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Short lists with short programs in short time ∗

Bruno Bauwens † Anton Makhlin ‡ Nikolay Vereshchagin § Marius Zimand ¶

Abstract

Given a machine U , a c-short program for x is a string p such that U(p) = x and the length of

p is bounded by c + (the length of a shortest program for x). We show that for any standard Turing

machine, it is possible to compute in polynomial time on input x a list of polynomial size guaranteed

to contain a O
(
log |x|

)
-short program for x. We also show that there exists a computable function

that maps every x to a list of size |x|2 containing a O
(
1
)
-short program for x. This is essentially

optimal because we prove that for each such function there is a c and infinitely many x for which the

list has size at least c|x|2. Finally we show that for some standard machines, computable functions

generating lists with 0-short programs, must have infinitely often list sizes proportional to 2|x|.

Keywords: list-approximator, Kolmogorov complexity, on-line matching, expander graph

1 Introduction

The Kolmogorov complexity of a string x is the length of a shortest program computing it. Determining

the Kolmogorov complexity of a string is a canonical example of a function that is not computable.

Closely related, and non-computable as well, is the problem of actually producing a shortest program

for x. It is natural to ask if tasks marred by such an impossibility barrier can be effectively solved at least

in some approximate sense. This issue has been investigated for Kolmogorov complexity in various

ways. First of all, it is well-known that the Kolmogorov complexity can be effectively approximated

from above. A different type of approximation is given by what is typically called list computability

in algorithms and complexity theory and traceability (enumeration) in computability theory. For this

type of approximation, one would like to compute a list of “suspects” for the result of the function

with the guarantee that the actual result is in the list. Of course, the shorter the list is, the better is the

approximation.

The list approximability of the Kolmogorov complexity, C(x), has been studied by Beigel et al. [3].

They observe that C(x) can be approximated by a list of size (n−a) for every constant a, where n = |x|.
On the other hand, they show that, for every universal machine U , there is a constant c such that for
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infinitely many strings x (in fact for at least one x at each sufficiently large length n), any computable

list containing CU(x) must have size larger than n/c.

In this paper we study list approximability for the problem of producing short programs. In order

to describe our results, we need several formal definitions.

A machine U is optimal if CU(x|y) ≤ CV (x|y) + O
(
1
)

for all machines V (where the constant

O
(
1
)

may depend on V ). An optimal machine U is standard1, if for every machine V there is a

total computable function t such that for all p,y: |t(p)| = |p|+ O
(
1
)

and U(t(p),y) = V (p,y) if

V (p,y) is defined. For results that hold in polynomial time, we additionally assume these functions

t can be computed in time polynomial in |p|. Let U(p) stand for U(p, the empty string) and CU(x) for

CU(x|the empty string). A c-short program for x with respect to U is a string p that satisfies U(p) = x

and |p| ≤ CU(x)+ c.

Given an optimal machine U , a list-approximator for c-short programs is a function f that on every

input x outputs a finite list of strings such that at least one of the elements in the list is a c-short program

for x on U . Let | f (x)| denote the number of elements in the list f (x). Obviously, for every optimal U ,

there is a (trivial) computable list-approximator f such that | f (x)| ≤ 2|x|+O
(

1
)

.

The question we study is how small can | f (x)| be for computable list-approximators f for c-short

programs, where c is a constant or O
(
log |x|

)
. At first glance it seems that in both cases | f (x)| must be

exponential in |x|. Surprisingly, this is not the case. We prove that there is a computable approximator

with list of size |x|2 for c-short programs for some constant c depending on the choice of the standard

machine U . And we show that this bound is tight. We show also that there is a polynomial time

computable approximator with list of size poly(|x|) for c-short programs for c = O
(
log |x|

)
.

We start with our main upper bound. We show that for every standard machine, there exists a

list-approximator for O
(
1
)
-short programs, with lists of quadratic size.

Theorem 1.1. For every standard machine U there exist a constant c and a computable function f that

for any x produces a list with |x|2 many elements containing a program p for x of length |p| ≤CU(x)+c.

The constant c depends on U . The next result shows that this dependence is unavoidable.

Theorem 1.2. (1) For every c there exists a standard2 machine U such that for every computable f

that is a list-approximator for c-short programs:

| f (x)| ≥ e2|x|,

for some constant e > 0 and infinitely many x.3

(2) On the other hand, for every c there is a standard2 machine U which has a computable ap-

proximator for c-short programs with lists of size |x|2. (As any approximator of 0-short programs is an

approximator for c-short programs for every c ≥ 0 as well, only the case c = 0 matters.)

Thus for any c the answer to the question of whether a standard machine U has a computable

approximator for c-short programs with polynomial size lists depends on the choice of U .

If we allow O
(
log |x|

)
-short programs we can construct lists of polynomial size in polynomial time.

1 This notion was introduced by Schnorr [17], and he called such machines optimal Gödel numberings (of the family

of all computable functions from strings to strings). We use a different term to distinguish between optimal functions in

Kolmogorov’s sense and Schnorr’s sense
2The construction implies the existence of such U with a stronger universality property: for every machine V there exists

a string wV such that U(wV p) =V (p) for all p.
3 For c = 0 this was independently obtained by Frank Stephan [20].
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Theorem 1.3. For every standard machine U, there exists a polynomial-time computable function

f that for any x produces a list with poly(|x|) many elements containing a program for x of length

CU(x)+O
(
log |x|

)
.

Teutsch [22] has improved this result replacing O
(
log |x|

)
by O

(
1
)
. A further improvement that brings

the list size to O(|x|6+ε ) has been obtained by Zimand [29].

Now we move to lower bounds that hold for all standard machines. A linear lower bound for the

list size of any computable approximator for c-short programs can be easily derived from the result of

Beigel et al. [3] cited earlier. Indeed, if there is a computable list-approximator for c-short programs of

x with list of size s(x), then we can algorithmically produce a list of size s(x)c containing C(x). Thus

s(x)c = Ω(|x|) and s(x) = Ω(|x|/c). (The constant hidden in the Ω-notation depends on the universal

machine U .) A linear lower bound also follows from a result of Bauwens [2], improving a theorem of

Gács [6]. The result states that for all universal machines U , CU(CU(x) | x) is greater than log |x|−O
(
1
)

for infinitely many x. Thus, for any computable approximator f (x) for c-short programs for infinitely

many x,

log |x|−O
(
1
)
≤ CU(CU(x) | x)≤ log | f (x)|+2log c+O

(
1
)
,

and therefore | f (x)| ≥ Ω(|x|/c2).
Note the gap between the quadratic upper bound for list size of Theorem 1.1 and the linear lower

bound described above. We close this gap by showing that the list size bound in Theorem 1.1 is optimal:

it is not possible to compute lists of subquadratic size that contain a O
(
1
)
-short program.

Theorem 1.4. For all c > 0, for every optimal U, for every computable f that is a list-approximator

for c-short programs,

| f (x)| ≥ Ω(|x|2/c2),

for infinitely many x. (The constant hidden in the Ω-notation depends on the function f and machine

U.)

Technical overview. A c-short program of a string x is a compressed representation of x; it is

also a string of (close to) minimal length that retains all the randomness in x. The idea that comes

to mind to approach list-approximability of c-short programs is to use randomness extractors. Kol-

mogorov complexity extraction has been studied before by Fortnow, Hitchcock, Pavan, Vinodchandran,

Wang, Zimand [5, 8, 26, 27, 28] (see also the survey paper by Zimand [25]), and indeed randomness

extractors for a constant number of independent sources have been employed for this task. For the

list-approximability of c-short programs, it seems natural to use seeded extractors, because by iterating

over all possible seeds, one obtains a list containing the optimally compressed string. The problem is

that we need an extractor with logarithmic seed (because we want a list of polynomial size) and zero

entropy loss (because we want the compressed string to be a program for x, i.e., to contain enough in-

formation so that x can be reconstructed from it) and such extractors have not yet been shown to exist.

Perhaps surprisingly, simpler graphs satisfying less demanding combinatorial constraints than extrac-

tors graphs, are good enough for the list approximation of c-short programs (and also for this type of

“list”-extraction of Kolmogorov complexity). Inspired by the work of Musatov, Romashchenko and

Shen [15], we use graphs that allow on-line matching. These are unbalanced bipartite graphs, which, in

their simplest form, have LEFT= {0,1}n,RIGHT= {0,1}k+small overhead, and left degree = poly(n),
and which permit on-line matching up to size K = 2k. This means that any set of K left nodes, each

one requesting to be matched to some adjacent right node that was not allocated earlier, can be satisfied

in the on-line manner (i.e., the requests arrive one by one and each request is satisfied before seeing
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the next one; in some of our proofs we will allow a small number of requests to be discarded, but this

should also happen before the next request arrives). The correspondence to our problem is roughly that

left strings are the strings that we want to compress, and for any left x we seek its compressed form

among its right neighbors. To understand this correspondence, let us consider the easier situation of

producing a short list containing a c-short program for x in case the program knows n = |x|. Also, let us

assume that the Kolmogorov complexity of x is k. We start an enumeration of strings produced by k-bit

programs, and when a string of length n is enumerated (eventually, x), we use the on-line matching

process and find it a match among its right neighbors, i.e., we compress it to length k + small overhead.

To decompress, we start with a right node (the compressed string) and we re-play the enumeration and

the matching process and see which left node has been matched to it; we output this left node. The

compressed program for x is among its right neighbors and, therefore the set of right neighbors of x is

the desired list of polynomial size. Now, in fact, neither n nor k are known, and therefore we actually

need the bipartite graph to be infinite and the matching requests for a left node x to include the desired

(k+ overhead) length for the matching right node. With this modification, it turns out that the con-

struction of a list approximator f for c-short programs is equivalent to the construction of an infinite

bipartite graph G that can satisfy the on-line matching requests with overhead equal to c+O
(
1
)
. The

size of the list f (x) is equal to the degree of x in G. Such an infinite graph is obtained by taking the

union of finite graphs of the type described above. In order for a finite graph to allow matching, it needs

to have good expansion properties. It turns out that it is enough if left subsets of size K/O
(
1
)

expand

to size K. To obtain the graph required in Theorem 1.1, we use the probabilistic method (actually to get

quadratic left degree, we need to refine the construction sketched above). The explicit graph required

in Theorem 1.3 is obtained from the disperser constructed by Ta-Shma, Umans, and Zuckerman [21].

The lower bound in Theorem 1.4 is established via the equivalence between list approximability

and graphs with on-line matching mentioned above. It is next observed that bipartite graphs capable of

satisfying even off-line matching need to have a certain expansion property and this imposes a lower

bound on the left degree, which, as we have seen, corresponds to the list size.

The exponential lower bound in Theorem 1.2 is shown using a connection with a type of Kol-

mogorov complexity that is less known, total conditional Kolmogorov complexity, and then build-

ing strings with large such complexity using a game-theoretic approach. (The game-based technique

in recursion theory was introduced by Lachlan [10] and further developed by A.Muchnik and oth-

ers [12, 23, 18].)

Paper organization. The connection between list-approximability and graphs with on-line match-

ing is studied in Section 2. We state there Theorems 2.5, 2.6 and 2.7 about graphs with on-line matching

and show that they imply Theorems 1.1, 1.3 and 1.4, respectively.

The upper bounds, i.e., Theorem 2.5 (hence Theorem 1.1), Theorem 2.6 (hence Theorem 1.3) and

Theorem 1.2 (2) are proved in Section 3. The lower bounds, i.e., Theorem 2.7 (hence Theorem 1.4)

and Theorem 1.2 (1), are proved in Section 4. In Section 5, we observe that our technique can be used

to improve Muchnik’s Theorem [11] (see also the works of Musatov, Romashchenko and Shen [15, 13,

14]), and a result concerning distinguishing complexity of Buhrman, Fortnow, and Laplante [4].

2 List approximators for short programs and on-line matching

We show that the problem of constructing approximators for short programs is equivalent to construct-

ing families of bipartite graphs which permit on-line matching, a notion introduced in a somewhat

different form in the paper of Musatov et al. [15].
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Let a bipartite graph G = (L,R,E ⊆ L×R) be given, where the set L of left nodes and the set R

of right nodes consist of binary strings. Assume that we receive “requests for matching” in the graph,

each request having the form (a binary string x ∈ L, a natural number k). Such a request is satisfied if

we can assign to the left node x a right neighbor of length no larger than k plus a small overhead. For

any x ∈ L it is possible to have several requests (x,k1),(x,k2), . . . and, thus, a left node x may receive

as matches several right nodes. On the other hand, a right node cannot match more than one left node.

For every k, there are at most 2k requests of the form (x,k) for various x ∈ L. Assignments cannot be

revoked. We will sometimes call right nodes hash-values.

Definition 2.1. Let c(n) be a function of n with natural values. A bipartite graph G = (L,R,E ⊆ L×R),
whose left and right nodes are binary strings has matching with overhead c(n) if the following holds.

For every set S ⊆ L×N of pairs (x,k) having at most 2k pairs with the second component k for all

k, one can choose for every pair (x,k) in S a neighbor p(x,k) of x so that |p(x,k)| ≤ k + c(|x|) and

p(x1,k1) 6= p(x2,k2) whenever x1 6= x2. It is allowed that p(x,k1) = p(x,k2) for some x. If this is done,

we say that p(x,k) matches x.

A bipartite graph has on-line matching with overhead c(n) if this can be done in the on-line fashion:

requests for matching (x,k) appear one by one and we have to find p(x,k) before the next request

appears. All the made assignments cannot be changed.

A bipartite graph has computable (respectively, polynomial time computable) on-line matching with

overhead c(n) if it has online matching and the matching strategy is computable (respectively, if the

match for a left node x can be found in time polynomial in |x|). We assume that the graph is available

to the matching algorithm.

Definition 2.2. A bipartite graph is computable (polynomial-time computable) if given a left node x

we can compute (respectively, compute in time polynomial in |x|) the list of all its neighbors. A

polynomial-time computable graph is also said to be explicit.

The next two theorems show that for any function c, the existence of a computable (polynomial-time

computable) list approximator f for c(|x|)-short programs is equivalent the existence of a computable

(polynomial-time computable) graph G that has on-line matching with overhead c(|x|) + O
(
1
)

and

| f (x)| is equal to the degree of x in G; up to an assumption on the computability of the matching

strategy.

Theorem 2.3 (Graph G with on-line matching ⇒ list-approximator f ). Assume there is a computable

graph with L = {0,1}∗ where each left node x has degree D(x) and which has on-line matching with

overhead c(n). Assume further that the matching strategy is computable. Then for every standard

machine U there exists a computable function f that for any x produces a list with D(x) many elements

containing a program p for x of length |p| = CU(x)+ c(|x|)+O
(
1
)
. If the graph is polynomial time

computable then the function f is polynomial time computable, too.

Proof. Recall that for polynomial time results, we assume that a machine is standard through a function

that is computable in polynomial time.

Run the optimal machine U(q) in parallel for all strings q. Once U(q) halts with the result x we

pass the request (x, |q|) to the matching algorithm in the graph and find a hash value p of length at most

|q|+ c(|x|) for x.

By construction, every string x is matched to a string p of length at most CU(x)+ c(|x|). Each right

node is matched to at most one node in the graph. Hence there is a machine V such that V (p) = x

whenever p is matched to x. Thus for every string x there is a neighbor p of x with |p| ≤CU(x)+ c(|x|)
and V (p) = x. As U is a standard machine, there is a (polynomial time) computable function t with
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U(t(p)) =V (p) and |t(p)| ≤ |p|+O
(
1
)
. Let f (x) be the list consisting of t(p) for all the neighbors p

of x in the graph. By construction | f (x)| = D(x) and we are done.

Theorem 2.4 (List-approximator f ⇒ graph G with on-line matching). Assume that c(n) is

(polynomial-time) computable function and there are an optimal machine U and a (polynomial-

time) computable function f that for any x produces a finite list containing a program p for x of length

|p| ≤ CU(x)+ c(|x|). Consider the bipartite graph G with L = {0,1}∗ where the neighbors of node x

are all strings from f (x). Then G has on-line matching with overhead c(|x|)+O
(
1
)
.

Proof. For each n let Gn be the subgraph of G with L = {0,1}≤n and R the set of neighbors of L.

Without loss of generality, we assume that all strings in f (x) have length at most |x|+O
(
1
)

and hence

the graph Gn is finite. We claim that Gn has on-line matching with overhead c(|x|)+O
(
1
)

for all n,

(where the O
(
1
)

constant does not depend on n).

We first show that this implies the theorem. Suppose that M1,M2, . . . are on-line matching strategies

for graphs G1,G2, . . . It suffices to convert them to strategies M′
1,M

′
2, . . . for G1,G2, . . . such that for

all i, j > i strategy M′
j is an extension of M′

i , i.e. on a series of requests only containing nodes from

Gi, strategy M′
j behaves exactly as M′

i . Because each Gn is finite, there are only finitely many different

matching strategies for Gn. Hence, there is a strategy M′
1 that equals the restriction of Mn to G1 for

infinitely many n. Therefore there is also a strategy M′
2 that is an extension of M′

1 and equals the

restriction of Mn to G2 infinitely often, and so on.

It remains to show the claim. For the sake of contradiction assume that for every constant i there is

n such that Gn does not have on-line matching with overhead c(|x|)+ i, and f is a list-approximator for

c(|x|)-short programs on U . Because Gn is finite, for all n and c one can find algorithmically (using an

exhaustive search) whether Gn has on-line matching with overhead c(|x|)+ i or not. One can also find

a winning strategy for that player who wins (“Matcher” or “Requester”). Therefore for every i we can

algorithmically find the first n such that the graph Gn does not have on-line matching with overhead

c(|x|)+ i and the corresponding winning strategy for Requester for Gn.

Let that strategy play against the following “blind” strategy of Matcher. Receiving a request (x,k),
the Matcher runs U(p) for all p ∈ f (x), |p| ≤ k+ c(|x|)+ i, in parallel. If for some p, U(p) halts with

the result x, he matches the first such p to x and proceeds to the next request. Otherwise the request

remains not fulfilled.

Consider the following machine V . On input (q, i), with q a k-bit long string and i a natural number,

it finds the first Gn such that the graph Gn does not have on-line matching with overhead c(|x|)+ i and

a winning strategy for Requester, and runs it against the blind strategy of the Matcher. Then it returns

x, where (x,k) is the qth request with the second component k (we interpret the string q as the ordinal

of the request in some standard manner). Since the Requester wins, there is a request (x,k) that was

not fulfilled. We have

CU(x)≤CV (x)+O
(
1
)
≤ k+2log i+O

(
1
)
≤ k+ i; (1)

the last inequality holds for all large enough i. As the request (x,k) was not fulfilled, there is no p in

f (x) with |p| ≤ k+ i+ c(|x|). Due to (1), f (x) has no c(|x|)-short program for x, a contradiction.

We have reduced the problem of list approximation for c-short programs to the construction of bi-

partite graphs with on-line matching that have polynomial left degree. Our main technical contributions

are the following theorems.

Theorem 2.5 (Combinatorial version of Theorem 1.1). There is a computable graph with L = {0,1}∗

and left degree D(x) = |x|2 which has polynomial time on-line matching with overhead O
(
1
)
.
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Theorem 2.6 (Combinatorial version of Theorem 1.3). There is a polynomial time computable graph

with L = {0,1}∗ with left degree D(x) = poly(|x|) which has polynomial time on-line matching with

overhead O
(
log |x|

)
.

Theorem 2.7 (Combinatorial version of Theorem 1.4). In every graph G with L = {0,1}n that has

off-line matching with overhead c, the maximal degree of left nodes is Ω(n2/c2).

Theorems 2.5, 2.6 and 2.7 imply Theorems 1.1, 1.3 and 1.4, respectively.

Our on-line matching strategy used in the proofs of Theorems 2.5 and 2.6 are very simple: receiving

a new request of the form (x,k) we just find the maximal i ≤ k+ c such that there is a free (i.e., not yet

used in a matching) right neighbor of x of length i and match x with the first such neighbor of x.

3 The upper bounds

In this section we prove Theorem 2.5, Theorem 1.2(2) and Theorem 2.6. Essentially, the proofs consist

in the construction of the corresponding graphs that have on-line matching with overhead c(n). These

are infinite graphs which are obtained as the union of finite bipartite graphs with L = {0,1}n and

R = {0,1}k+c(n) . For such graphs in which the length of the right nodes is fixed we do not need to refer

to the length constraint in a matching request as in Definition 2.1, and we can work with the following

simpler definition.

Definition 3.1. A bipartite graph has matching up to K with at most M rejections, if for any set of left

nodes of size at most K we can drop at most M of its elements so that there is a matching in the graph

for the set of remaining nodes. A graph has an on-line matching up to K with at most M rejections if

we can do this in on-line fashion. For M = 0 we say that the graph has matching up to K.

The connection between graphs with (on-line) matching up to K (Definition 3.1) and graphs with

(on-line) matching with overhead c (Definition 2.1) is the following. If a graph G has (on-line) matching

with overhead c then removing from G all left nodes of length different from n and all right nodes of

length more than k + c(n) we obtain a graph with (on-line) matching up to 2k. On the other hand,

assume that, for some n, for all k < n, we have a graph Gn,k with L = {0,1}n and R = {0,1}k+c(n)

which has (on-line) matching up to 2k. Then the union Gn of Gn,k over all k < n has (on-line) matching

with overhead c, provided all requests (x,k) satisfy k < |x|. At the expense of increasing the degree and

c by 1, the graph Gn can be easily modified to have (on-line) matching with overhead c unconditionally:

append 0 to all right nodes of Gn and for every x ∈ {0,1}n add a new right node x1 connected to x only.

Thus, we will need to construct finite graphs as in Definition 3.1. This will be done by constructing

a certain type of expander graphs.

Definition 3.2. A bipartite graph is called a (K,K′)-expander, if every set of K left nodes has at least

K′ distinct neighbors.

Graphs that have off-line matching up to K are closely related to (K,K)-expanders. Indeed, any

graph having matching up to K is obviously a (K′,K′)-expander for all K′ ≤ K. Conversely, by Hall’s

theorem [7], any graph which is a (K′,K′)-expander for all K′ ≤ K has matching up to K.

In Musatov et al.’s [15] it was shown that a reduction from expanders to on-line matching is also

possible. More specifically, every family of (2i,2i)-expanders, one for each i < k, sharing the same

set L of left nodes can be converted into a graph with the same set L of left nodes that has on-line

matching up to 2k, at the expense of multiplying the degree by k and increasing hash-values by 1. (We

will present the construction in the proof of Theorem 3.4.)
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In Musatov et al.’s paper [15] it is observed that every (K,K)-expander has on-line matching up to

2K with at most K rejections. We need a slight generalization of this fact.

Lemma 3.3. Every (M,K −M)-expander has on-line matching up to K with at most M rejections.

Proof. Use the following greedy strategy for on-line matching: each time a left vertex is received,

check if it has a neighbor that was not used yet. If yes, any such neighbor is selected as the match for

that node. Otherwise, the node is rejected.

For the sake of contradiction, assume that the number of rejected nodes is more than M. Choose

from them exactly M rejected nodes. By the expansion property, they have at least K −M neighbors

and all those neighbors are used by the greedy strategy (otherwise the node having a non-used neighbor

would not be rejected). Thus we have at least K −M matched left nodes and more than M rejected

nodes. Consequently, we have received more than K requests, a contradiction.

For Theorem 2.5 we will use non-explicit such expander graphs, for Theorem 2.6 we will need

explicit such graphs, which we obtain from the disperser of Ta-Shma, Umans, and Vadhan [21]. We

say that a family of graphs Gn,k is computable (respectively, computable in polynomial time) if given

n,k and a left node x in Gn,k, we can compute (respectively, compute in polynomial time) the list of all

neighbors of x in Gn,k.

Theorem 3.4. Given a computable (respectively computable in polynomial time) family Gn,k of (2k,2k)-
expanders with L = {0,1}n, R = {0,1}k+c(n) and the degree of all left nodes is at most D(n), we can

construct a computable graph G with L = {0,1}∗ that has a computable (respectively computable in

polynomial time) on-line matching with overhead c(n)+O
(
logn

)
and the degree of each left node is

O
(
D(n)n

)
.

Proof. The main tool is borrowed from the paper of Musatov et al. [15]: all the graphs Gn,k share the

same set of left nodes while their sets of right nodes are disjoint. Let Hn,k denote the union of Gn,i over

all i < k. Then Hn,k has on-line matching up to 2k (without rejections). Indeed, each input left node is

first given to the matching algorithm for Gn,k−1 (that has on-line matching up to 2k with at most 2k−1

rejections) and, if rejected is given to the matching algorithm for Gn,k−2 and so on.

Using this construction we can prove the theorem with slightly worse parameters as claimed. To

this end identify right nodes of the graph Hn,k with strings of length k+c(n) (the number of right nodes

of Hn,k does not exceed the sum of geometrical series 2k+c(n)−1 + 2k+c(n)−2 + · · · < 2k+c(n)). The left

degree of Hn,k is D(n)k.

Recall the connection between matching up to 2k and matching with overhead (the paragraph after

Definition 3.1). We see that the family Hn,k can be converted into a graph Hn with L = {0,1}n and

degree D′(n) = D(n)n(n−1)/2+1 having on-line matching with overhead c(n)+1. Finally, we prefix

the right nodes of Hn with the O
(
logn

)
-bit prefix-free code of the number n and consider the union of

all Hn. The resulting graph has on-line matching with overhead c(n)+O
(
logn

)
, its set of left nodes is

{0,1}∗ and the degree of every left node of length n is O
(
D(n

)
n2).

Now we will explain how to reduce the degree to O
(
D(n)n

)
. Consider four copies of Gn,k−1 with

the same set L of left nodes and disjoint sets of right nodes (say append 00 to every right node to get

the first copy, 01 to get the second copy and so on). Their union is a (2k−1,2k+1)-expander, and hence

has matching up to 2k+1 with at most 2k−1 rejections.4 Its left degree is 4D(n) and the length of right

nodes is k+ c(n)+ 2. Replace in the above construction of Hn the graph Hn,k by this graph. Thus the

4One can also consider the union of Gn,k−1 and Gn,k, which also has matching up to 2k+1 with at most 2k−1 rejections.
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left degree of Hn becomes O
(
D(n)n

)
in place of O

(
D(n)n2

)
. It remains to show that (the union of all

graphs) Hn has still on-line matching with overhead c(n)+O
(
log n

)

Again the matching strategy is greedy. Once we receive a request (x,k) with |x| = n, we match x

to 1x if k ≥ n. Otherwise, we pass x to the matching algorithm in Hn,k. If the algorithm rejects x, we

pass x to the matching algorithm in Hn,k−1 and so on. We claim that we eventually find a match in one

of the graphs Hn,i for i ≤ k. To prove the claim it suffices to show that the matching algorithm for Hn,k

receives at most 2k+1 input strings. This is proved by a downward induction on k (for any fixed n). For

the base case, k = n− 1, this is obvious: we try to match in Hn,n−1 up to 2n−1 strings. The induction

step: by induction hypothesis the matching algorithm for Hn,k+1 receives at most 2k+2 input strings

an thus rejects at most 2k of them. The matching algorithm for Hn,k thus receives at most 2k rejected

strings and at most 2k new ones, coming from requests of the form (x,k).

3.1 Proof of Theorem 2.5

A weaker form of Theorem 2.5 can be derived from Theorem 3.4 and the following lemma of Much-

nik [11].

Lemma 3.5. For all n and k < n, there exists a (2k,2k)-expander with L = {0,1}n, R = {0,1}k+2 and

all left nodes have degree at most n+1.

Proof. We use the probabilistic method, and for each left node we choose its n+ 1 neighbors at ran-

dom: all neighbors of each node are selected independently among all 2k+2 right nodes with uniform

distribution, and the choices for different left nodes are independent too. We show that the expansion

property is satisfied with positive probability. Hence there exists at least one such graph. To estimate

the probability that the property is not satisfied, consider a pair of sets L′ and R′ of left and right nodes,

respectively, of sizes 2k,2k − 1. The probability that the neighbors of all nodes in L′ belong to R′ is

upper-bounded by (1/4)(n+1)2k

. The total probability that the expansion condition is not satisfied, is

obtained by summing over all such L′,R′, i.e.

(
1
4

)(n+1)2k

(2n)2k

(2k+2)2k−1 ≤
(

2n2k+2

4n+1

)2k

≤
(

2n2n+1

4n+1

)2k

=
(

1
2

)2k

< 1.

Remark 3.1. By the very same construction we can obtain a graph with L = {0,1}n, R = {0,1}k+2,

D = n+ 1 that is a (t, t)-expander for all t ≤ 2k. Indeed, the probability that a random graph is not a

(t, t)-expander is at most
(

1
2

)t
(we may replace 2k by t in the above formulas). By the union bound, the

probability that this happens for some t ≤ 2k is at most the sum of the geometric series ∑
2k

t=1

(
1
2

)t
< 1.

By Hall’s theorem, this graph has off-line matching up to 2k. An interesting open question is whether

there is a graph with the same parameters, i.e., L = {0,1}n, R = {0,1}k+O
(

1
)

, D = O
(
n
)
, that has

on-line matching up to 2k.

From lemma 3.5 and Theorem 3.4 we obtain a computable graph with on-line matching with over-

head O
(
log |x|

)
, degree O

(
|x|2

)
and L = {0,1}∗. We now need to replace the O

(
log |x|

)
overhead by

O
(
1
)
. Recall that the O

(
log |x|

)
appeared from the prefix code of |x| added to the hash values. To get

rid of it we need a computable graph Fk in place of the previously used Gn,k with the same parameters

but with L = {0,1}≥k , and not L = {0,1}n. Such a graph is constructed in the following lemma.
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Lemma 3.6. For every k there is a computable bipartite graph Fk with L = {0,1}≥k+3, R = {0,1}k+12

that is a (2k,2k)-expander and the degree of every left node x is |x|/4.

Proof. We first build such a graph with left nodes being all strings of length between k+ 3 and K =
2k+2. This is again done by the probabilistic method: we choose |x|/4 neighbors of every node x

independently. Let Li stand for all left nodes of length i. For any i ∈ k+ 3, . . . ,K, the probability that

all elements of a fixed L′ ⊂ Li are mapped to a fixed set of size at most 2k − 1 at the right is at most(
1

212

)i|L′|/4
. The probability that some ti elements in Li are mapped into a fixed set of 2k −1 elements at

the right is at most

2iti
(

1
212

)iti/4
=

(
1
2

)2iti

≤
(

1
2

)(k+3)2ti

=
(

1
2K

)2ti .

If ∑
K
i=k ti = t with t = 2k, the probability that the union of neighbors of tk elements in Lk, tk+1 elements

in Lk+1, . . . , and tK elements in LK are mapped to a fixed set of size at most 2k − 1 is bounded by

∏i

(
1

2K

)2ti =
(

1
2K

)2t
. Multiplying by the number K2k−1 ≤ Kt of different right sets of size K − 1, and

multiplying by the upper bound Kt for the number of solutions to the equation ∑
K
i=k ti = K, we find

(
1

2K

)2t

Kt Kt ≤

(
1

4

)t

< 1.

Hence, the total probability to randomly generate a graph that is not an expander is strictly less than 1.

Therefore, a graph satisfying the conditions must exist, and can be found by exhaustive search.

On the left side, we now need to add the strings of length larger than K = 2k+2. These nodes are

connected to all the nodes on the right side. Thus the degree of every such node x is 2k ≤ |x|/22 and we

are done.

Remark 3.2. By the very same construction we can obtain a graph with L = {0,1}≥k, R = {0,1}k+12,

D = O
(
n
)

that is a (t, t)-expander for all t ≤ 2k and thus has off-line matching up to 2k (use the union

bound over all t ∈ {k, . . . ,K}). An interesting open question is whether there is a graph with the same

parameters that has on-line matching up to 2k.

Proof of Theorem 2.5. Appending all 2-bit strings to all the right nodes of the graph Fk−1 (and thus

increasing the degree 4 times) we obtain a (2k−1,2k+1)-expander Hk. The union of Hk over all k is

a computable graph, whose left degree is |x|(|x| − 3) ≤ |x|2 − 1, and the set of left nodes is {0,1}∗.

For each left node x, we add an additional node to handle requests of the form (x,k) with k > |x|− 3.

This graph has on-line matching with constant overhead. This is proved by downward induction, as

in Theorem 3.4. Indeed, consider the step when the sth request for matching arrives. By a downward

induction on k we can again prove that the number of matching requests in Hk is at most 2k+1. Now

the base of induction is the maximal k for which there has been at least one request for matching in

Hk among the s requests so far. We conclude that the sth request is satisfied and, since this holds for

every s, we are done.

As we have seen, Theorem 2.5 implies Theorem 1.1.
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3.2 Proof of Theorem 1.2(2)

By Theorem 2.5 there is a computable graph G having a computable on-line matching strategy with

constant overhead c and degree |x|2.

Fix any standard machine U . In the proof of Theorem 2.3 we have constructed a computable

function V such that CV (x) ≤CU(x)+ c and such that every V -program of every string x is a neighbor

of x in the graph G. If it happens that V is a standard machine, then we are done: consider the list {p | p

is a neighbor of x}.

Otherwise, define the machine U1 by letting U1(0p) = V (p) and U1(1
c+2 p) = U(p). The second

equation guarantees that U1 is a standard machine. Both equations imply that for every x the 0-shortest

U1-program for x has the form 0p (recall that CV (x) ≤ CU(x)+ c). Hence for all x the 0-shortest U1-

program q for x in the list {0p | p is a neighbor of x}.

3.3 Proof of Theorem 2.6

By Theorem 3.4, we have to construct for every k ≤ n an explicit (2k,2k)-expander of left degree

poly(n), with 2n left nodes and poly(n)2k right nodes. (Recall that a graph is explicit if there is an

algorithm that on input x ∈ {0,1}n = L lists in poly(n) time all the neighbors of x.)

The proof relies on the explicit disperser graphs of Ta-Shma, Umans, and Zuckerman from Theo-

rem 3.8 below.

Definition 3.7. A bipartite graph G = (L,R,E) is a (K,δ )-disperser, if every subset B ⊆ L with |B| ≥ K

has at least (1−δ )|R| distinct neighbors.

Theorem 3.8. [Ta-Shma, Umans, Zuckerman [21]] For every K,n and constant δ , there exists an

explicit (K,δ )-disperser G = (L = {0,1}n,R = {0,1}m,E ⊆ L×R) in which every node in L has degree

D = poly(n) and |R|= αKD
n3 , for some constant α .

Given n and k, we apply this theorem to K = 2k and δ = 1/2. We obtain a (2k, α2kD
2n3 )-expander with

degree D = poly(n), L = {0,1}n and |R| = αKD
n3 . Consider t = max{1,⌈2n3

αD
⌉} disjoint copies of this

graph and identify left nodes of the resulting graphs (keeping their sets of right nodes disjoint). We get

an explicit (2k,2k)-expander with 2n left and 2kpoly(n) right nodes and degree poly(n)t = poly(n).

As we have seen, Theorem 2.6 implies Theorem 1.3.

4 The lower bounds

4.1 Proof of Theorem 2.7

Assume that G has off-line matching with overhead c. Let G[ℓ,k] denote the induced graph that is

obtained from G by removing all right nodes of length more than k and less than ℓ. The graph G[0,k+c]
is obviously a (2k,2k)-expander for every k. As there are less than 2k−1 strings of length less than k−1,

it follows that the graph G[k−1,k+ c] is a (2k,2k−1 +1)-expander.

The next lemma, inspired by Kova̋ri, Sòs and Turàn[9] (see Radhakrishnan and Ta-Shma [16, The-

orem 1.5]), shows that any such expander must have large degree.

Lemma 4.1. Assume that a bipartite graph with 2ℓ left nodes and 2k+c right nodes is a (2k,2k−1 +1)-
expander. Then there is a left node in the graph with degree more than D = min{2k−2,(ℓ−k)/(c+2)}.

11



Proof. For the sake of contradiction assume that all left nodes have degree at most D (and without loss

of generality we may assume that all degrees are exactly D). We need to find a set of right nodes B of

size 2k−1 and 2k left nodes all of whose neighbors lie in B. The set B is constructed via a probabilistic

construction. Namely, choose B at random (all
(

2k+c

2k−1

)
sets have equal probabilities). The probability

that a fixed neighbor of a fixed left node is in B is equal to

(
2k+c−D
2k−1−D

)
(

2k+c

2k−1

) =
2k−1(2k−1 −1) · · · (2k−1 −D+1)

2k+c(2k+c −1) · · · (2k+c −D+1)
.

Both products in the numerator and denominator have D factors and the ratio of corresponding factors

is at least
2k−1 −D+1

2k+c −D+1
≥ 2−c−2

(the last inequality is due to the assumption D≤ 2k−2). Thus the probability that all neighbors of a fixed

left node are in B is at least 2−D(c+2). Hence the average number of left nodes having this property is at

least 2ℓ−D(c+2), which is greater than or equal to 2k by the choice of D. Hence there is B that includes

neighborhoods of at least 2k left nodes, a contradiction.

This lemma states that at least one left node has large degree. However, it implies more: if the

number of left nodes is much larger than 2ℓ, then almost all left nodes must have large degree. Indeed,

assume that a bipartite graph with 2k+c right nodes is a (2k,2k−1 + 1)-expander. Choose 2ℓ left nodes

with smallest degree and apply the lemma to the resulting induced graph (which is also a (2k,2k−1 +1)-
expander). By the lemma, in the original graph all except for less than 2ℓ nodes have degree more than

D = min{2k−2,(ℓ− k)/(c+2)}.

Proof of Theorem 2.7. Choose n/4 < k ≤ n/2. As noticed, the graph G[k−1,k+ c] is a (2k,2k−1 +1)-
expander and has less than 2k+c+1 right nodes. By Lemma 4.1 and the above observation (applied to

ℓ= 3n/4), all except for at most 23n/4 left nodes of G[k−1,k+ c] have degree at least n/(4(c+3)).
Pick now ℓ different integers ki with n/4 < k1 < k2 < .. . < kℓ < n/2 that are c+ 2 apart of each

other, where ℓ is about n/(4(c+ 2)). In each graph G[ki − 1,ki + c], all the left nodes, except at most

23n/4, have degree ≥ n/(4(c+3)). Since the ki are c+2 apart, and thus the graphs G[ki−1,ki +c] have

pairwise disjoint right sets, it follows that G has left nodes with degree Ω(n2/(c+3)2).

As we have seen, Theorem 2.7 implies Theorem 1.4.

4.2 Proof of Theorem 1.2 (1).

The size of list-approximators is closely related to total conditional Kolmogorov complexity, which

was first introduced by A. Muchnik and used by Bauwens and Vereshchagin [1, 24]. Total conditional

Kolmogorov complexity with respect to U is defined as:

CT U(u|v) = min{|q| : U(q,v) = u∧∀z [U(q,z) halts]} .

If U is a standard machine then CT U(u|v) ≤ CT V (u|v)+ cV for every machine V . The connection to

list-approximators is the following:

Lemma 4.2. If f is a computable function that maps every string to a finite list of strings then

CT U(p|x) ≤ log | f (x)|+ O
(
1
)

for any standard machine U and every p in f (x). The constant in

O-notation depends on f and U.
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Proof. Let V ( j,x) stand for the jth entry of the list f (x), if j ≤ | f (x)|, and for the (say) empty string

otherwise. Obviously CT V (p|x) ≤ log | f (x)| for all p in f (x). Hence CT U(p|x) ≤ log | f (x)|+O
(
1
)
.

Thus to prove Theorem 1.2(1) it suffices to construct for every c a standard machine Uc such that,

for infinitely many x, every c-short p for x with respect to Uc satisfies CT U(p|x)≥ |x|−O
(
1
)
.

We first consider the case c = 0. Fix a standard machine U . We construct another machine V , a

constant d and a sequence of pairs of strings (x1, p1),(x2, p2), . . . such that

(a) pk is the unique 0-short program for xk with respect to V ,

(b) CU(xk)≥ k,

(c) |xk|= |pk|= k+d,

(d) CT U(0pk|xk)≥ k.

Once such V has been constructed, we let U0(0q) =V (q) and U0(1
d+2q)=U(q). The latter equality

guarantees that U0 is a standard machine. And both equalities together with items (a), (b) and (c) imply

that 0pk is the unique 0-short program for xk with respect to U0. Finally, item (d) guarantees that its total

complexity conditional to xk is at least |xk|−d. The construction of V,d and (xk, pk) can be described

in game terms.

Description of the game. The game has integer parameters k,d and is played on a rectangular grid

with 2k+d rows and 2k+d columns. The rows and columns are identified with strings of length k+ d.

Two players, Bob and Alice, play in turn. In her turn Alice can either pass or put a token on the board.

Alice can place at most one token in each row and at most one token in each column. Once a token

is placed, it can not be moved nor removed. In his turn Bob can either pass, or choose a column and

disable all its cells, or choose at most one cell in every column and disable all of them. If a player does

not pass, we say that she/he makes a move. Bob should make less than 2k+1 moves. The game is played

for an infinite time and Alice loses if at some point after her turn, all her tokens are in disabled cells.

We will show that, for d = 3, for every k, Alice wins this game. More specifically, there is a

winning strategy for Alice that is uniformly computable given k. Assume that this is done. Then

consider the following “blind” strategy for Bob: start an enumeration of all strings x with CU(x) < k

and all strings q of length less than k such that U(q,x) halts for all x of length k+d. That enumeration

can be done uniformly in k. In his tth turn Bob: disables all cells in the xth column, if on step t

in this enumeration a new x of length k + d with CU(x) < k appears; disables all cells (p,x) with

|x|= |p|= k+d, U(q,x) = 0p, if on step t a new string q of length less than k appears such that U(q,x)
halts for all x of length k+d; and passes if none of these events occurs. Note that the total number of

Bob’s moves is less than 2k +2k = 2k+1, as required.

Now consider the following machine V (p): let k = |p|−d and let the Alice’s computable winning

strategy play against Bob’s blind strategy. Watch the play waiting until Alice places a token on a cell

(p,x) in the pth row. Then output x and halt. Note that such x is unique (if exists), as Alice places

at most one token in each row. Because Alice’s strategy is winning, at least one of the finitely many

tokens in a cell (p,x) will never be disabled. This pair (p,x) satisfies all the requirements (a)–(d). Thus

it suffices to design a computable winning strategy for Alice.

A winning Alice’s strategy. The strategy is a greedy one. In the first round Alice places a token

in any cell. Then she waits until that cell becomes disabled. Then she places the second token in

any enabled cell that lies in another row and another column and again waits until that cell becomes

disabled. At any time she chooses any enabled cell that lies in a row and a column that both are free of

tokens. In order to show that Alice wins, we just need to prove that there is such a cell. Indeed, Bob

makes less than 2k+1 moves, thus Alice makes at most 2k+1 moves. On each of Bob’s moves at most
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2k+d cells become disabled. On each of Alice’s moves at most 2k+d+1 cells becomes non-free because

either their column or row already has a token. Thus if the total number of cells is more than

2k+12k+d +2k+12k+d+1 = 6 ·22k2d ,

we are done. The total number of cells is 2k+d2k+d = 22k22d . As 22d grows faster that 6 ·2d , for large

enough d (actually for d = 3) the total number of cells is larger than the number of disabled or non-free

cells.

The case c = 0 is done. For arbitrary c we change the construction a little bit by letting

Uc(1
c+d+2q) = U(q) instead of U0(1

d+2q) = U(q). The optimal machine Uc constructed in this way

depends on c, which is inevitable by Theorem 1.1.

5 Other applications of explicit graphs with on-line matching

Our applications are related to the resource bounded Kolmogorov complexity. Recall that a ma-

chine U is called standard if for any machine V there is a total computable function f such that

U(t(p),z) =V (p,z) and |t(p)| ≤ |p|+O
(
1
)

for all p,z. In this section we assume that t is polynomial-

time computable and that running time of U(t(p),z) is bounded by a polynomial of the computation

time of V (p,z). By CT
U(x|z) we denote the minimal length of p such that U(p,z) = x in at most T steps.

The applications consists in improving Muchnik’s Theorem, and the error term in the estimation of

the distinguishing complexity of strings in a given set.

5.1 Muchnik’s theorem

Theorem 5.1 (Muchnik’s Theorem [11, 15]). Let a and b be strings such that |a|= n and C(a | b) = k.

Then there exists a string p such that (1) |p|= k+O
(
logn

)
, (2) C(p | a) = O

(
logn

)
, (3) C(a | p,b) =

O
(
log n

)
.

See the cited works for a discussion of Muchnik’s theorem.

Theorem 5.2 (Improved version of Theorem 5.1). Same statement as above except that we replace (2)

by (2’) Cq(n)(p | a) = O
(
logn

)
, where q is a polynomial.

Proof. Fix an explicit graph G = (L,R,E), with L = {0,1}n, polynomial left degree, and that has

computable on-line matching with logarithmic overhead (such a graph is obtained in the proof of The-

orem 2.6). Given a string b, run the optimal machine U(q,b) in parallel for all q. Once, for some q,

U(q,b) halts with the result x, pass the request (x, |q|) to the matching algorithm in the graph. It will

return a neighbor p of length at most |q|+O
(
logn

)
of x. At some moment a shortest program q for a

conditional to b will halt and we get the sought p.

As the graph is explicit and has polynomial degree, we have Cpoly(n)(p | a) = O
(
logn

)
(requirement

(2’)). Requirement (1) holds by construction. Finally, C(a | p,b) = O
(
logn

)
as given p and b we may

identify a by running the above algorithmic process (it is important that a is the unique string that was

matched to p).
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5.2 Distinguishing complexity.

The T -bounded distinguishing complexity of a string x, introduced by Sipser [19], is the length of

a minimal program that in T steps accepts x and only x. Formally, let U be a machine, x a string

and T a natural number. The distinguishing complexity CDT
U(x) with respect to U is defined as the

minimal length of p such that U(p,x) = 1 (p “accepts” x) in at most T steps, and U(p,x′) = 0 for all

x′ 6= x (p ”rejects” all other strings after any number of steps). From our assumption for the standard

machine U , it follows that for every machine V there is a polynomial f and a constant c such that

CD
f (T )
U (x) ≤ CDT

V (x)+ c. Indeed, let p be a shortest distinguishing program for x working in T steps

with respect to V . Then t(p) is a program for U that accepts x in poly(T ) steps and rejects all other

strings.

For a set A of binary strings, let A=n stand for the set of all strings of length n in A. Buhrman, Fort-

now and Laplante [4] have shown that most strings have polynomial-time distinguishing complexity

close to the information-theoretic minimum value.

Theorem 5.3 ([4]). For every function ε(n) (mapping natural numbers to numbers of the form

1/natural) computable in time poly(n) there is a polynomial f such that for every set A, for all x ∈ A=n

except for a fraction ε(n), CD
f (n),A
U (x)≤ log |A=n|+polylog(n/ε(n)).

We mean here that the set A is given to the standard machine U as an oracle (so we assume that the

standard machine is an oracle machine and all the requirements hold for every oracle.)

Our improvement of the above theorem does not use explicitly graphs with on-line matching.

However, it uses an argument similar to the one in Theorem 2.6 to obtain a graph with a certain

“low-congestion” property, which would allow most nodes making matching requests to have their

“reserved” matching node.

Theorem 5.4 (Improved version of Theorem 5.3). Same statement as above, except that we obtain

CD f (n),A(x) ≤ log |A=n|+ O
(
log(n/ε(n))

)
, i.e., we reduce the error term from polylog(n/ε(n)) to

O
(
log(n/ε(n))

)
.

Proof. For our improvement we need for every n, k ≤ n and ε a bipartite graph Gn,k,ε with L = {0,1}n,

R = {0,1}k+O
(

log n/ε

)
and degree poly(n/ε) that has the following “low-congestion” property:

for every subset S of at most 2k left nodes for every node x in S except for a fraction ε there

is a right neighbor p of x such that p has no other neighbors in S.

Assume that we have such an explicit family of graphs Gn,k,ε . Here, explicit means that given n,

k, ε , a left node x and i, we can in polynomial time find the ith neighbor of x in Gn,k,ε . Then we can

construct a machine V that, given a tuple (p, i,n,k), a string x and A as oracle, verifies that x is in A=n

and that p is the ith neighbor of x in G|x|,k,ε(n). If this is the case it accepts and rejects otherwise. By

the property of the graph, applied to S = A=n and k = ⌈log |S|⌉ we see that

CD
f (n),A
V (x)≤ |(p, i,n,k)| ≤ log |A=n|+O

(
log n/ε(n)

)

for some polynomial f (n) for all but a fraction ε(n) for x ∈ A=n. By the assumptions on U , the same

inequality holds for U .

The graph Gn,k,ε is again obtained from the disperser of Ta-Shma et al. [21]. Given n, k and

ε , we apply Theorem 3.8 to K = ε2k and δ = 1/2. We obtain a (ε2k, αε2kD
2n3 )-expander with degree
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D = poly(n), L = {0,1}n and |R| = εα2kD
n3 . Consider t = max{1,⌈2n3

αD
⌉} disjoint copies of this graph

and identify left nodes of the resulting graphs (keeping their sets of right nodes disjoint). We get an

explicit (2kε ,2kε)-expander with 2n left and 2kpoly(n)ε right nodes and degree D= poly(n)t = poly(n).
This graph, called Hn,k,ε , has the following weaker “low-congestion” property: for every set of 2k

left nodes S for every node x in S except for a fraction ε there is a right neighbor p of x such that p has

at most D/ε neighbors in S.

Indeed, the total number of edges in the graph originating in S is at most |S|D. Thus less than

|S|D/(D/ε) = |S|ε right nodes are “fat” in the sense that they have more than D/ε neighbors landing in

S. By the expander property of Hn,k,ε there are less than ε |S| left nodes in S that have only fat neighbors.

It remains to “split” right nodes of Hn,k,ε so that D/ε becomes 1. This is done exactly as in Buhrman

et al. [4]. Using the Prime Number Theorem, it is not hard to show (Lemma 3 in Buhrman et al. [4]) that

for every set W of d strings of length n the following holds: for every x ∈ W there is a prime number

q ≤ 4dn2 such that x 6≡ x′ (mod q) for all x′ ∈ W different from x (we identify here natural numbers

and their binary expansions).

We apply this lemma to d = D/ε . To every right node p in Hn,k,ε we add a prefix code of two

natural numbers a,q, both at most 4dn2, and connect a left node x to (p,a,q) if x is connected to p

in Hn,k,ε and x ≡ a (mod q). We obtain the graph Gn,k,ε we were looking for. Indeed, for every S

of 2k left nodes for all x ∈ S but a fraction of ε there is a neighbor p of x in Hn,k,ε that has at most

d = D/ε = poly(n)/ε neighbors in S. Besides there is a prime q ≤ 4n2d = poly(n)/ε such that x 6≡ x′

(mod q) for all neighbors x′ of p different from x. Thus the neighbor (p,q,x mod q) of x in Gn,k,ε has

no other neighbors in S.

The degree of Gn,k,ε is D× (4n2D/ε)2 = poly(n)/ε2. The number of right nodes is

(poly(n)2kε)(4n2D/ε)2 = 2kpoly(n)/ε .

Thus right nodes can be identified with strings of length k+O
(
log n/ε

)
and we are done.
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