Skip to main content
Log in

Near-Optimal Lower Bounds on Regular Resolution Refutations of Tseitin Formulas for All Constant-Degree Graphs

  • Published:
computational complexity Aims and scope Submit manuscript

A Correction to this article was published on 17 November 2021

This article has been updated

Abstract

This paper is motivated by seeking the exact complexity of resolution refutation of Tseitin formulas. We prove that the size of any regular resolution refutation of a Tseitin formula \( {\rm T}(G, c)\) based on a connected graph \({G} =(V, E)\) is at least \(2^{\Omega({\rm tw}(G)/ \log |V|)}\), where \({\rm tw}(G)\) denotes the treewidth of a graph G. For constant-degree graphs, there is a known upper bound \(2^{\mathcal{O}({\rm tw}(G))}{\rm poly}(|V|)\) (Alekhnovich & Razborov Comput. Compl. 2011; Galesi, Talebanfard & Torán ACM Trans. Comput. Theory 2020), so our lower bound is tight up to a logarithmic factor in the exponent.

Our proof consists of two steps. First, we show that any regular resolution refutation of an unsatisfiable Tseitin formula \({\rm T}(G, c) \) of size S can be converted to a read-once branching program computing a satisfiable Tseitin formula \({\rm T}(G,c')\) of size \(S^{{\mathcal{O}}({\rm log} |V|)}\) and this bound is tight.

Second, we give the exact characterization of the nondeterministic read-once branching program (1-NBP) complexity of satisfiable Tseitin formulas in terms of structural properties of underlying graphs. Namely, we introduce a new graph measure, the component width (compw) and show that the size of a minimal \({1\text{-}\mathrm{NBP}}\) computing a satisfiable Tseitin formula \({\rm T}(G,c')\) based on a graph \({G} = (V, E)\) equals \(2^{compw}(G)\) up to a polynomial factor. Then we show that \(\Omega({\rm tw}(G)) \le {\rm compw}(G) \le {\mathcal{O}}({\rm tw}(G){\rm log}(|V|))\) and both of these bounds are tight. The lower bound improves the recent result by Glinskih & Itsykson (Theory Comput. Syst. 2021).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

References

  • Michael Alekhnovich & Alexander A. Razborov (2011). Satisfiability, Branch-Width and Tseitin tautologies. Computational Complexity 20(4), 649–678. URL https://doi.org/10.1007/s00037-011-0033-1.

  • A. Atserias & M. Müller (2019). Automating Resolution is NPHard. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), 498–509.

  • Albert Atserias (2008). On digraph coloring problems and treewidth duality. European Journal of Combinatorics 29(4), 796 – 820. ISSN 0195-6698. URL http://www.sciencedirect.com/science/article/pii/S0195669807002004. Homomorphisms: Structure and Highlights.

  • Paul Beame, Chris Beck & Russell Impagliazzo (2016). Time-Space Trade-offs in Resolution: Superpolynomial Lower Bounds for Superlinear Space. SIAM J. Comput. 45(4), 1612–1645. URL https://doi.org/10.1137/130914085.

  • Eli Ben-Sasson (2002). Size Space Tradeoffs for Resolution. In Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC ’02, 457–464. ACM, New York, NY, USA. ISBN 1-58113-495-9. URL http://doi.acm.org/10.1145/509907.509975.

  • Eli Ben-Sasson & Avi Wigderson (2001). Short proofs are narrow - resolution made simple. J. ACM 48(2), 149–169. URL https://doi.org/10.1145/375827.375835.

  • Dan Bienstock (1990). On embedding graphs in trees. Journal of Combinatorial Theory, Series B 49(1), 103 – 136. ISSN 0095-8956. URL http://www.sciencedirect.com/science/article/pii/0095895690900669.

  • Hans L Bodlaender & Arie MCA Koster (2006). Safe separators for treewidth. Discrete Mathematics 306(3), 337–350.

  • Maria Luisa Bonet & Nicola Galesi (1999). A Study of Proof Search Algorithms for Resolution and Polynomial Calculus. In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, 422–432. IEEE Computer Society. URL https://doi.org/10.1109/SFFCS.1999.814614.

  • Sam Buss, Dmitry Itsykson, Alexander Knop & Dmitry Sokolov (2018). Reordering Rule Makes OBDD Proof Systems Stronger. In 33rd Computational Complexity Conference (CCC 2018), Rocco A. Servedio, editor, volume 102 of Leibniz International Proceedings in Informatics (LIPIcs), 16:1–16:24. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. ISBN 978-3-95977-069-9. ISSN 1868-8969. URL http://drops.dagstuhl.de/opus/volltexte/2018/8872.

  • Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo & Toniann Pitassi (1999). Linear Gaps Between Degrees for the Polynomial Calculus Modulo Distinct Primes (Abstract). In Proceedings of the 14th Annual IEEE Conference on Computational Complexity, Atlanta, Georgia, USA, May 4-6, 1999, 5. URL http://dx.doi.org/10.1109/CCC.1999.766254.

  • Julia Chuzhoy (2015). Excluded Grid Theorem: Improved and Simplified. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, 645–654. URL https://doi.org/10.1145/2746539.2746551.

  • Julia Chuzhoy & Zihan Tan (2019). Towards Tight(Er) Bounds for the Excluded Grid Theorem. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, 1445– 1464. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. URL http://dl.acm.org/citation.cfm?id=3310435.3310523.

  • Alexis de Colnet & Stefan Mengel (2021). Characterizing Tseitin-Formulas with Short Regular Resolution Refutations. In Theory and Applications of Satisfiability Testing – SAT 2021, Chu-Min Li & Felip Manyà, editors, 116–133. Springer International Publishing, Cham. ISBN 978-3-030-80223-3.

  • Stephen A. Cook & Robert A. Reckhow (1979). The Relative Efficiency of Propositional Proof Systems. J. Symb. Log. 44(1), 36–50. URL https://doi.org/10.2307/2273702.

  • Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk & Saket Saurabh (2015). Parameterized Algorithms. Springer. ISBN 978-3-319-21274-6. URL https://doi.org/10.1007/978-3-319-21275-3.

  • Stefan S. Dantchev & Søren Riis (2001). Tree Resolution Proofs of the Weak Pigeon-Hole Principle. In Proceedings of the 16th Annual IEEE Conference on Computational Complexity, Chicago, Illinois, USA, June 18-21, 2001, 69–75. IEEE Computer Society. ISBN 0-7695-1053-1. URL https://doi.org/10.1109/CCC.2001.933873.

  • Nicola Galesi, Dmitry Itsykson, Artur Riazanov & Anastasia Sofronova (2019). Bounded-Depth Frege Complexity of Tseitin Formulas for All Graphs. In 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, 49:1–49:15. URL https://doi.org/10.4230/LIPIcs.MFCS.2019.49.

  • Nicola Galesi, Navid Talebanfard & Jacobo Torán (2020). Cops-Robber Games and the Resolution of Tseitin Formulas. ACM Trans. Comput. Theory 12(2), 9:1–9:22. URL https://doi.org/10.1145/3378667.

  • Zvi Galil (1977). On the Complexity of Regular Resolution and the Davis-Putnam Procedure. Theor. Comput. Sci. 4(1), 23–46. URL https://doi.org/10.1016/0304-3975(77)90054-8.

  • L. Glinskih & D. Itsykson (2017). Satisfiable Tseitin Formulas Are Hard for Nondeterministic Read-Once Branching Programs. In MFCS-2017, 26:1–26:12. URL https://doi.org/10.4230/LIPIcs.MFCS.2017.26.

  • Ludmila Glinskih & Dmitry Itsykson (2021). On Tseitin Formulas, Read-Once Branching Programs and Treewidth. Theory Comput. Syst. 65(3), 613–633. URL https://doi.org/10.1007/s00224-020-10007-8.

  • Dima Grigoriev (2001). Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity. Theor. Comput. Sci. 259(1-2), 613–622. URL https://doi.org/10.1016/S0304-3975(00)00157-2.

  • Daniel J. Harvey & David R. Wood (2018). The treewidth of line graphs. Journal of Combinatorial Theory, Series B 132, 157 – 179. ISSN 0095-8956. URL http://www.sciencedirect.com/science/article/pii/S0095895618300236.

  • Johan Håstad (2017). On Small-Depth Frege Proofs for Tseitin for Grids. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, Chris Umans, editor, 97–108. IEEE Computer Society. ISBN 978-1-5386-3464-6. URL https://doi.org/10.1109/FOCS.2017.18.

  • Marijn J. H. Heule, Oliver Kullmann & Victor W. Marek (2016). Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer. In Theory and Applications of Satisfiability Testing – SAT 2016, Nadia Creignou & Daniel Le Berre, editors, 228–245. Springer International Publishing, Cham. ISBN 978-3-319-40970-2.

  • D.M. Itsykson & A.A. Kojevnikov (2006). Lower bounds of static Lovasz-Schrijver calculus proofs for Tseitin tautologies. Zapiski Nauchnykh Seminarov POMI 340, 10–32.

  • Dmitry Itsykson, Alexander Knop, Andrey Romashchenko & Dmitry Sokolov (2017). On OBDD-Based Algorithms and Proof Systems That Dynamically Change Order of Variables. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017), Heribert Vollmer & Brigitte Vallee, editors, volume 66 of Leibniz International Proceedings in Informatics (LIPIcs), 43:1–43:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. ISBN 978-3-95977-028-6. ISSN 1868-8969. URL http://drops.dagstuhl.de/opus/volltexte/2017/6991.

  • Dmitry Itsykson & Vsevolod Oparin (2013). Graph Expansion, Tseitin Formulas and Resolution Proofs for CSP. In Computer Science - Theory and Applications - 8th International Computer Science Symposium in Russia, CSR 2013, Ekaterinburg, Russia, June 25-29, 2013. Proceedings, Andrei A. Bulatov & Arseny M. Shur, editors, volume 7913 of Lecture Notes in Computer Science, 162–173. Springer. ISBN 978-3-642-38535-3. URL https://doi.org/10.1007/978-3-642-38536-0_14.

  • László Lovász, Moni Naor, Ilan Newman & Avi Wigderson (1995). Search Problems in the Decision Tree Model. SIAM J. Discrete Math. 8(1), 119–132. URL http://dx.doi.org/10.1137/S0895480192233867.

  • Igor L Markov & Yaoyun Shi (2011). Constant-Degree Graph Expansions that Preserve Treewidth. Algorithmica 59(4), 461–470.

  • Toniann Pitassi, Benjamin Rossman, Rocco A. Servedio & Li-Yang Tan (2016). Poly-logarithmic Frege depth lower bounds via an expander switching lemma. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, Daniel Wichs & Yishay Mansour, editors, 644–657. ACM. ISBN 978-1-4503-4132-5. URL https://doi.org/10.1145/2897518.2897637.

  • Neil Robertson & Paul D. Seymour (1983). Graph minors. I. Excluding a forest. J. Comb. Theory, Ser. B 35(1), 39–61.

  • Gert Sabidussi (1959). Graph multiplication. Mathematische Zeitschrift 72(1), 446–457.

  • Petra Scheffler (1992). Optimal embedding of a tree into an interval graph in linear time. In Annals of Discrete Mathematics, volume 51, 287–291. Elsevier.

  • G.S. Tseitin (1968). On the complexity of derivation in the propositional calculus. In Studies in Constructive Mathematics and Mathematical Logic Part II. A. O. Slisenko, editor.

  • A. Urquhart (1987). Hard Examples for Resolution. JACM 34(1), 209–219.

  • Alasdair Urquhart (2012). Width and size of regular resolution proofs. Logical Methods in Computer Science 8.

  • Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz & Sharad Malik (2001). Efficient Conflict Driven Learning in a Boolean Satisfiability Solver. In Proceedings of the 2001 IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’01, 279–285. IEEE Press. ISBN 0780372492.

Download references

Acknowledgements

The authors thank Ludmila Glinskih, Anastasia Sofronova, Svyatoslav Gryaznov, Alexander Knop, Alexander Smal and Navid Talebanfard for fruitful discussions and the reviewers for their detailed and useful comments. Dmitry Itsykson was partially supported by Young Russian Mathematics award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Itsykson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Errors in formulas, body text corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itsykson, D., Riazanov, A., Sagunov, D. et al. Near-Optimal Lower Bounds on Regular Resolution Refutations of Tseitin Formulas for All Constant-Degree Graphs. comput. complex. 30, 13 (2021). https://doi.org/10.1007/s00037-021-00213-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00037-021-00213-2

Keywords

Subject classification

Navigation