,

Γ(si, i) = 1 and ∀a 6= si, w(a) ≤ w(si) =⇒ Γ(a, i) = 0 . (24)

Recall that our goal is to show rank(T`DC) = rank(C). For this, it suffices to show that
the M` × k′ matrix R = T`DΓ has full column rank k′, because then we have rank(T`DC) =
rank(T`DΓC0) = rank(RC0) = rank(C0) = rank(C).

To show that R has full column rank k′, observe that the j-th column of R can be written
as

R(·, j) =
∑

a∈M
T`(·,a) Γ(a, j) tw(a) . (25)

By (24), the term with the lowest degree in equation (25) is tw(sj). By lc(R(·, j)) we denote
the coefficient of the lowest degree term in the polynomial R(·, j). Because Γ(sj , j) = 1, we
have

lc(R(·, j)) = T`(·, sj) .

CCC 2015

342 Identity Testing for Sum of ROABPs

We define the M` × [k′] matrix R0 whose j-th column is lc(R(·, j)), i.e. R0(·, j)) = T`(·, sj).
We will show in Lemma 5.3 below that the columns of matrix T` indexed by the set S are
linearly independent. Therefore the k′ columns of R0 are linearly independent.

Hence, there are k′ rows in R0 such that its restriction to these rows, say R′0, is a square
matrix with nonzero determinant. Let R′ denote the restriction of R to the same set of
rows. Now observe that the lowest degree term in det(R′) has coefficient precisely det(R′0),
i.e., lc(det(R′)) = det(R′0). This is because the lowest degree term in det(R′) has degree∑k′

j=1 w(sj), and this degree can only be obtained when the degree w(sj) term is taken
from the j-th column, for all j. We conclude that det(R′) 6= 0 and hence R has full column
rank. J

It remains to show that the k′ ≤ k columns of matrix T` indexed by the set S are linearly
independent. In fact, we will show that any k = 2` − 1 columns of T` are independent.

I Lemma 5.3. Let T` be the M` ×M matrix with T`(a, b) =
(

b
a

)
. Any 2` − 1 columns of

matrix T` are linearly independent.

Proof. Let S ⊆ M now be any set of size k = 2` − 1. Let T`,k be the M` × S submatrix
of T` that consists of the columns indexed by S. To prove the lemma we will show that for
any 0 6= v ∈ Fk we have T`,kv 6= 0.

Let v = (va)a∈S . Define the polynomial V (x) =
∑

a∈S vax
a ∈ F[x]. Let V ′(x) be

the polynomial where every variable in V (x) is shifted by one: V ′(x) = V (x + 1). From
equation (21) we get that for any a ∈M`,

coeffV ′(xa) =
∑
b∈S

(
b

a

)
vb = T`,k(a, ·)v .

Hence, T`,kv gives all the coefficients of V ′(x) of support < `. Now it remains to show that at
least one of these coefficients is nonzero. We show this in our next claim about concentration
in sparse polynomials, which is also of independent interest.

I Claim 5.4. Let V (x) ∈ F[x] be a non-zero n-variate polynomial with sparsity bounded by
2` − 1. Then V ′(x) = V (x+ 1) has a nonzero coefficient of support < `.

We prove the claim by induction on the number of variables n. For n = 1, polynomial V (x)
is univariate, i.e. all monomials in V (x) have support 1. Hence, for ` > 1 it suffices to show
that V ′(x) 6= 0. But this is equivalent to V (x) 6= 0, which holds by assumption. If ` = 1,
then V (x) is a univariate polynomial with exactly one monomial, and therefore V (x+ 1)
has a nonzero constant part.

Now assume that the claim is true for n − 1 and let V (x) have n variables. Let xn−1
denote the set of first n− 1 variables. Let us write V (x) =

∑d
i=0 Ui x

i
n, where Ui ∈ F[xn−1],

for every 0 ≤ i ≤ d. Let U ′i(xn−1) = Ui(xn−1 + 1) be the shifted polynomial, for every
0 ≤ i ≤ d. We consider two cases:
Case 1: There is exactly one index i ∈ [0, d] for which Ui 6= 0. Then Ui has sparsity ≤ 2`−1.

Because Ui is an (n− 1)-variate polynomial, U ′i has a nonzero coefficient of support < `

by inductive hypothesis.
Thus, V ′(x) = (xn + 1)i U ′i also has a nonzero coefficient of support < `.

Case 2: There are at least two Ui’s which are nonzero. Then there is at least one index in
i ∈ [0, d] such that Ui has sparsity 2`−1 − 1. And hence, by the inductive hypothesis, U ′i
has a nonzero coefficient of support < `− 1. Consider the largest index j such that U ′j

R. Gurjar, A. Korwar, N. Saxena, and T. Thierauf 343

has a nonzero coefficient of support < `− 1. Let the corresponding monomial be xa
n−1.

Now, as V ′(x) =
∑d
i=0 U

′
i (xn + 1)i, we have that

coeffV ′(xa
n−1x

j
n) =

d∑
r=j

(
r

j

)
coeffU ′r (x

a
n−1).

By our choice of j we have coeffU ′
j
(xa
n−1) 6= 0 and coeffU ′r(x

a
n−1) = 0, for r > j. Hence,

coeffV ′(xa
n−1x

j
n) 6= 0. The monomial xa

n−1x
j
n has support < `, which proves our claim

and the lemma. J

We can use Lemma 5.2 to get concentration in a polynomial computed by an ROABP.
Agrawal et al. [3, Lemma 8] constructed a family F = {f1(t),f2(t), . . . ,fN (t)} of n-tuples
such that for any given polynomial A(x) ∈ Fw×w[x] computed by an ROABP of width w,
at least one of them is a basis isolating weight assignment and hence, provides log(w2 + 1)-
concentration, where N = (ndw)O(logn). The degrees are bounded by D = max{deg(fi,j) |
i ∈ [N] and j ∈ [n]} = (ndw)O(logn). The family F can be generated in time (ndw)O(logn).

By Lemma 5.2, we now have an alternative PIT for one ROABP because we could simply
try all f i ∈ F for low support concentration, and we know that at least one will work.
However, in Lemmas 4.6 and 4.8 we apply the shift to several ROABPs simultaneously, and
we have no guarantee that one of the shifts works for all of them. We solve this problem by
combining the n-tuples in F into one single shift that works for every ROABP.

Let L(y, t) ∈ F[y, t]n be the Lagrange interpolation of F . That is, for all j ∈ [n],

Lj =
∑
i∈[N]

fi,j(t)
∏
i′∈[N]
i′ 6=i

y − αi′
αi − αi′

,

where αi is an arbitrary unique field element associated with i, for all i ∈ [N]. (Recall that we
assume that the field F is large enough that these elements exist.) Note that Lj |y=αi = fi,j .
Thus, L|y=αi = f i. Also, degy(Lj) = N − 1 and degt(Lj) ≤ D.

I Lemma 5.5. Let A(x) be a n-variate polynomial over a k-dimensional F-algebra Ak and F
be a family of n-tuples, such that there exists an f ∈ F such that A′(x, t) = A(x + f) ∈
Ak(t)[x] is `-concentrated. Then, A′′(x, y, t) = A(x+L) ∈ Ak(y, t)[x] is `-concentrated.

Proof. Let rankF{coeffA(xa) | a ∈ M} = k′, for some k′ ≤ k, and M` = {a ∈ M |
supp(a) < `}. We need to show that rankF(y,t) {coeffA′′(xa) | a ∈M`} = k′.

Since A′(x) is `-concentrated, we have that rankF(t) {coeffA′(xa) | a ∈M`} = k′. Recall
that A′(x) is an evaluation of A′′ at y = αi, i.e. A′(x, t) = A′′(x, αi, t). Thus, for all a ∈M
we have coeffA′(xa) = coeffA′′(xa)|y=αi .

Let C ∈ F[t]k×|M`| be the matrix whose columns are coeffA′(xa), for a ∈ M`. Let
similarly C ′ ∈ F[y, t]k×|M`| be the matrix whose columns are coeffA′′(xa), for a ∈M`. Then
we have C = C ′|y=αi .

As rankF(t)(C) = k′, there are k′ rows in C, say indexed by R, such that det(C(R, ·)) 6= 0.
Because det(C(R, ·)) = det(C ′(R, ·))|y=αi , it follows that det(C ′(R, ·)) 6= 0. Hence, we have
rankF(y,t)(C ′) = k′. J

Using the Lagrange interpolation, we can construct a single shift, which works for all
ROABPs of width ≤ w.

I Theorem 5.6. Given n, d, w, in time (ndw)O(logn) one can compute a polynomial f(t) ∈
F[t]n of degree (ndw)O(logn) such that for any n-variate polynomial A(x) ∈ Fw×w[x] (or

CCC 2015

344 Identity Testing for Sum of ROABPs

F1×w[x], or F[x]) of individual degree d that can be computed by an ROABP of width w, the
polynomial A(x+ f(t)) is log(w2 + 1)-concentrated.

Proof. Recall that for any polynomial A(x) ∈ Fw×w[x] computed by an ROABP, at least
one tuple in the family {f1,f2, . . . ,fN} obtained from [3, Lemma 8], gives log(w2 + 1)-
concentration. By Lemma 5.5, the Lagrange interpolation L(y, t) of {f1,f2, . . . ,fN} has y-
and t-degrees (ndw)O(logn). After shifting an n-variate polynomial of individual degree d
by L(y, t), its coefficients will be polynomials in y and t, with degree d′ = dn(ndw)O(logn).
Consider the determinant polynomial det(C ′(R, ·)) from Lemma 5.5. As the set of coefficients
of polynomial A(x) have rank bounded by w2, det(C ′(R, ·)) has degree bounded by d′′ = w2d′.

Note that when we replace y by td
′′+1, this will not affect the non-zeroness of the

determinant, and hence, the concentration is preserved. Thus, f = L(td′′+1, t) is an n-tuple
of univariate polynomials in t that fulfills the claim of the theorem.

Now, consider the case when the ROABP computes a polynomial A(x) ∈ F1×w[x]. It is
easy to see that there exist S ∈ F1×w and B ∈ Fw×w[x] computed by a width-w ROABP
such that A = SB. We know that B(x+f(t)) has log(w2 + 1)-concentration. As multiplying
by S is a linear operation, one can argue as in the proof of Lemma 4.11 that any linear
dependence among coefficients of B(x+ f(t)) also holds among coefficients of A(x+ f(t)).
Hence, A(x+ f(t)) has log(w2 + 1)-concentration. A similar argument would work when
A(x) ∈ F[x], by writing A = SBT , for some S ∈ F1×w and T ∈ Fw×1. J

6 Discussion

The first question is whether one can make the time complexity for PIT for the sum of c
ROABPs proportional to wO(c) instead of wO(2c). This blow up happens because, when we
want to combine w + 1 partial derivative polynomials given by ROABPs of width w, we get
an ROABP of width O(w2). There are examples where this bound seems tight. So, a new
property of sum of ROABPs needs to be discovered.

It also needs to be investigated if these ideas can be generalized to work for sum of more
than constantly many ROABPs, or depth-3 multilinear circuits.

As mentioned in the introduction, the idea for equivalence of two ROABPs was inspired
from the equivalence of two read once boolean branching programs (OBDD). It would
be interesting to know if there are concrete connections between arithmetic and boolean
branching programs. In particular, can ideas from identity testing of an ROABP be applied to
construct pseudo-randomness for OBDD. E.g. the less investigated model, XOR of constantly
many OBDDs can be checked for unsatisfiability by modifying our techniques.

Acknowledgements. We thank Manindra Agrawal, Chandan Saha and Vineet Nair for
very useful discussions and constant encouragement. The work was initiated when TT was
visiting CSE, IIT Kanpur. Part of the work was done during Dagstuhl Seminar 14391 on
Algebra in Computational Complexity 2014. We thank anonymous referees for the useful
suggestions.

References
1 Leonard M. Adleman and Hendrik W. Lenstra. Finding irreducible polynomials over finite

fields. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
STOC’86, pages 350–355, New York, NY, USA, 1986. ACM.

2 Manindra Agrawal. Proving lower bounds via pseudo-random generators. In FSTTCS,
volume 3821 of Lecture Notes in Computer Science, pages 92–105, 2005.

R. Gurjar, A. Korwar, N. Saxena, and T. Thierauf 345

3 Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for
ROABP and sum of set-multilinear circuits. Electronic Colloquium on Computational Com-
plexity (ECCC), 21:85, 2014. (to appear in SICOMP, 2015).

4 Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-set for
set-depth- formulas. In STOC, pages 321–330, 2013.

5 Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynomial interpolation. In Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, STOC’88, pages 301–309, New York, NY, USA, 1988. ACM.

6 Rafael Mendes de Oliveira, Amir Shpilka, and Ben Lee Volk. Subexponential size hitting
sets for bounded depth multilinear formulas. Electronic Colloquium on Computational
Complexity (ECCC), 21:157, 2014. (to appear in CCC’15).

7 Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial
identity testing for depth 3 circuits. SIAM J. Comput., 36(5):1404–1434, 2007.

8 Michael A. Forbes. Polynomial Identity Testing of Read-Once Oblivious Algebraic Branch-
ing Programs. PhD thesis, MIT, 2014.

9 Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilin-
ear read-once algebraic branching programs, in any order. In Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, May 31 – June 03, 2014, pages 867–875,
2014.

10 Michael A. Forbes and Amir Shpilka. On identity testing of tensors, low-rank recovery and
compressed sensing. In STOC, pages 163–172, 2012.

11 Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. CoRR, abs/1209.2408,
2012.

12 Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In FOCS, pages 243–
252, 2013.

13 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic
circuits: A chasm at depth three. FOCS, pages 578–587, 2013.

14 Maurice J. Jansen, Youming Qiao, and Jayalal Sarma. Deterministic identity testing of read-
once algebraic branching programs. Electronic Colloquium on Computational Complexity
(ECCC), 17:84, 2010.

15 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. STOC, pages 355–364, 2003.

16 Zohar Shay Karnin and Amir Shpilka. Black box polynomial identity testing of generalized
depth-3 arithmetic circuits with bounded top fan-in. Combinatorica, 31(3):333–364, 2011.

17 Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth 3
circuits. In FOCS, pages 198–207, 2009.

18 Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits. Compu-
tational Complexity, 16(2):115–138, 2007.

19 Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate
polynomials. In STOC, pages 216–223, 2001.

20 Vineet Nair and Chandan Saha. Personal communication, 2014.
21 Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In

Proceedings of the 23rd ACM Symposium on Theory of Computing, ACM Press, pages
410–418, 1991.

22 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative
models. Computational Complexity, 14(1):1–19, 2005.

23 Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth multilin-
ear circuits. Computational Complexity, 18(2):171–207, 2009.

CCC 2015

346 Identity Testing for Sum of ROABPs

24 Petr Savický and Ingo Wegener. Efficient algorithms for the transformation between differ-
ent types of binary decision diagrams. Acta Informatica, 34(4):245–256, 1997.

25 Nitin Saxena. Progress on polynomial identity testing. Bulletin of the EATCS, 99:49–79,
2009.

26 Nitin Saxena. Progress on polynomial identity testing-II. In Perspectives in Computational
Complexity, pages 131–146. Birkhäuser Basel, 2014.

27 Nitin Saxena and Comandur Seshadhri. An almost optimal rank bound for depth-3 identi-
ties. SIAM J. Comput., 40(1):200–224, 2011.

28 Nitin Saxena and Comandur Seshadhri. Blackbox identity testing for bounded top-fanin
depth-3 circuits: The field doesn’t matter. SIAM J. Comput., 41(5):1285–1298, 2012.

29 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, October 1980.

30 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388,
2010.

	Introduction
	Preliminaries
	Notation
	Arithmetic branching programs
	Read-once oblivious arithmetic branching programs

	Whitebox Identity Testing
	Equivalence of two ROABPs
	Sum of constantly many ROABPs

	Blackbox Identity Testing
	Sum of ROABPs
	Concentration in matrix polynomials

	Low Support Concentration in ROABPs
	Discussion

