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1. Introduction

Polynomial factoring is a classical question in algebra. For fac-
toring multivariate polynomials, we have to specify a model for
representing polynomials. A standard model in algebraic complex-
ity to represent polynomials is arithmetic circuits (aka straight-line
programs). Other well-known models are arithmetic branching pro-
grams (ABP), arithmetic formulas, dense representations, where
the coefficients of all n-variate monomials of degree ≤ d are listed,
or sparse representations, where only the nonzero coefficients are
listed. Given a polynomial in some model, one can ask for effi-
cient algorithms for computing its factors represented in the same
model. That leads to the following question.
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Question 1.1 (Factor size upper bound). Given a polynomial of
degree d and size s in a representation, do all of its factors have
size poly(s, d) in the same representation?

For example, in the dense representation, the size of the input
polynomial and the output factors is the same, namely

(
n+d

d

)
, for n-

variate polynomials of degree d. But for other representations, the
factor of a polynomial may take larger size than the polynomial
itself. For example, in the sparse representation the polynomial
xd − 1 has size 2, but its factor 1 + x + · · · + xd−1 has size d.

Arithmetic circuits. The algebraic complexity class VP con-
tains all families of polynomials {fn}n that have degree poly(n)
and arithmetic circuits of size poly(n). Kaltofen (1989) showed
that VP is closed under factoring: Given a polynomial f ∈ VP of
degree d computed by an arithmetic circuit of size s, all its factors
can be computed by an arithmetic circuit of size poly(s, d).

Arithmetic branching programs. Our main result (Theorem
4.1) is an analog of Kaltofen’s result:

ABPs are closed under factoring.

That is, the factors of a polynomial given by an ABP have poly-
nomially bounded ABP-size.

Note that Kaltofen’s proof technique for circuit factoring does
not give a poly(s, d)-size upper bound for the size of formulas or
ABPs. The construction there results in a circuit, even if the input
polynomial is given as a formula or an ABP. Converting a circuit
to an arithmetic formula or an ABP may cause super-polynomial
blowup of size.

Analogous to VP, classes VF and VBP contain families of poly-
nomials that can be computed by polynomial-size arithmetic for-
mulas and branching programs, respectively. Note that the size
also bounds the degree of the polynomials in these models. Arith-
metic branching programs are an intermediate model in terms of
computational power, between arithmetic formulas and arithmetic
circuits,

VF ⊆ VBP ⊆ VP .
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ABPs are interesting in algebraic complexity as they essentially
capture the power of linear algebra, for example, they can effi-
ciently compute determinants. The determinantal complexity of
a polynomial f(x1, . . . , xn) is the smallest possible dimension of a
matrix M that has linear polynomials as entries, such that det(M) =
f . If f is computed by an ABP of size s, then the determinantal
complexity of f is at most s. In the opposite direction, if the de-
terminantal complexity of f is s, then the ABP-size of f is poly(s).

ABPs have several equivalent characterizations. They can be
captured via iterated matrix multiplication, weakly-skew circuits,
skew circuits, and determinants of a symbolic matrices. See Ma-
hajan (2014) for an overview of these connections.

The classes VF, VBP, VP are conjectured to be different from
each other. For example, the determinant is in VBP, but is con-
jectured to be not in VF. Similarly, we have polynomials that are
in VP, but are conjectured to be not in VBP. Note that if VBP
is indeed strictly contained in VP, then the closure under factor-
ing of VP does not directly imply closure under factoring of VBP
or VF.

Proof technique. A standard technique to factor multivariate
polynomials has typically two main steps. Starting from two co-
prime univariate factors, the first step uses a method called Hensel
lifting to lift the factors to high enough precision. The second step,
sometimes called the jump step or reconstruction step, consists of
reconstructing a factor from a corresponding lifted factor by solv-
ing a system of linear equations.

The earlier works for polynomial factorization use a version
of Hensel lifting, where in each iteration the lifted factors remain
monic. It seems as this version is not efficient for ABPs. We
observe that monicness of the lifted factor is not necessary for the
jump step. This allows us to use a simplified version of Hensel
lifting that is efficient for ABPs. Finally, we use the fact that the
determinant can be computed efficiently by ABPs.

Essentially, the only reason we cannot extend our result to for-
mulas is due to absence of small arithmetic formulas to compute
determinants. If the input polynomial is given as a formula, the
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preprocessing steps and Hensel lifting keep the formula size small.
Just the last step, the factor reconstruction involves computing
determinants, and that is where small formulas fail.

Remark 1.2. If the input polynomial is given as a circuit, we
can construct circuits for factors in the same way as constructing
ABPs. Hence, as a by-product, we also literally provide another
proof for the classical circuit factoring result of Kaltofen.

Motivation. To ask for the size of the factors in the same model
as the input polynomial is clearly a very natural question. Note
that Kaltofen’s result would already give small circuits for the
factors in the more restricted models like formulas and branching
programs. Below, we give two more concrete reasons why it is
interesting to study this question.

Closure under factoring in a model indicates robustness under
multiplication of hard polynomials in that model. Namely, with a
polynomial family {fn} that is hard for such a class, i.e., requires
super-polynomial size, we get a whole class of polynomials that
are hard as well, namely, for all polynomials g, all its nonzero
multiples {gfn}. Lower bounds for all the nonzero multiples of
an explicit hard polynomial may lead to lower bounds for ideal
proof systems (Forbes et al. 2016). Closure under factoring is thus
relevant also in the connection between algebraic complexity and
proof complexity (Forbes et al. 2016).

Closure under factoring is used in the hardness vs. randomness
trade-off results in algebraic complexity. See, for example, the ex-
cellent survey of Kumar & Saptharishi (2019) for details on this
topic. The celebrated result of Kabanets & Impagliazzo (2004,
Theorem 7.7) showed that a sufficiently strong lower bound for
arithmetic circuits would derandomize polynomial identity testing
(PIT). The proof of derandomization uses a hard polynomial as
well as the upper bound on the size of factors of a polynomial
computed by the circuit (Kaltofen 1989). As a corollary of our re-
sult, we get a similar statement in terms of ABPs: an exponential,
or super-polynomial lower bound for ABPs for an explicit multi-
linear polynomial yields quasi-poly, respectively, sub-exponential,
black-box derandomization of PIT for polynomials in VBP.
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Construction and reduction to PIT. We formulate our main
result, Theorem 4.1, as an existential claim: There exist small
ABPs for the factors of a polynomial given by an ABP. But in
fact, one can construct these ABPs for the factors efficiently.

The construction algorithm is randomized. But randomization
is only used for polynomial identity testing (PIT) of ABPs. Hence,
similar as Kopparty, Saraf & Shpilka (2015) showed for circuits, the
construction can be efficiently reduced to PIT.

There are two versions of PIT: white-box and black-box. For
both, one has to find out whether a given polynomial p is identically
zero. In the white-box case, polynomial p is explicitly given, for
example, as an ABP. In the black-box case, one knows only the
size of the ABP and is only allowed to evaluate p at various points.

For circuits, black-box factoring is equivalent to black-box PIT,
and white-box factoring is equivalent to white-box PIT (Kopparty
et al. 2015). In Section 5, we will explain that this holds similarly
for ABPs. But these equivalences are not the main point of our
paper. We focus more on how simple factorization can be kept.
For that, we describe a way to factorize in Sections 3 and 4 that,
except for the very last step, also works for formulas. However, this
procedure reduces only to black-box PIT, a stronger oracle than
white-box PIT.

For the reduction to white-box PIT, it is crucial that in a pre-
processing step, the input polynomial is transformed into a square-
free polynomial. The standard approach for reducing to the square-
free case is via dividing the polynomial by the GCD of the poly-
nomial and its derivative, see Kopparty, Saraf & Shpilka (2015).
The GCD of two polynomials given by ABPs can be directly com-
puted by a small ABP using subresultants. On the other hand,
we observe that there is no need to reduce to the square-free case.
It suffices to have one irreducible factor of multiplicity one. This
weaker transformation involves only derivatives and can be com-
puted by small ABPs, as well as small arithmetic formulas. We
describe both the approaches in Section 5.

Comparison with prior works. There are several proofs of
the closure of VP under factors (Bürgisser 2004, 2013; Chou et al.
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2019a; Dutta et al. 2018; Kaltofen 1986, 1987, 1989; Kopparty et al.
2015; Oliveira 2016). None of the previous proofs directly extends
to the closure of VBP, i.e., branching programs, under factors.

Recently, Dutta, Saxena & Sinhababu (2018) and also Oliveira
(2016) considered factoring in restricted models like formulas, ABPs,
and small-depth circuits. They reduce polynomial factoring to ap-
proximating power series roots of the polynomial to be factored.
Then, they use the well-known technique of Newton iteration for
approximating the roots. Let x = (x1, . . . , xn). If p(x, y) is the
given polynomial and q(x) is a root w.r.t. y, i.e., p(x, q(x)) = 0,
then y−q(x) is a factor of p. Newton iteration repeatedly uses the
following recursive formula to approximate q:

yt+1 = yt − p(x, yt)

p′(x, yt)
,

where p′ is the derivative of p w.r.t. variable y.
If p is given as a circuit, the circuit for yt+1 is constructed from

the circuit of yt. For the circuit model, we can assume that p(x, y)
has a single leaf node y where we feed yt. But for formula and
branching programs, we may have d many leaves labeled by y,
where d is the degree of p in terms of y. As we cannot reuse
computations in formula or branching programs, we have to make
d copies of yt in each round. This leads to dlog d blowup in size.

Oliveira (2016) used the idea of approximating roots via an
approximator polynomial function of the coefficients of a polyno-
mial. This gives good upper bound on the size of factors of ABPs,
formulas, and bounded depth circuits under the assumption that
the individual degrees of the variables in the input polynomial are
bounded by a constant.

Recently, Chou, Kumar & Solomon (2019a) proved closure of
VP under factoring using Newton iteration for several variables for
a system of polynomial equations. This approach also faces the
same problem for the restricted models.

Instead of lifting roots, another classical technique for multi-
variate factoring is Hensel lifting, where factors modulo an ideal
are lifted. Hensel lifting has a slow version, where the power of
the ideal increases by one in each round. The other version due to
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Zassenhaus (1969) is fast, the power of the ideal gets doubled in
each round.

Kaltofen’s proofs use slow versions of Hensel lifting iteratively
for d rounds, where d is the degree of the given polynomial (Kaltofen
1987, 1989). That leads to an exponential blowup of size in mod-
els where the previous computations cannot be reused, as using
previous lifts twice would need two copies each time.

Kopparty, Saraf & Shpilka (2015) use the standard way of doing
fast Hensel lifting for log d rounds, where in each round the lifted
factors are kept monic. To achieve this, one has to compute a
polynomial division with remainder. Implementing this version of
Hensel lifting for ABPs or formulas seems to require to make d
copies of previous computations in each round. Thus, that way
would lead to a dlog d size blowup.

Here, we use a classic version of fast Hensel lifting, that needs
log d rounds and additionally, in each round, we have to make
copies of previous computations only constantly many times. As
we mentioned earlier, we avoid to maintain the monicness.

Though various versions of Hensel lifting (factorization lifting)
and Newton iteration techniques (root lifting) are equivalent in
the sense that one can be derived from the other (von zur Gathen
1984), it is interesting that the former gives a better factor size
upper bound for the model of ABP.

Organization of the paper. In Section 2, we give some basic
facts on algebra and the computational model of ABP that we use
in this paper. In Section 3, we discuss the preprocessing steps and
other lemmas that we use to prove in our main result. In Section 4,
we prove our main result (Theorem 4.1). In Section 5, we discuss
how our proof can be converted to a randomized algorithm for
computing the factors. We also highlight the steps where random-
ization is used and argue that they can deterministically be turned
into PIT-problems. In Section 6, we discuss how to apply Theo-
rem 4.1 to extend the classic hardness to derandomization result
of Kabanets and Impagliazzo to the model of ABPs.
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2. Preliminaries

We consider multivariate polynomials over a field F of characteris-
tic 0. A polynomial p is called irreducible, if it cannot be factored
into the product of two non-constant polynomials. Polynomial p
is called square-free, if for any non-constant factor q, the polyno-
mial q2 is not a factor of p.

By deg(p), we denote the total degree of p. Let x and z =
(z1, . . . , zn) be variables and p(x, z) be a (n+1)-variate polynomial.
Then, we can view p as a univariate polynomial p =

∑
i ai(z) xi

over K[x], where K = F[z]. The x-degree of p is denoted by
degx(p). It is the highest degree of x in p. Polynomial p is called
monic in x, if the coefficient adx(z) is the constant 1 polynomial,
i.e., adx(z) = 1, where dx = degx(p).

By poly(n), we denote the class of polynomials in n ∈ N.

Polynomial Identity Test (PIT). There is a randomized algo-
rithm by the DeMillo–Lipton–Schwartz–Zippel to find out whether
a given polynomial is identical zero; see Chou et al. (2019b) and
the references therein for more details and history of this theorem.

Theorem 2.1 (Polynomial Identity Test). Let p(x) be an n-variate
nonzero polynomial of total degree d. Let S ⊆ F be a finite set.
For α ∈ Sn picked independently and uniformly at random,

Pr[ p(α) = 0 ] ≤ d

|S| .

Since we assume the field F to have characteristic 0, we can
choose the set S in Theorem 2.1 large enough, for example, |S| =
2d, to keep the probability Pr[ p(α) = 0 ] small. In case of finite
fields, we may have to work over a field extension so that the field
is large enough.

Rings and ideals. Let R be a commutative ring with identity.
A set I ⊆ R is an ideal of R, if it is closed under addition and
under scalar multiplications by elements of R. That is, for every
r ∈ R and every a ∈ I, the product ar is in I.
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Two elements r, s ∈ R are congruent modulo I, if r − s ∈ I.
This is denoted as

r ≡ s (mod I).

For a set S ⊆ R, the ideal generated by S is denoted by 〈S〉. It
consists of all elements r ∈ R that can be written as a finite sum,

r =
�∑

i=1

risi,

for some � ≥ 1, ri ∈ R, and si ∈ S, for i = 1, . . . , �. It is easy to
check that 〈S〉 is indeed an ideal of R.

For an ideal I of R and m ≥ 1, the mth power of I is the
ideal Im generated by the elements s of the form s = a1a2 · · · am,
where ai ∈ I, for i = 1, . . . ,m.

We will apply these notions in the following setting. The ring R
will be the polynomial ring R = K[x, y], for two variables x, y and
another polynomial ring K = F[z], where F is a field and z is a
tuple of variables. Note that K[x, y] is commutative and has an
identity. As ideal, we consider I = 〈y〉, the ideal generated by
polynomial y ∈ K[x, y]. Then, I contains all polynomials that
have factor y,

I = { py | p ∈ K[x, y] } .

Similarly, the mth power of I contains all polynomials that have
factor ym,

Im = { pym | p ∈ K[x, y] } .

Computational models. An arithmetic circuit is a directed
acyclic graph, whose leaf nodes are labeled by the variables x1, . . . , xn

and various constants from the underlying field. The other nodes
are labeled by sum gates or product gates. A node labeled by a
variable or constant computes the same. A node labeled by sum or
product computes the sum or product of the polynomials computed
by nodes connected by incoming edges. The size of an arithmetic
circuit is the total number of its edges.

An arithmetic formula is a special kind of arithmetic circuit. A
formula has the structure of a directed acyclic tree. Every node in
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a formula has out-degree at most one. As we cannot reuse compu-
tations in a formula, it is considered to be weaker than circuits.

An arithmetic branching program (ABP) is a layered directed
acyclic graph with a single source node and a single sink node. An
edge of an ABP is labeled by a variable or a constant from the
field. The weight corresponding to a path from the source to the
sink is the product of the polynomials labeling the edges on the
path. The polynomial f(x1, . . . , xn) computed by the ABP is the
sum of the weights of the all possible paths from source to sink.

The size of an ABP is the number of its edges. The size of the
smallest ABP computing f is denoted by sizeABP(f). The degree
of a polynomial computed by an ABP of size s is at most s.

Instead of arithmetic, the above models are also called algebraic
circuits, algebraic formulas, and algebraic branching programs, re-
spectively.

Properties of ABPs. Univariate polynomials have small ABPs.
Let p(x) be a univariate polynomial of degree d over any field. It
can be computed by an ABP of size 2d + 1, actually even by a
formula of that size.

For univariate polynomials p(x), q(x) over any field, the ex-
tended Euclidean algorithm computes the GCD h = gcd(p, q) and
also the Bézout-coefficients, polynomials a, b such that ap+bq = h,
where deg(a) < deg(q) and deg(b) < deg(p). Let p have the larger
degree, d = deg(p) ≥ deg(q). Then, clearly deg(h), deg(a), deg(b) ≤
d, and consequently, all these polynomials, p, q, h, a, b have ABP-
size at most 2d + 1.

Let p(x), q(x) be multivariate polynomials in x = (x1, . . . , xn).
For the ABP-size with respect to addition and multiplication, we
have

1. sizeABP(p + q) ≤ sizeABP(p) + sizeABP(q),

2. sizeABP(pq) ≤ sizeABP(p) + sizeABP(q).

For the sum of two ABPs Bp, Bq, one can put Bp and Bq in
parallel by merging the two source nodes of Bp and Bq into one new
source node, and similar for the two sink nodes. For the product,
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one can put Bp and Bq in series by merging the sink of Bp with
the source of Bq.

Another basic operation is substitution. Let p(x1, . . . , xn) and
q1(x), . . . , qn(x) be polynomials. Let sizeABP(qi) ≤ s, for i =
1, . . . , n. Then, we have

sizeABP(p(q1, . . . , qn)) ≤ s · sizeABP(p).

To get an ABP for p(q1(x), . . . , qn(x)), replace an edge labeled xi

in the ABP Bp for p by the ABP Bqi for qi.

It is known that the determinant of a symbolic matrix of di-
mension n can be computed by an ABP of size poly(n) (Berkowitz
1984; Chistov 1985; Csanky 1976; Mahajan & Vinay 1999). By
substitution, the entries of the matrix can itself be polynomials
computed by ABPs.

Resultant, subresultant, and GCD. Given two polynomials
p(x, y) and q(x, y) in variables x and y = (y1, . . . , yn), consider
them as polynomials in x with coefficients in F[y]. The resultant
of p and q w.r.t. x, denoted by Resx(p, q), is the determinant of
the Sylvester matrix of p and q. For the definition of the Sylvester
matrix, see von zur Gathen & Gerhard (2013, Section 6.3). Note
that Resx(p, q) is a polynomial in F[y]. When we have ABPs for
the coefficients of p and q, there is a poly-size ABP that computes
the resultant Resx(p, q).

Basic properties of the resultant are that it can be represented
as a linear combination of p and q and that it provides information
about the GCD of p and q.

Lemma 2.2 (Resultant and GCD). Let p(x, y) and q(x, y) be poly-
nomials of degree ≤ d and h = gcd(p, q).

(i) deg(Resx(p, q)) ≤ 2d2,

(ii) ∃u, v ∈ F[x, y] up + vq = Resx(p, q),

(iii) Resx(p, q) = 0 ⇐⇒ degx(h) > 0.
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See von zur Gathen & Gerhard (2013, Section 6.3) for a proof of
the lemma. Note that by item (iii), we can find out whether p and q
have a non-trivial GCD via a polynomial identity test (PIT). In
the contrapositive, when Resx(p, q) �= 0, we have that degx(h) = 0,
and hence, h is a polynomial just in y. It is known that when p
and q are monic in x, actually h = gcd(p, q) = 1.

Subresultants of p and q are polynomials Sj(p, q) ∈ F[x, y]
of x-degree j, computed from determinants of submatrices of the
Sylvester matrix, for j = 0, 1, . . . , deg(q) ≤ deg(p). For the defini-
tion, see, for example, the textbook Geddes et al. (1992, Chapter
7). See also Sasaki & Suzuki (1992, Section 4) for a quick overview.
Like for the resultant, when we have ABPs for the coefficients of p
and q, there are poly-size ABPs that compute the subresultants.

The interest in subresultants comes from the fact that they
can be used to get poly-size ABPs to compute the GCD. Let
h = gcd(p, q) and d = degx(h). Note first that d can be deter-
mined by several zero-tests of minors of the Sylvester matrix of p
and q, see Geddes et al. (1992, Theorem 7.3). It follows from the
fundamental theorem of polynomial remainder sequence, see Ged-
des et al. (1992, Theorem 7.4), that the dth subresultant Sd(p, q)
is a multiple of h: There is a k ∈ F[y] such that Sd(p, q) = kh.

In our case, polynomials p and q will be monic in x. Hence,
the GCD h will be monic in x too. Thus, the leading coefficient
of Sd(p, q) w.r.t. x is the above polynomial k ∈ F[y]. So if we
divide Sd(p, q) by its leading coefficient w.r.t. x, we recover the
GCD h. For ABPs, the division can be done with small increase
in size using Strassen’s classic technique.

Lemma 2.3. Given two monic polynomials p, q ∈ F[x, z] com-
puted by ABPs of size at most s, there is an efficient randomized
algorithm that outputs an ABP of size poly(s) that computes their
GCD.

3. Preprocessing steps and algebraic tool kit

Before we start the Hensel lifting process, a polynomial should ful-
fill certain properties that the input polynomial might not have.
In this section, we describe transformations of a polynomial that
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achieve these properties such that ABPs can compute the trans-
formation and its inverse, and factors of the polynomials are main-
tained.

We also explain how to compute homogeneous components and
how to solve linear systems via ABPs. We show how to handle
the special case when the given polynomial is just a power of an
irreducible polynomial.

3.1. Computing homogeneous components and coefficients
of a polynomial. Let p(x, z) be a polynomial of degree d in
variables x and z = (z1, . . . , zn). Let Bp be an ABP of size s
that computes a polynomial p. Write p as a polynomial in x, with
coefficients from F[z],

p(x, z) =
d∑

i=0

pi(z) xi .

We show that all the coefficients pi(z) have ABPs of size poly(s, d).
The argument is similar to Strassen’s homogenization technique

for arithmetic circuits, an efficient way to compute all the homo-
geneous components of a polynomial. The same technique can be
used for ABPs. See Saptharishi (2021, Lemma 5.2 and Remark).
Here, we sketch the proof idea.

Each node v of Bp we split into d+1 nodes v0, . . . , vd, such that
node vi computes the degree i part of the polynomial computed by
node v, for i = 0, 1, . . . , d. Consider an edge e between node u
and v in Bp.

◦ If e is labeled with a constant c ∈ F or a variable zi, then we
put an edge between ui and vi with label c or zi, respectively.

◦ If e is labeled with variable x, then we put an edge between ui

and vi+1 with label 1.

The resulting ABP has one source node and d+1 sink nodes. The
ith sink node computes pi(z).

For each edge of Bp, we get either d or d + 1 edges in the new
ABP. Hence, its size is bounded by s(d + 1).
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Lemma 3.1 (Coefficient extraction). Let p(x, z) =
∑d

i=0 pi(z) xi

be a polynomial. Then, for all i,

sizeABP(pi) ≤ (d + 1) sizeABP(p) .

The technique can easily be extended to constantly many vari-
ables. For two variables, consider p(x, y, z) =

∑
i,j pi,j(z) xiyj.

Then, from an ABP of size s for p we get ABPs for the coeffi-
cients pi,j(z) of size s(d + 1)2 similarly as above.

In homogenization, we want to compute the homogeneous com-
ponents of p. That is, write p(z) =

∑d
i=0 pi(z), where pi is a

homogeneous polynomial of degree i. From an ABP Bp for p, we
get ABPs for the pi’s similarly as above: In the definition of the
new edges, only for constant label, we put the edge from ui to vi.
In case of any variable label zj, we put the edge from ui to vi+1

with label zj. Then, the ith sink node computes pi(z). The size is
bounded by s(d + 1).

Lemma 3.2 (Homogenization). Let p(z) =
∑d

i=0 pi(z) be a poly-
nomial, where pi is a homogeneous polynomial of degree i, for
i = 0, 1, . . . , d. Then, for all i,

sizeABP(pi) ≤ (d + 1) sizeABP(p).

3.2. Computing q from p = qe. A special case is when the
given polynomial p(z) is a power of one irreducible polynomial q(z),
i.e., p = qe, for some e > 1. This case is handled separately.
Kaltofen (1987) showed how to compute q for circuits, ABPs, and
arithmetic formulas. Here, we give a short proof from Dutta (2018).

Lemma 3.3. Let p = qe, for polynomials p(z), q(z). Then,

sizeABP(q) ≤ poly(sizeABP(p)).

Proof. We may assume that p is nonzero; otherwise, the claim
is trivial. We want to apply Newton’s binomial theorem to compute
q = p1/e. For this, we need that p(0, . . . , 0) = 1. If this is not the
case, we first transform p as follows:
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1. If p(0, . . . , 0) = 0, let α = (α1, . . . , αn) be a point where
p(α) �= 0. By Theorem 2.1, a random point α will work,
with high probability. Now we shift the variables and work
with the shifted polynomial p1(z) = p(z + α).

Still, p1(0, . . . , 0) might be different from 1. In this case, we
also apply the next item to p1.

2. If p(0, . . . , 0) = a0 �= 0, 1, then we work with p2(z) = p(z)/a0.
Then, p2(0, . . . , 0) = 1.

Note that both transformations are easily reversible. Hence, in the
following we simply assume that p(0, . . . , 0) = 1.

By Newton’s binomial theorem, we have

(3.4) q = p1/e = (1 + (p − 1))1/e =
∞∑

i=0

(
1/e

i

)
(p − 1)i .

Note that p1/e is a polynomial of degree dq = deg(q). Since p−1
is constant-free, the terms (p − 1)j in the right-hand side of (3.4)
have degree > dq, for j > dq. Thus, (3.4) turns into a finite sum
modulo the ideal 〈z〉dq+1,

(3.5) q =

dq∑

i=0

(
1/e

i

)
(p − 1)i mod 〈z〉dq+1 .

Define Q =
∑dq

i=0

(
1/e
i

)
(p−1)i. Let sizeABP(p) = s. Then, we clearly

have sizeABP(Q) ≤ poly(s). To compute q = Q mod 〈z〉dq+1, we
have to truncate the terms in Q of degree > dq. This can be done
by computing the homogeneous components of Q as described in
Lemma 3.2. We conclude that sizeABP(q) ≤ poly(s). �

Recall that the underlying field F has characteristic 0. Note
that we above proof would not work when F had finite character-
istic p that divides e.

3.3. Reducing the multiplicity of a factor. In the earlier
works on bivariate and multivariate polynomial factoring, typically
the problem is reduced to factoring a square-free polynomial. This
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is convenient at various places in the Hensel lifting process. The
technique to reduce to the square-free case is via taking the GCD
of the input polynomial and its derivative.

As we will see, we do not need the polynomial to be square-free.
It suffices to have one irreducible factor with multiplicity one, and
another coprime factor. Thereby, we avoid GCD computations and
the approach stays feasible even for formulas.

Let p(z) be the given polynomial, for z = (z1, . . . , zn). The
special case that p is a power of one irreducible polynomial we just
handled in Section 3.2. Hence, we may assume that p has at least
two irreducible factors. So, let p = qe p0, where q is irreducible and
coprime to p0.

Consider the derivative of p w.r.t. some variable, such that q
also depends on this variable, say z1.

(3.6)
∂p

∂z1
= qe−1

(
(e − 1)

∂q

∂z1
p0 + q

∂p0
∂z1

)
.

Note that q does not divide the factor
(
(e − 1) ∂q

∂z1
p0 + q ∂p0

∂z1

)
in (3.6).

Hence, the multiplicity of factor q in ∂p
∂z1

is reduced by one com-
pared to p.

For the ABP-size, we write p as a polynomial in z1, i.e., p(z) =∑d
i=0 aiz

i
1, where the coefficients ai are polynomials in z2, . . . , zn.

By Lemma 3.1, when p has an ABP of size s, the coefficients ai can
be computed by ABPs of size s′ = s(d + 1). We observe that then
the coefficients of the derivative polynomial ∂p

∂z1
=

∑d
i=1 iaiz

i−1
1

have ABPs of size s′ + 1.
We repeat taking derivatives k = e−1 times and get ∂kp

∂zk1
, which

has the irreducible factor q with multiplicity one, as desired.

The coefficients of ∂kp
∂zk1

can be computed by ABPs of size s′ +1.

This yields an ABP of size poly(s) that computes ∂kp
∂zk1

.

3.4. Transforming to a monic polynomial. Given a poly-
nomial p(z) in variables z = (z1, . . . , zn) over field F, there is a
standard trick to make it monic in a new variable x by applying a
linear transformation on the variables: for α = (α1, . . . , αn) ∈ F

n,
let

τα : zi �→ αix + zi,
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for i = 1, . . . , n. Let pα(x, z) be the resulting polynomial. Note
that p and pα have the same total degree, say d.

To see what the transformation does, consider the terms of
degree d in p. Let β = (β1, . . . , βn) such that |β| =

∑n
i=1 βi = d.

We denote the term zβ = zβ1

1 · · · zβn
n . Then, the homogeneous

component of degree d in p can be written as ad(z) =
∑

|β|=d cβzβ .
Note that ad is a nonzero polynomial.

For the transformed polynomial pα, we have degx(pα) = d and
the coefficient of the leading x-term xd is ad(α) =

∑
|β|=d cβαβ . By

Theorem 2.1, when we pick α at random, ad(α) will be a nonzero
constant in F with high probability. In this case, 1

ad(α)
pα(x, z) is

monic in x.

Lemma 3.7 (Transformation to monic). Let p(z) be polynomial
of total degree d. Let S ⊆ F be a finite set. For α ∈ Sn picked
independently and uniformly at random,

Pr[
1

ad(α)
pα(x, z) is monic in x ] ≥ 1 − d

|S| ,

where ad(α) is the coefficient of xd in pα(x, z).

Given an ABP of size s that computes p(z), we can construct
another ABP of size 3s that computes pα(x, z). For the new ABP,
replace edge labeled by zi by the ABP computing αix + zi. For
each old edge, this requires adding two new edges with labels αi

and x.
Note that we can derandomize the transformation with an or-

acle for ABP–PIT.

3.5. Handling the starting point of Hensel lifting. After
doing the above preprocessing steps on the given polynomial p(z),
we call the transformed polynomial f(x, z). We can assume that f
of degree d can be factorized as f = gh, where g and h are coprime
and g is irreducible. We start Hensel lifting by factoring the uni-
variate polynomial f(x, 0, . . . , 0) ≡ f(x, z) (mod z). Clearly, we
have the factorization f(x, 0, . . . , 0) = g(x, 0, . . . , 0) h(x, 0, . . . , 0),
but these two factors might not be coprime. In this case, we do
another transformation.
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Remark 3.8. Although it would suffice for our purpose to start
with two coprime factors, the transformation below produces one
irreducible factor.

Let g0 be an irreducible factor of the polynomial g(x, 0, . . . , 0).
Then, we have for some univariate polynomial h′

0(x) and for h0(x) =
h′
0(x) h(x, 0, . . . , 0),

g ≡ g0 h′
0 (mod z),

f ≡ g0 h0 (mod z) .

We want that g0 is coprime to h′
0 and h0. Directly, this might

not be the case because all factors of f(x, 0, . . . , 0) might have
multiplicity > 1. However, we argue how to ensure this after a
random shift α of f . That is, we consider the function f(x, z +α)

1. First, we show how to achieve that g0 is coprime to h′
0.

Since g is irreducible, it is also square-free, and hence, we get
gcd(g, ∂g

∂x
) = 1. The discriminant of g is the resultant

r(z) = Resx(g,
∂g

∂x
).

Polynomial r(z) is nonzero and of degree ≤ 2d2, by Lemma 2.2.
Hence, at a random point α ∈ [4d2]n, we have r(α) �= 0, with
high probability. At such a point α, we have that g(x, α) is
square-free. Therefore, g(x, z) is square-free modulo (z−α),
or, equivalently, g(x, z + α) is square-free modulo z. Hence,
when we define g0 and h′

0 from g(x, z +α) instead of g(x, z),
they will be coprime.

2. Similarly, we can achieve that g0 is coprime to h0. By the
first item, it now suffices to get g0 coprime to h(x, 0, . . . , 0).

For showing this, we use that g0 is coprime to h′
0 and prove

that g(x, 0, . . . , 0) is coprime to h(x, 0, . . . , 0). Consider the
resultant of g and h w.r.t. x, the polynomial r′(z) = Resx(g, h)
has degree ≤ 2d2. Since g and h are coprime, r′(z) �= 0.
Hence, at a random point α ∈ [4d2]n, we have r′(α) �= 0
with high probability, and hence, g(x, α) and h(x, α) are co-
prime univariate polynomials. Therefore, g(x, z) and h(x, z)
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are coprime modulo (z−α), or, equivalently, g(x, z+α) and
h(x, z + α) are coprime modulo z.

Combining the two items, a random point α ∈ [4d2]n will ful-
fill both properties with high probability. So instead of factoring
f(x, z), we do a coordinate transformation z �→ z + α and fac-
tor f(x, z + α) instead. From these factors, we easily get the
factors of f(x, z) by inverting the transformation.

Remark 3.9. (i) The construction maintains the monicness:
when f(x, z) is monic in x, the same holds for f(x, z + α).

(ii) The ABP-size of f(x, z + α) is at most twice the ABP-size
of f(x, z).

(iii) The only use of randomness to efficiently construct an ABP
for f(x, z+α) is a PIT for the resultant polynomials r, r′. At
this point, it is not clear that they have small ABPs. After
we prove (in Theorem 4.1) that all factors of ABPs have
small ABP size, we get that the polynomials r, r′ have small
ABPs. Thus, we can use an explicit hitting set/black-box
PIT for the class of small ABPs to derandomize this step.
For black-box PIT, we just need ABP-size upper bounds of g
and h. For getting a deterministic polynomial time factoring
algorithm, we have to try all points in the hitting set to get
a shift α that works.

In the next section, we do another transformation on the input
polynomial. We apply a map on the variables that maps x to x
and zi is mapped to yzi, for a new variable y and i = 1, . . . , n.
Then, we factorize the transformed polynomial modulo y. Note
that in this case, going modulo y has the same effect of going
modulo z. So we can use the above argument to ensure the starting
condition for Hensel lifting is satisfied.

3.6. Reducing multivariate factoring to the bivariate case.
Factoring multivariate polynomials can be reduced to the case of
bivariate polynomials, see Kopparty, Saraf & Shpilka (2015). Let
x, y, and z = (z1, . . . , zn) be variables, and let f(x, z) be the given
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polynomial. With f ∈ F[x, z], we associate the polynomial f̂ ∈
F[x, y, z] defined by

f̂(x, y, z) = f(x, yz1, . . . , yzn) .

The point now is to consider f̂ as a polynomial in F[z][x, y], that
is, as a bivariate polynomial in x and y with coefficients in F[z].
We list some properties.

1. f(x, z) = f̂(x, 1,z),

2. deg(f̂) ≤ 2 deg(f),

3. f monic in x =⇒ f̂ monic in x,

4. f = gh =⇒ f̂ = ĝ ĥ,

5. f̂ = g̃ h̃ =⇒ f = g̃(x, 1,z) h̃(x, 1,z).

By property 4, factors of f yield factors of f̂ . The following
lemma shows that also the irreducibility of the factors is main-
tained.

Lemma 3.10. Let f be monic in x and g be a monic irreducible
factor of f . Then, ĝ is a monic irreducible factor of f̂ .

Proof. By properties 3 and 4, ĝ is a monic factor of f̂ . We
argue that ĝ is irreducible.

Let ĝ = uv be a factorization of ĝ. By item 5, this yields a
factorization of g as g = u(x, 1,z) v(x, 1,z). Since g is irreducible,
either u(x, 1,z) or v(x, 1,z) is constant. Because ĝ is monic in x,
either u or v must be constant too. �

Thus, to get an ABP for an irreducible factor g of f , first we
show that there is an ABP for the irreducible factor ĝ. This yields
an ABP for g by substituting g = ĝ(x, 1,z).

Given an ABP Bf of size s for f , we get an ABP B
̂f for f̂ by

putting an edge labeled y in series with every edge labeled zi in Bf ,
so that B

̂f computes yzi at every place where Bf uses zi. Hence,
the size of B

̂f is at most 2s.
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3.7. Solving a linear system with polynomials as matrix
entries. We show how to solve a linear system Mv = 0 for a
polynomial matrix M with entries from F[z] given as ABPs. We
are seeking for a nonzero vector v. Note that such a v exists over
the ring F[z] iff it exists over the field F(z).

Except for minor modifications, this follows from classical linear
algebra. Kopparty et al. (2015, Lemma 2.6) have shown the same
result for circuits. The proof works as well for ABPs.

Lemma 3.11 (Solving linear systems (Kopparty et al. 2015)). Let
M = (mi,j(z))i,j be a polynomial matrix of dimension k × m
and variables z = (z1, . . . , zn), where the entries are polynomials
mi,j ∈ F[z] that can be computed by ABPs of size s.

Then, there is an ABP of size poly(k,m, s) that computes a
nonzero vector v ∈ F[z]m such that Mv = 0, if it exists.

Proof. After swapping rows of M , we ensure that the j×j sub-
matrix Mj that consists of the first j rows and the first j columns
has full rank, iteratively for j = 1, 2, . . . .

For j = 1, this means to find a nonzero entry in the first column
and swap that row with the first row. If the first column is a zero-

column, then v =
(
1 0 · · · 0

)T
is a solution and we are done.

To extend from j to j + 1, suppose we have ensured that Mj has
full rank. Now we search for a row from row j + 1 on, such that
after a swap with row j +1, the submatrix Mj+1 has full rank, i.e.,
its determinant is nonzero. This can be tested by Theorem 2.1. If
no such row exists, then the process stops at j. If j = m, then M
has full rank and the zero vector is the only solution. Otherwise,
assume the above process stops with j < m.

Now Cramer’s rule can be used to find the unique solution

u =
(
u1 u2 · · · uj

)T
of the system

(3.12) Mju =
(
m1,j+1 m2,j+1 · · · mj,j+1

)T
.

We have ui =
detM i

j

detMj
, where M i

j is the matrix obtained by replacing

the ith column of Mj by the vector
(
m1,j+1 · · · mj,j+1

)T
. Now,

define

v =
(
det M1

j det M2
j · · · det M j

j − det Mj 0 · · · 0
)T

.
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Then, v is a nonzero solution to the original system. Note that the
vector on the right-hand side of (3.12) might be the zero vector, in
which case also u will be the zero vector. Still v is nonzero because
it has the nonzero entry − det Mj at position j + 1.

The entries of v are determinants of matrices with entries com-
puted by ABPs of size s. Hence, all the entries of v have ABPs of
size poly(k,m, s). �

Remark 3.13. The ABP in Lemma 3.11 can be constructed by a
randomized algorithm in time poly(k,m, s). Randomization comes
in by Theorem 2.1 to compute the matrices Mj. In fact, the de-
terminant polynomials we get for PIT can be computed by ABPs.
Hence, the construction algorithm can be made deterministic with
an oracle for ABP–PIT.

4. Factors of arithmetic branching programs

In this section, we prove that ABPs are closed under factoring over
fields of characteristic 0. Over fields of characteristic p, our proof
fails if one of the irreducible factors has multiplicity e > 0, where p
divides e.

Theorem 4.1. Let p be a polynomial over a field F with charac-
teristic 0. For all factors q of p, we have

sizeABP(q) ≤ poly(sizeABP(p)) .

We prove Theorem 4.1 in the rest of this section. First, observe
that it suffices to prove the poly(s) size upper bound for the irre-
ducible factors of p. This also yields a poly(s) bound for all the
factors.

In case when p is irreducible there is nothing to show, because
the only factor, p, has a small ABP by assumption. The case when
p = qe is proved in Section 3.2. So it remains to consider the
general case when p = pe1

1 · · · pem
m , for m ≥ 2, where p1, . . . , pm are

the different irreducible factors of p. We want to prove an ABP-size
upper bound for an irreducible factor, say p1.

We start by several transformations on the input polynomial p(z),
where z = (z1, . . . , zn).
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1. As described in Section 3.3, taking k = e1 − 1 times the
derivative w.r.t. some variable, say z1, we get the polynomial

p̂(z) = ∂kp(z)

∂zk1
, where the factor p1 has multiplicity 1.

2. Next, by Lemma 3.7, we transform p̂(z) to a polynomial p̃(x, z)
that is monic in x, for a new variable x. Thereby, also the fac-
tors of p̂(z) are transformed, maintaining their irreducibility
and multiplicity. The degree of p̃ is twice the degree of p̂.

3. At this point, we may have to shift the variables z as de-
scribed in Section 3.5 to ensure the properties needed for
starting Hensel lifting. This shift preserves the monicness
and the irreducibility of the factors.

4. Finally, the transformation to a bivariate polynomial is ex-
plained in Section 3.6. This yields polynomial P (x, y, z),
with new variable y and monic in x. We rewrite P as a
polynomial in x and y with coefficients in the ring K = F[z]
and call the representation f . That is, f(x, y) ∈ K[x, y]. By
Lemma 3.10, the transformation maintains irreducible fac-
tors. Note also that by the definition of P , we have f(x, 0) =
P (x, 0, 0, . . . , 0) = f(x, y) mod y, so that f(x, y) mod y is
univariate.

The main part now is to factor f(x, y) ∈ K[x, y], say f = gh,
where g ∈ K[x, y] is irreducible and coprime to h ∈ K[x, y], and
f, g, h are monic in x and have x-degree ≥ 1. Let d be the total
degree of f in x, y.

From the factor g of f , we will recover the factor p1 of p by
reversing the above transformations. We show that g can be com-
puted by an ABP of size poly(s). It follows that the irreducible
factor p1 has an ABP of size poly(s).

The strategy is to first factor the univariate polynomial f mod y,
and then apply Hensel lifting to get a factorization of f mod yt, for
large enough t. Finally, from the lifted factors modulo yt, we com-
pute the absolute factors of f .

4.1. Hensel lifting. Hensel lifting is named after Kurt Hensel
(Hensel 1899, 1904, 1908, 1918). Predecessors of the technique
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were already known to Gauß, see Frei (2005) for a very detailed
outline of the historical development. There are various versions
and descriptions of Hensel lifting in the literature, see, for exam-
ple, Sudan (1998, Lecture 7). In our case, an ABP should be
able to perform several iterations of the lifting. Therefore, we use
the lifting in a way suitable for ABPs. In particular, in contrast
to other presentations, we will not maintain the monicness of the
lifted factors.

Hensel lifting works over rings R modulo an ideal I ⊆ R. In our
case, R = K[x, y], where K = F[z], and I = 〈y〉k, for some k ≥ 1.

Definition 4.2 (Lifting). Let R be a ring and I ⊆ R be an ideal.
Let f, g, h, a, b ∈ R such that f ≡ gh (mod I) and ag + bh ≡ 1
(mod I). Then, we call g′, h′ ∈ R a lift of g, h with respect to f
and I, if

(i) f ≡ g′h′ (mod I2),

(ii) g′ ≡ g (mod I) and h′ ≡ h (mod I), and

(iii) ∃a′, b′ ∈ R a′g′ + b′h′ ≡ 1 (mod I2).

Remark 4.3. (i) We will skip mentioning f or I in a lift when
it is clear from the context.

(ii) The three conditions in Definition 4.2 are the invariants when
iterating the lifting.

(iii) Note that condition (iii) is actually redundant. It already
follows from the assumptions together with the second con-
dition. This can be seen in the proof of Lemma 4.4, where a
lift g′, h′ from g, h is constructed, together with a′, b′. When
we show that condition (iii) holds, we do not use the spe-
cific form of g′, h′ constructed there, and it suffices to have
condition (ii).

The following lemma presents a method for lifting that is usu-
ally attributed to Hensel. There is also a certain uniqueness prop-
erty : Note that for any u ∈ I, we have (1+u)(1−u) ≡ 1 (mod I2).
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Hence, when g′, h′ are a lift of g, h, g′ (1+u), h′ (1−u) are another
lift of g, h. The uniqueness property states that there are no other
lifts than these.

Lemma 4.4 (Hensel Lifting). Let R be a ring and I ⊆ R be an
ideal. Let f, g, h, a, b ∈ R such that f ≡ gh (mod I) and ag+bh ≡
1 (mod I). Then, we have

(i) (Existence). There exists a lift g′, h′ of g, h.

(ii) (Uniqueness). For any other lift g∗, h∗ of g, h, there exists a
u ∈ I such that

g∗ ≡ g′ (1+u) (mod I2) and h∗ ≡ h′ (1−u) (mod I2).

Proof. We first show the existence part. Let

1. e = f − gh,

2. g′ = g + be and h′ = h + ae,

3. c = ag′ + bh′ − 1,

4. a′ = a(1 − c) and b′ = b(1 − c).

We verify that g′, h′ are a lift of g, h. Because f ≡ gh (mod I),
we have e = f − gh ≡ 0 (mod I). In other words, e ∈ I. Hence,
we get condition (ii) that g′ ≡ g (mod I) and h′ ≡ h (mod I).

Next, we show condition (i) that f ≡ g′h′ (mod I2).

f − g′h′ = f − (g + be)(h + ae)

= f − gh − e (ag + bh) − abe2

≡ e − e (ag + bh) (mod I2)

≡ e (1 − (ag + bh)) (mod I2)

≡ 0 (mod I2).

In the second line, note that e2 ∈ I2. The last equality holds
because e ∈ I and 1 − (ag + bh) ∈ I.



15 Page 26 of 47 Amit Sinhababu and Thomas Thierauf cc

To show condition (iii), we verify that a′g′+b′h′ ≡ 1 (mod I2).
First, observe that

c = ag′ + bh′ − 1

≡ ag + bh − 1 (mod I)

≡ 0 (mod I).

Hence, c ∈ I and we conclude that a′ ≡ a (mod I) and b′ ≡ b
(mod I). Now,

a′g′ + b′h′ − 1 = a (1 − c)g′ + b (1 − c)h′ − 1

= ag′ + bh′ − 1 − c (ag′ + bh′)

= c − c (ag′ + bh′)

= c (1 − (ag′ + bh′))

= −c2

≡ 0 (mod I2).

For the uniqueness part, let g∗, h∗ be another lift of g, h. Let
α = g∗ − g′ and β = h∗ − h′. By Definition 4.2 (ii), we have
g′ ≡ g ≡ g∗ (mod I) and h′ ≡ h ≡ h∗ (mod I) and therefore
α, β ∈ I.

We first show

(4.5) βg′ + αh′ ≡ 0 (mod I2).

βg′ + αh′ = βg′ + (g∗ − g′)h′

= βg′ + g∗h′ − g′h′

≡ βg′ + g∗h′ − g∗h∗ (mod I2)

≡ βg′ − βg∗ (mod I2)

≡ −αβ (mod I2)

≡ 0 (mod I2).

Define u = a′α − b′β. Because α, β ∈ I, also u ∈ I. Then,
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by (4.5) and because a′g′ + b′h′ ≡ 1 (mod I2), we have

g′(1 + u) = g′(1 + (a′α − b′β))

= g′ + a′g′α − b′g′β

≡ g′ + a′g′α + b′h′α (mod I2)

≡ g′ + α (mod I2)

≡ g∗ (mod I2).

Similarly, we get h∗ ≡ h′(1 − u) (mod I2). �

For the ABP-size, recall that the size just adds up when doing
additions or multiplications. Hence, when f, g, h, a, b have ABPs
of size ≤ s and we construct ABPs for g′, h′, a′, b′ according to
steps 1–4 in the above proof, we get ABPs of size O(s). In more
detail, the reader may verify that the ABPs for g′ and h′ have
size ≤ 4s and the ABPs for a′ and b′ have size ≤ 10s.

Similarly, with respect to the degree, when f, g, h, a, b have de-
gree ≤ d, g′, h′, a′, b′ have degree O(d). Namely, g′, h′ have de-
gree ≤ 3d, and a′, b′ have degree ≤ 5d.

Remark 4.6. In the monic version of Hensel lifting, there is a
division in addition to the four steps from above. When we assume
that g is monic, we can compute polynomials q and r such that
g′ − g = qg + r, where degx(r) < degx(g). Then, one can show

that ĝ = g + r and ĥ = h′(1 + q) are a lift of g, h w.r.t. f , and ĝ

is again monic. Also the Bézout-coefficients â, b̂ can be computed.
For ĉ = aĝ + bĥ − 1, let â = a(1 − ĉ) and b̂ = b(1 − ĉ).

An advantage of the monic version is that the result is really
unique (modulo I2). There is no 1 + u factor between monic lifts.
A disadvantage is the extra division which would blow up the ABP-
size too much.

4.2. Iterating Hensel lifting. We apply Hensel lifting itera-
tively in the ring R = K[x, y], where K = F[z]. Let f ∈ K[x, y]
be a polynomial of total degree d in x, y that can be factored into
f = gh, where g ∈ K[x, y] is irreducible and coprime to h ∈ K[x, y],
and f, g, h are monic in x and have x-degree ≥ 1.
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To start the Hensel lifting procedure, we factor the univariate
polynomial f(x, 0) = f mod y as f(x, 0) = g0(x) h0(x), where g0 is
a divisor of g mod y, and coprime to h0 and degx(g0) ≥ 1. Recall
that by the preprocessing in Section 3.5, we may assume that there
is such a decomposition of f(x, 0).

By the Euclidean algorithm, there are polynomials a0(x), b0(x)
such that a0g0+b0h0 = 1. Hence, we have a0g0+b0h0 ≡ 1 (mod I0),
for I0 = 〈y〉, and initiate Hensel lifting with

f ≡ g0h0 (mod I0).

The ABP-size of g0, h0, a0, b0 is bounded by the ABP-size of f ,
actually by degx(f), because we have univariate polynomials here.

We iteratively apply Hensel lifting to g0, h0 as described in the
proof of Lemma 4.4. Each time, the ideal gets squared. For k ≥ 1,
let Ik = I2k

0 . That is, we get polynomials gk, hk such that

f ≡ gkhk (mod Ik),

and gk, hk are a lift of gk−1, hk−1 w.r.t. f and Ik−1.
For the ABP-size of gk and hk, we observed at the end of Sec-

tion 4.1 that the size increases by a constant factor in each itera-
tion. Hence, when we start with sizeABP(f) = s, after k iterations,
we get sizeABP(gk), sizeABP(hk) = s 2O(k).

Similarly, the degree of the lifted polynomials increases by a
constant factor in each iteration. We start with deg(f) = d. Then,
after k iterations, we get deg(gk), deg(hk) = d 2O(k).

The following lemma states that gk divides g modulo Ik, for
all k ≥ 0. In a sense, the gk’s approximate a factor of g modulo
increasing powers of y.

Lemma 4.7. With the notation from above, for all k ≥ 0 and some
polynomial h′

k,

g ≡ gkh
′
k (mod Ik) and hk ≡ h h′

k (mod Ik).

Moreover, gk, h
′
k are a lift of gk−1, h

′
k−1 w.r.t. g, for k ≥ 1, and

degx(h
′
k mod Ik) ≤ degx(hk).
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Proof. The proof is by induction on k ≥ 0. For the base case,
we have that g0 divides g modulo I0, as explained above. Thus, for
some polynomial h′

0 that is coprime to g0, we have

g ≡ g0h
′
0 (mod I0).

Hence, we have h0 ≡ h′
0h (mod I0). Note that h′

0 might be just 1.
For the inductive step, assume that

(4.8)
g ≡ gk−1h

′
k−1 (mod Ik−1) and hk−1 ≡ h h′

k−1 (mod Ik−1).

Let g′
k, h

′′
k be a lift of gk−1, h

′
k−1 w.r.t. g and Ik−1, so that in par-

ticular

(4.9) g′
kh

′′
k ≡ g (mod Ik).

We claim that then g′
k, h h′′

k are a lift of gk−1, h h′
k−1, i.e., of

gk−1, hk−1 by (4.8), w.r.t. f .

Claim 4.10. g′
k, h h′′

k are a lift of gk−1, hk−1 w.r.t. f and Ik−1.

Proof. We check the three conditions for a lift in Definition 4.2.
For the product condition (i), we have by (4.9)

g′
k h h′′

k = (g′
k h′′

k) h ≡ gh ≡ f (mod Ik).

For condition (ii), we have g′
k ≡ gk−1 (mod Ik−1) by assumption

and similarly

h h′′
k ≡ h h′

k−1 ≡ hk−1 (mod Ik−1).

By Remark 3 after Definition 4.2, condition (iii) already follows
now. This proves Claim 4.10. �

Recall that also gk, hk are a lift of gk−1, hk−1. Hence, by the
uniqueness property of Hensel lifting, there is a u ∈ Ik−1 such that
(4.11)
g′

k ≡ gk (1 + u) (mod Ik) and h h′′
k ≡ hk (1 − u) (mod Ik).

Now observe that we can move the factor 1 + u: We have that
gk (1+u), h h′′

k are a lift of gk−1, hk−1 and then also gk, h h′′
k (1+u)

are a lift of gk−1, hk−1.
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Claim 4.12. gk, h h′′
k (1+u) are a lift of gk−1, hk−1 w.r.t. f and Ik−1.

Proof. We check the conditions for a lift in Definition 4.2. The
first two of them are trivial: Moving the factor 1+u clearly does not
change the product. Because u ∈ Ik−1, we still have the equality
with the factors gk−1 and hk−1 modulo Ik−1, respectively.

By the remark after Definition 4.2, the third condition already
follows, but it is also easy to check now:

Let a, b ∈ R such that agk + bhk ≡ 1 (mod Ik). It follows by
Equation (4.11) that

agk + bh h′′
k(1 + u) ≡ agk + bhk(1 − u)(1 + u) (mod Ik)

≡ agk + bhk(1 − u2) (mod Ik)

≡ 1 (mod Ik).

This proves Claim 4.12. �

Now, define h′
k = h′′

k(1 + u). Note that

(4.13) h′
k ≡ h′′

k ≡ h′
k−1 (mod Ik−1).

By (4.11), we have

(4.14) h h′
k ≡ h h′′

k (1 + u) ≡ hk(1 − u)(1 + u) ≡ hk (mod Ik).

By (4.14), we have

(4.15) f = gh ≡ gkhk ≡ gkh h′
k (mod Ik).

It follows from (4.15) that gh ≡ gkh
′
kh (mod Ik). Now we want to

cancel h in the last equation and conclude that g ≡ gkh
′
k (mod Ik).

This we can do because h is monic in x, it does not contain a
factor y, i.e., h �∈ I0. Hence, together with (4.13), we conclude
that gk, h

′
k are a lift of gk−1, h

′
k−1 w.r.t. g.

For the x-degree of h′
k, consider the equation hk ≡ h h′

k (mod Ik).
Since h is monic in x, the highest x-degree term in the prod-
uct h (h′

k mod Ik) will survive the modulo operation. Therefore,
degx(h

′
k mod Ik) ≤ degx(h) + degx(h

′
k mod Ik) = degx(hk). �
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4.3. Factor reconstruction for ABP. We show how to get
the absolute factor g of f from the lifted factor. This is called the
jump step in Sudan’s lecture notes (Sudan 1998). The difference
to the earlier presentations is that our lifted factor might not be
monic.

Let f = gh, where f has total degree d, factor g is irreducible
and coprime to h, and f, g, h are monic in x. In the previous
section, we started with a factorization f ≡ g0h0 (mod I0), where
g0 is irreducible and coprime to h0. Moreover, g ≡ g0h

′
0 (mod I0),

for some h′
0 such that h0 = h h′

0 (mod I0).

Then, we apply Hensel lifting, say t-times. We will see below
that it suffices for our purpose to have

2t ≥ 2d2 + 1.

Hence, we define t = �log (2d2 + 1)�. By Lemma 4.7, we get a
factorization f ≡ gtht (mod It) such that

(4.16) g ≡ gth
′
t (mod It),

for some h′
t such that ht ≡ h h′

t (mod It).

Equation (4.16) gives us a relation between the known gt and
the unknown g, via the unknown h′

t. We set up a linear system of
equations to find a polynomial g̃ ∈ K[x, y] with the same x-degree
as g, such that

(4.17) g̃ ≡ gth̃ (mod It),

for some polynomial h̃. We give some more details to the linear
system next.

Details for setting up the linear system. Equation (4.17)
can be used to set up a homogeneous system of linear equations.
For the degree bounds of the polynomials, let dx = degx(g) and
dy = degy(g). Let Dx = degx(gt mod It) and Dy = 2t − 1. Let
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D′
x = degx(ht). Let

gt ≡
∑

i≤Dx, j≤Dy

ci,j xiyj (mod It),

g̃ = rdx,0 xdx +
∑

i<dx, j≤dy

ri,j xiyj,

h̃ =
∑

i≤D′
x, j≤Dy

si,j xiyj,

for coefficients ci,j, ri,j, si,j ∈ K = F[z].

Since we are working with gt mod It, we do not consider the
terms with powers yk, where yk ∈ It. Similarly, recall from Lemma 4.7
that degx(h

′
t mod It) ≤ degx(ht) = D′

x. Therefore, we set up coef-

ficients for h̃ only up to x-degree D′
x.

Since we have an ABP that computes gt, there are ABPs for
computing the coefficients ci,j of gt by Lemma 3.1. The coefficients

ri,j, si,j of g̃ and h̃ we treat as unknowns. Equation (4.17) now
becomes

rdx,0 xdx +
∑

i<dx, j≤dy

ri,jx
iyj(4.18)

≡
∑

i≤Dx, j≤Dy

ci,jx
iyj

∑

i≤D′
x, j≤Dy

si,jx
iyj (mod y2t).

Now we equate the coefficients of the monomials xk yl on both
sides in (4.18), for all k, l that occur in (4.18) such that l ≤ Dy.
By restricting the exponent of y to Dy, the (mod It)-operation
is already implemented. The equations we get are now absolute
equations, without modulo operations.

We get a homogeneous system of (Dx + D′
x + 1)(Dy + 1) many

equations in 1+ dx(dy +1)+ (D′
x +1)(Dy +1) many unknowns ri,j

and si,j. This system can be expressed in the form Mv = 0, for
a matrix M and unknown vector v. By Lemma 3.11, an ABP
can efficiently compute a nonzero solution vector v of polynomials
from F[z]. Note that by (4.16), a non-trivial solution is guaranteed
to exist.
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Obtaining g from g̃. Recall that g is monic, whereas we put
leading coefficient rdx,0 ∈ F[z] at xdx in g̃. The reason to do so is
that we want the linear system to be homogeneous, which would
not be the case when we would fix the coefficient to be 1. Hence,
our solution g̃ might not be monic.

The following lemma shows that when we divide g̃ by its leading
coefficient rdx,0 , we get precisely g.

Lemma 4.19. Let g̃ be a solution of (4.18) with leading x-coefficient
rdx,0 ∈ F[z], for t = �log (2d2 + 1)�. Then,

g =
g̃

rdx,0

.

Proof. Consider the resultant r(y) = Resx(g, g̃). We show that
r(y) = 0. Then, it follows from Lemma 2.2 that g and g̃ share
a common factor with positive x-degree. Since g is irreducible,
it must be a divisor of g̃. As g is monic, we have g̃ = rdx,0 g as
claimed. As g and g̃ have the same x-degree, rdx,0 is a polynomial
in F[z].

To argue that r(y) = 0, recall from Lemma 2.2 that the re-
sultant can be written as r(y) = ug + vg̃, for some polynomials u
and v. Since deg(g), deg(g̃) ≤ d, we have deg(r) ≤ 2d2. By (4.16)
and (4.17), we have

ug + vg̃ ≡ gt(uh′
t + vh̃) (mod It)

Consider gt and w = uh′
t + vh̃ as polynomials in y with coeffi-

cients in x. Let

gt ≡ c0(x) + c1(x)y + · · · + cDy(x)yDy (mod It),

where ci ∈ K[x], for i = 0, 1, . . . , Dy and Dy = 2t −1. By the prop-
erties of Hensel lifting, we have gt ≡ g0 (mod I0), and therefore,
c0(x) = g0(x). Recall that g0 is non-constant, deg(g0) ≥ 1.

Now consider w. Let j ≥ 0 be the least power of y that appears
in w and let its coefficient be wj(x). Suppose for the sake of contra-
diction that j < 2t. Then, the least power of y in gtw is also j, and
its coefficient is g0(x)wj(x), which is a nonzero polynomial in x.
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The monomials present in g0(x)wj(x)yj cannot be canceled by
other monomials in gtw because they have larger y-degree. It
follows that gtw mod It is not free of x. On the other hand,
r(y) ≡ gtw (mod It) and r(y) ∈ K[y] is a polynomial with no
variable x. This is a contradiction.

We conclude that j ≥ 2t, which means that w ≡ 0 (mod It).
Hence, we get r(y) ≡ 0 (mod It). Recall that degy(r) ≤ 2d2 and
2t > 2d2. Hence, the (mod It)-operation has no effect here and
we can conclude that indeed r(y) = 0. �

The final division to obtain an ABP for g can be accomplished
by adapting Strassen’s division elimination for ABPs. The size
increase is polynomial in the ABP-size of g̃.

Remark 4.20. The ABPs for g̃ and g can also be algorithmically
constructed. One point to notice here is that when we set up the
linear system above, we used the degrees dx = degx(g) and dy =
degy(g) of g that we actually do not have in hand at that point. We
just have the degree d of f as an upper bound. So algorithmically,
we will search for the degree. That is, we set up linear systems
with

g̃ = r
˜dx,0

x
˜dx +

∑

i<˜dx, j≤˜dy

ri,j xiyj ,

for increasing values d̃x, d̃y = 1, 2, . . . , d. The resultant argument
in Lemma 4.19 shows that g is a divisor of g̃. Hence, the minimal
value for d̃x where we get a nonzero solution g̃ will be the right
value, i.e., when d̃x = dx.

A special case is when f is irreducible. In this case, we have
g = f , and equivalently, dx = degx(f). Hence, we can detect this
case by comparing the x-degrees of f and g. Note that Lemma 4.19
also holds in this case. The linear system (4.18) is set up such that
the solution g̃ has deg(g̃) ≤ d. This suffices to argue that factor g,
in this case f , is a divisor of g̃, and hence, we compute g which is
equal to f .

4.4. Size analysis. We summarize the bound on the ABP-size
of the factor computed. Given polynomial p of degree dp and
sizeABP(p) = s, we have seen that the preprocessing transformations
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yield a polynomial f of degree df ≤ 2dp and sizeABP(f) = poly(s).
Then, we do t = log (2d2

f + 1) iterations of Hensel lifting. The ini-
tial polynomials f0, g0, h0 have ABP-size bounded by 2df . Hence,
the polynomials after the last iteration have ABP-size bounded by
2t poly(s) = poly(s, dp) = poly(s).

From the lifted factor, we construct the actual factor of f . This
step involves solving a linear system. We argued that the resulting
polynomial g has ABP-size poly(s).

Finally, we reverse the transformations from the beginning and
get a factor of p that has an ABP of size poly(s). This finishes the
proof of Theorem 4.1.

5. Construction algorithm and reduction to
PIT

Theorem 4.1 is non-constructive, and it states the existence of small
size ABPs for the factors of a polynomial. In this section, we argue
that we can efficiently construct the ABPs for the factors by a ran-
domized algorithm. In fact, all randomized steps of the algorithm
are PITs for polynomials computed by small ABPs. Hence, the
algorithm can be made deterministic when it is equipped with a
(functional) oracle for PIT for ABPs. This is analogous to what
Kopparty, Saraf & Shpilka (2015) showed for arithmetic circuits.

Theorem 5.1. Given a polynomial p(z) computed by an ABP of
size s, there is a randomized poly(s)-time algorithm to compute
all its irreducible factors represented as ABPs. Moreover, the fac-
torization problem reduces in poly(s)-time to PIT for ABPs.

We already mentioned for many steps that they are construc-
tive. Here, we summarize the construction and fill the gaps.

Step 1: Transformation to monic. We modify the order of
the steps as described in the proof of Theorem 4.1 and start with
the transformation to make the input polynomial p(z) monic in
a new variable x, as described in Section 3.4. For the ease of
notation, we still call the polynomial p, it is now p(x, z), however.
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Step 2: If p = qe. Next, we consider the case of Section 3.2,
i.e., when p = qe, for some polynomial q and an integer e ≥ 2.
Note that to prove Theorem 4.1, we could simply assume that q
is irreducible and that we know e. Now, we have also to find out
algorithmically whether this is the case. What we do is, we try
for all possible values of e that are divisors of d, starting from the
maximum possible value d in decreasing order. When we reach
e = 1, we proceed to step 3.

For each e, we compute the polynomial q = p
1
e as described in

Section 3.2. Now we have to check whether q is indeed a factor
of p.

Recall that p is monic in x. Hence, a factor must be monic
too. So if q is not monic, we can proceed to the next e. Otherwise,
we test if q is a divisor of p. This we can do by using the clas-
sical Euclidean univariate long-division algorithm. Here, we need
that p and q are monic polynomials in x. By Lemma 3.1, we can
get the ABPs that compute the coefficients of the polynomials p
and q w.r.t. x. Now, we can compute the ABPs that compute the
quotient and the remainder in randomized polynomial time using
univariate long division. To test whether the remainder is zero, we
need a PIT for ABPs.

At this point, we have verified that p = qe. Still, polynomial q
might not be irreducible. To check this, we try to factorize q. That
is, we restart the algorithm on q. Since e is maximum such that
p = qe, polynomial q itself cannot be of the form q = he′

, for some
e′ ≥ 2. Hence, for factoring q, we can directly go to step 3.

Step 3: Reducing the multiplicity of a factor. Now p is
either an irreducible polynomial or a reducible polynomial of the
form p = qe1

1 · · · qem
m , for monic square-free polynomials q1, . . . , qm,

where 1 ≤ e1 ≤ e2 < · · · ≤ em ≤ d, for some m ≥ 2.

If p is irreducible or all the irreducible factors have multiplicity
one, then we proceed to step 4. Otherwise, to reduce the multi-
plicity, we take derivatives as described in Section 3.3. However,
we do not know the exponents e1, e2, . . . , em. Therefore, we take
derivatives of p of order e, for all 1 ≤ e ≤ d − 2, and factorize the
corresponding derivatives of p. Note that for e = ei − 1, the eth
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derivative contains the square-free factor qi.
Recall that the derivative also contains other factors, that are

not factors of p, see equation (3.6) on page 16. However, we can al-
ways check factors via the division subroutine mentioned in step 2.

Step 4: Preprocessing for Hensel lifting. We shift the vari-
ables as explained in Section 3.5 to fulfill the assumptions needed
for Hensel lifting.

Step 5: Reduction to bivariate We introduce a new vari-
able y as explained in Section 3.6 and consider the resulting poly-
nomial f(x, y) as bivariate with coefficients in F(z). For the cur-
rent e from step 3, polynomial f contains all irreducible factors
of p that have multiplicity e − 1.

Step 6: Hensel lifting. The univariate polynomial f(x, 0) can
be represented in the dense way. Note that its coefficients are
over F. We can use any known univariate factorization algorithm,
like the famous LLL-algorithm over rationals. We try all the irre-
ducible factors of multiplicity one of f(x, 0) as starting point for g0
as described in Section 4.2. Note that there are at most d irre-
ducible factors of f(x, 0). Hence, we can try all of them. We can
use the extended Euclidean algorithm to compute the polynomi-
als a0 and b0 such that a0g0 + b0h0 = 1.

Then, we apply Hensel lifting and linear system solving as de-
scribed in Sections 4.2 and 4.3. This yields a factor, say f1, of f .

Step 7: Factor test. We reverse the preprocessing steps for f1
to get a candidate factor, say q, of the original polynomial p. For
some choices made in previous steps, q is some other polynomial
and not a factor of p. But this we can check by using the division
algorithm. If q has the same degree as the original polynomial p,
we conclude that p is irreducible.

Summary. The algorithm described above will efficiently com-
pute all the irreducible factors of the original polynomial p. The
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multiplicity of an irreducible factor q is the largest e from step 3
where we found q.

Randomness is used in steps 1 and 4, in step 6 for solving linear
systems over F(z), and in steps 2 and 7 for testing divisibility. All
these steps can be derandomized by a black-box ABP–PIT oracle,
equivalently by explicit hitting sets for the class of polynomials in
VBP.

Shpilka & Volkovich (2010) observed that also conversely, PIT
reduces to factoring. Namely, for a polynomial p(z), let x, y be
new variables and define p̂(x, y, z) = p(z) + xy. Then, we have

p ≡ 0 ⇐⇒ p̂ is reducible.

In all models, formulas, ABPs, and circuits, when p has size s, p̂
has size s + 2. This is for the white-box and the black-box case.

We do not get an equivalence however, since we have a white-
box factoring algorithm and a reduction to black-box PIT: Recall
from Section 3.5 that we considered the discriminant of the factor g
that we do not have in hand at that point. Note that a black-box
oracle is stronger than a white-box oracle.

Kopparty, Saraf & Shpilka (2015) showed that for circuits, fac-
toring reduces to white-box PIT. The crux lies in the preprocess-
ing. When we follow their method, we get similarly a reduction
to white-box PIT for ABPs. We give a short sketch of the steps
next. Since it involves computing GCDs, the preprocessing step is
no longer feasible for formulas however.

Reduction to white-box PIT. Let p(z) be the given polyno-
mial over a field F of characteristic 0. First, we make the given
polynomial p(z) monic in a new variable x as described in Sec-
tion 3.4. Then, we divide p by the GCD of p and its derivative
w.r.t. some variable of p, to get the square-free part of p. The
GCD has a small ABP by Lemma 2.3. Note that the division does
not increase the size of ABP by much. Instead of factoring the
original polynomial, we now factorize its square-free part, denoted
by f .

Still we have the same problem to start with Hensel lifting as
described in Section 3.5 for the factor g: Even though polyno-
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mial f(x, z) is square-free, f(x, 0, . . . , 0) may have repeated fac-
tors. By a similar argument as in Section 3.5, via the discriminant
of f , we get that f(x, α) is square-free at a random point α, with
high probability. Moreover, via a decision to search reduction for
white-box PIT (Kopparty et al. 2015, Lemma 2.2), we can effi-
ciently compute such an α.

Next, we reduce to a bivariate polynomial over a larger ring
by using the transformation described in Section 3.6. This trans-
formation does not use any randomness. The rest of the steps
are Hensel lifting and reconstructing the factor using linear system
solving as described in Sections 4.2 and 4.3. We can see that the
final step of reconstruction can be derandomized by a white-box
PIT oracle.

To determine all the irreducible factors, Kopparty, Saraf & Sh-
pilka (2015) first find an irreducible factor, then divide by it and
factor again. In the ABP-model, we cannot recursively divide. In-
stead, we start from all irreducible factors of the univariate poly-
nomial and lift and reconstruct all the irreducible factors.

Black-box ABP factoring. Kaltofen & Trager (1990) intro-
duced black-box factoring, where we only have black-box access to
the input polynomial. The task is to construct black-boxes for the
factors. That is, given any point, we have to output the evaluations
of the irreducible factors at that point.

Kopparty, Saraf & Shpilka (2015) observed that the algorithm
of Kaltofen and Trager can be seen as a deterministic reduction to
black-box PIT for arithmetic circuits. One can ask whether this
holds similarly for ABPs, i.e., given a black-box ABP for factoring,
can it be reduced to black-box ABP–PIT.

In the case of circuits, this is achieved via an effective version
of Hilbert’s irreducibility theorem due to Kaltofen. In the proof of
this theorem, monic Hensel lifting is used, see, for example, (Sudan
1998, Lecture 9) for an exposition. As elaborated in Section 4.1,
it is not clear whether monic Hensel lifting can be done by small
ABPs. Again, we can modify the proof to get along without the
monicness property. Since there are many details to take care of,
we will give a proof that black-box ABP factoring reduces to black-
box ABP–PIT in a separate note.
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Assumption on the underlying Field. Note that although
we assume the underlying field to be of characteristic 0, our results
extend to characteristic p as well, except for the case when a factor
is of the form gpk , where g is irreducible. In that case, we would
fail to output the factor g, as we cannot reduce the multiplicity
here by taking derivative. If the input polynomial is f = gpkh
we would be able to efficiently output only the factors G = gpk

and h. It is an open question to show that g has a small for-
mula/ABP/circuit, if gpk has a small formula/ABP/circuit (Kop-
party et al. 2015). Also note that in characteristic p, the running
time of the known deterministic univariate polynomial factoring
algorithms depend on p. The randomized algorithms of Berlekamp
and Cantor–Zassenhaus depend on log p and it is major open ques-
tion to get a deterministic algorithm in poly(log p). To get a com-
plete derandomization of multivariate factorization over character-
istic p, one has to overcome these additional challenges beside the
derandomization of PIT.

6. Applications

6.1. Root finding. Given a polynomial p ∈ F[x, z], the root
finding problem asks for a polynomial r ∈ F[z] such that p(r(z),z) =
0. By a lemma of Gauß, r is a root of p iff x−r(z) is an irreducible
factor of p. By Theorem 4.1, when p is given by an ABP, we get
an ABP for x − r(z). Setting x = 0 and inverting the sign give an
ABP for r(z).

Corollary 6.1. The solutions of the root finding problem for a
polynomial p given by an ABP can be computed by ABPs of size
poly(sizeABP(p)).

Open question: Approximating power series roots. As-
sume that F is algebraically closed and of characteristic zero. Let
p ∈ F[x, z] be a multivariate polynomial of degree d that is monic
in x. Then, with high probability after a random shift, polyno-
mial p splits into power series roots from F[[z]],



cc Factorization of Polynomials Given by Page 41 of 47 15

p =
dr∏

i=1

(x − ri(z))ei ,

where ri ∈ F[[z]] and dr is the degree of the square-free part, the
radical of p, see, e.g., Dutta et al. (2018) for details. An obvious
question now is whether we can approximate the roots ri up to a
given degree D.

Question 6.2. If p(x, z) is given as an ABP or a formula of size
s, can its power series roots ri up to degree D be computed by
ABPs or formulas of size poly(s,D)?

For circuits, the first author together with Dutta and Sax-
ena (Dutta et al. 2018) showed that indeed the power series roots
have circuits of size poly(s, d,D). They argue via Newton iter-
ation. Recall that for ABPs and formulas, this yields only size
bounds of dlogD.

An obvious idea now how to answer the question would be to
do non-monic Hensel lifting as described in Sections 4.1 and 4.2
with respect to powers of y, and do the lifting until the power of y
exceeds degree D. However, it seems as the proof of Lemma 4.19
does not go through anymore. We cannot get that the degree of the
resultant r(y) = Resx(g, g̃) of the solution g̃ to the linear system we
set up and the approximate power series root g we want to recover,
is less than the power 2t of y in the ideal It we are working in.

6.2. Hardness versus randomness. As an application of The-
orem 4.1, we get that lower bounds for ABPs imply a black-box
derandomization of ABP–PIT, similar to the result of Kabanets &
Impagliazzo (2004, Theorem 7.7) for arithmetic circuits.

Theorem 6.3 (Hitting set from hard polynomial). Let {qm}m≥1 be
a multilinear polynomial family such that qm is computable in time
2O(m), but has no ABP of size 2o(m). Then, one can compute a hit-
ting set for ABPs of size s in time sO(log s).

The proof is similar to the proof given by Kabanets & Impagli-
azzo (2004, Theorem 7.7) for circuits. One can replace circuits by
ABPs everywhere in the proof, except in place, where they invoke
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Kaltofen’s factor size upper bound for circuits. Now, this can be
replaced by Theorem 4.1 for ABPs, and hence, the whole proof
now works for ABPs as well, see Forbes & Shpilka (2015) or Ku-
mar & Saptharishi (2019) for a quick overview and Kabanets &
Impagliazzo (2004, Theorem 7.7) for the full proof.

7. Conclusion and open problems

We prove that the class of polynomials computed by ABPs is closed
under factors. Our proof seems not to extend to the model of arith-
metic formulas. The bottleneck is the last step, as the determinant
of a symbolic matrix (xi,j)n×n may not have poly(n) size formulas.
One way to avoid computing the determinant is by making the
lifted factor monic in each round of Hensel lifting. The uniqueness
of monic Hensel lifting would guarantee that we get the factors di-
rectly. But the direct implementation of monic Hensel lifting leads
to a quasi-polynomial blowup of formula size because it involves
polynomial division in each step. Another way could be to give a
formula size upper bound for h′

k in Lemma 4.7. We do not get such
a bound directly from the proof. So the closure of formulas under
factors remains an open problem.

If one could show that arithmetic formulas are not closed under
factors, i.e., if some polynomial f(x1, . . . , xn) exists that requires
formula of size ≥ nlog n, but has a nonzero multiple of formula
size poly(n), then, by our result, VF would be separated from
VBP and by Kaltofen’s result, VF would be separated from VP.
Note that if f = g/h and g, h have small ABPs/formulas, then f
also has a small ABP/formula (Kaltofen & Koiran 2008).

Besides arithmetic formulas, there are other models for which
poly(s, d) upper bound on the size of factors are not known, for ex-
ample, read-once oblivious arithmetic branching programs (ROABP)
and constant depth arithmetic circuits.
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