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Abstract. Conventional tracking methods encounter difficul-
ties as the number of objects, clutter, and sensors increase,
because of the requirement for data association. Statistical
tracking, based on the concept of network tomography, is an
alternative that avoids data association. It estimates the num-
ber of trips made from one region to another in a scene based
on interregion boundary traffic counts accumulated over time.
It is not necessary to track an object through a scene to deter-
mine when an object crosses a boundary. This paper describes
statistical tracing and presents an evaluation based on the es-
timation of pedestrian and vehicular traffic intensities at an
intersection over a period of 1 month. We compare the results
with those from a multiple-hypothesis tracker and manually
counted ground-truth estimates.
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1 Introduction

Tracking normally refers to the estimation of an object’s state
trajectory, i.e., the value of an object’s state as it changes over
time. In this sense, tracking refers to a process that follows an
object as it moves around. The need for tracking to interpret
video would seem universal. There are numerous examples
in video surveillance, including work by Mikic et al. (1998),
Grimson et al. (1998), Cohen and Medioni (1998), and Boult
et al. (1998).

The Kalman filter (Gelb 1974) in its simplest form esti-
mates the state of a single object over time from a series of
measurements corresponding to that object. Tracking is rarely
that simple — there may be multiple objects with measurements
for any subset of them, as well as clutter, i.e., measurements
that do not correspond to any object. It is first necessary to
associate each measurement with the correct object, i.e., solve
the data-association problem. The use of multiple sensors fur-
ther confounds data association. While methods exist to deal
with these factors (e.g., Reid 1979; Barr-Shalom and Fort-
mann 1988; Cox and Hingorani 1996; Isard and Blake 1998),
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tracking remains a difficult problem in video applications, es-
pecially as the number of tracks, amount of clutter, and number
of cameras increases.

Boyd et al. (1999) showed that, at least for some appli-
cations, estimating trajectories is not necessary for analyzing
activity if only long-term patterns are required. Their method
of statistical tracking is based on network tomography (Vardi
1996). Network tomography solves the inverse problem of
estimating source—destination (SD) network traffic from link
statistics alone. If we model a scene under surveillance as a net-
work of connected regions, then the network nodes are phys-
ical spaces and the links are the passages between the spaces.
Network tomography estimates the number of trips between
any two spaces (SD traffic) using counts of traffic between ad-
jacent spaces (link traffic). Statistical tracking simplifies the
tracking process because it only requires detection of an object
as it moves from one region to an adjacent region. Methods
already exist for counting objects crossing a boundary in video
sequences; e.g., Albiol et al. (2000) demonstrate a system for
counting people entering and exiting a railroad car through a
single door. This statistical approach simplifies processing of
video sequences and avoids the difficult data-association prob-
lem in conventional tracking. In exchange, statistical tracking
gives up the ability to estimate an object’s trajectory at the
time the object is moving — we can only know about the path
after statistics have been collected over the entire network for
a period of time. The method also gives up some resolution in
the identification of individual trips.

While statistical tracking has been demonstrated (Boyd et
al. 1999), it has yet to be evaluated in any empirical sense. The
theoretical underpinnings of network tomography are sound
and the numerical methods used to solve the tomography prob-
lem always provide a set of nonnegative SD traffic estimates.
This paper presents an evaluation of statistical tracking when
applied to the estimation of pedestrian and vehicle traffic in-
tensities in an intersection on a university campus over a period
of 1 month. As part of the evaluation we also look at the per-
formance of a conventional tracker, the multiple-hypothesis
tracker (MHT) described by Reid (1979) and Cox and Hin-
gorani (1996), and ground-truth estimates based on manual
tracking. We selected the MHT because it handles clutter,
multiple targets, and a variable number of targets, and an im-
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plementation that is easily adapted to the traffic surveillance
problem is available (Cox and Hingorani 1996). In contrast,
the joint probabilistic data-association filter (Bar-Shalom and
Fortmann 1988) tracks a fixed number of targets, and con-
densation (Isard and Blake 1998) tracks only a single target
(although it maintains a probability distribution that can rep-
resent multiple targets).

The evaluation does not show that statistical tracking is
superior to conventional methods. Instead it shows the differ-
ences between the approaches and the applications for which
each is best suited. The evaluation also indicates what per-
formance can be expected given certain conditions, and the
nature of the errors inherent in statistical tracking.

2 Statistical tracking

Network tomography provides the theoretical basis for statis-
tical tracking. The following description is summarized from
Vardi (1996).

Consider a network consisting of n nodes. Let r be the

number of directed links in the network. There are ¢ = n(n —
1) possible SD pairs in the network. Let Xj(.k), j=1,...,¢c
be the number of transmitted packets for SD pair 7 during

time period k. Assume that le(-k) ~ Poisson()\;). X*) is the

column vector (X{k), e Xc(k))T. A isanr x ¢ fixed routing
matrix. Elements in A are defined by

~_J 1iflink 7 is in the path for SD pair j
%j =\ 0 otherwise.

Thus, the columns of A indicate which links are in the path
for each SD pair. We wish to know A = (g, ..., A.)T but we
can only measure the link traffic, Y (¥) = (Yl(k), ce YT(k))T,
where

AX® = y®), (1)

Typically cis greater than 7, so the solution of (1) is ill-posed.

The problem of network tomography can be solved using
the method of moments. The first and second moments of the
measurements are given by

E(Yi)zzai,l)\z, i=1,...,7 2)
1=1

cov(Y;, Vi) = Y aigah, 1<i<i <, 3)
1=1

which relies on the assumed Poisson distribution of X ](k)

Equations (2) and (3) give the r(r 4+ 3)/2 linear equations
in the following system:

Y A
(5)-(5)» @
where S is a vector composed of the r(r 4+ 1)/2 sample co-
variances, and B is an (r(r+1)/2) x ¢ matrix. Rows of B are

indexed by (#,4'),1 < 4 < ¢’ < r, and matches the indexing
of S. Row (i,¢’) of B is the element-wise product of rows i

and 7’ of A. Solution of (4) yields an estimate of SD traffic
intensities.

To solve (4) we use the nonnegative least-squares method
(NNLS) described by Lawson and Hanson (1974). NNLS finds
& to minimize ||Ex — f|| subject to & > 0. In the case of
network tomography, we assign

E{g}mdf{g] )

to solve for \, the NNLS solution to (4). This finds a solu-
tion that gives equal weight to the first- and second-moment
equations. The second-moment equations are less reliable be-
cause they rely on the independence of the SD processes and
on their Poisson distribution. In order to put more emphasis on
the first-moment equations, we use a weighted least-squares
variation, where

E:{w]?}andf:[wg/} (6)

If w >> 1, NNLS finds a nearly exact solution to the first-
moment equations while relying as little as possible on the
less reliable second-moment equations.

Alternative methods for numerical solution include using
estimation-maximization as suggested by Vardi (1996), a vari-
ation of the downhill simplex method described by Press et al.
(1990), or convex projections (Youla and Webb 1982) as de-
scribed by Boyd et al. (1999).

The application of network tomography to video surveil-
lance is described by Boyd et al. (1999). A single static cam-
era connected to a VCR records images of a scene in which
vehicles and pedestrians move about. Figure 1a shows a low-
resolution image of a scene on the University of Calgary cam-
pus containing roads, sidewalks, parking lots, and vegetation.
We divide the scene into regions in the image plane (Fig. 1b)
that form a network (Fig. 1c). We then use the method de-
scribed by Sudderth et al. (1998) to identify moving objects
in the foreground and detect when an object moves from one
region to another, which represents a transition across a link in
the network. Counting the transitions over an extended period
of time gives the link traffic data, Y (%), required by network
tomography to estimate the SD traffic intensities.

3 Evaluation

We evaluate the ability of competing algorithms to predict the
traffic intensities in a scene given by a ground truth. In this
case the competing algorithms are two variations of statistical
tracking and an MHT. The scene is that shown in Fig. la.
We base the evaluation on a trial that estimates the traffic
for 22 weekdays spread over a period of 1 month in late Jan-
uary and early February, 1999. For each of these weekdays we
have 30min of digitized video for the time interval between
3:15 p.m. and 3:45 p.m. Weather conditions during the trial
ranged from sunny and warm to overcast and snowing, i.e., a
full range of winter weather conditions. Ground cover ranged
from snow to exposed asphalt and grass on warmer days. The
site is situated at a latitude of 51° N, so the shadows on clear,
sunny days are long and moved quickly as the sun moved
towards the horizon during the trial time interval.
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3.1 Data

Figure 2 describes the processing of the sample data to produce
four estimates of the SD traffic in the scene corresponding to a
ground truth and three machine estimates. The following de-
scribes each of these estimates. For the machine estimates, the
analog video data is digitized from tape at 10fps at a resolu-
tion of 160 x 120 pixels, full color. We then segment moving
objects from the foreground to obtain a list of object centroids
for each frame of video.

Ground truth

An observer manually tracks objects while watching the ana-
log video during playback. From these tracks we derive the
ground truth SD traffic estimates, X 4, by looking at the start-
ing and ending nodes for each track. Given X ¢, we use (1)
to derive the corresponding set of link counts, Y g¢.

Simple transition counts

A simple algorithm for counting link transitions compares all
the object centroids in one video frame with all the centroids
in the previous frame. For each pair of centroids that differ in
position by five pixels or less, the algorithm counts a transi-
tion for the corresponding link. Transitions within a region are
ignored. The result is a vector of count data, Y g;,,,. This algo-
rithm is easily confounded, but its simplicity makes it worthy
of comparison to the more sophisticated algorithms.

Fig. 1a—c. Application of network tomography to statistical tracking in video surveil-
lance: a a single image of a scene under surveillance, b the partitioning of the scene into
regions, and ¢ the network formed by the set of regions

analogue
video
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Fig. 2. Processing paths of data used to obtain the estimates of source—
destination (SD) traffic used in the evaluation. MHT, multiple-
hypothesis tracker; g, ground truth; sim, simple algorithm

MHT-based transition counts

We use the MHT described by Cox and Hingorani (1996) to
track the object centroids. The MHT has several parameters
that require tuning for both the hypothesis-tree pruning and the
embedded Kalman filter. We selected parameter values by trial
and error to obtain reasonable tracks. From the MHT tracks we
produce link-transition counts, Y y,p¢, by following the tracks
across regions and counting the transitions. In essence, counts
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from the MHT tracks represent a more sophisticated counting
algorithm that considers measurements from several frames
before and after the transition.

MHT SD counts

Given the tracks produced by the MHT, we add up the SD traf-
fic by looking at the starting and ending nodes for each track to
obtain X . This allows comparison of network tomography
with estimates produced by conventional tracking.

Nonstationarities

The campus shown in Fig. 1 runs on separate timetables for
Monday, Wednesday, and Friday (MWF), and Tuesday and
Thursday (TR). This caused us to speculate that the traffic
intensities might differ between the two timetables, i.e., the
data may not be stationary. Since stationarity is a condition
required by network tomography, we partitioned the data into
three sets for analysis: the entire 22-day set, the 13-day MWF
subset, and the 9-day TR subset.

3.2 Analytical tools

In order to compare numerically the accuracy of competing
counting and tracking methods we use the Spearman rank
correlation coefficient (Walpole and Myers 1978), rs. This
coefficient is similar to the well-know Pearson r value used in
linear regression, except that it replaces numerical values in
the data with their rank in the data set, making it better suited
to data that may not be linear. For two n-element sets of data,
X and Y, rg is given by

63 i d7
n(n2 —1)’

where d; is the difference between the ranks assigned to x;
and y;.

It is helpful to put some kind of bound on the estimates
produced by statistical tracking. We do this numerically using
the Monte Carlo method described in Vardi (1996), by syn-
thesizing Poisson-independent SD counts based on the mean
intensities measured in the ground truth. Repeated trials with
synthesized data yield a covariance matrix, C, that indicates
the variation in the network tomography estimates. The var-
ious SD pairs are not independent, but for simplicity of pre-
sentation the following figures show error bars that are one
standard deviation from the diagonal of C.

(N

7’321—

3.3 Results
Ground-truth count data

Our first analysis step is to verify that network tomography
estimates the SD traffic when we can count the link traffic
perfectly. We apply network tomography to Y ¢ to obtain an

estimate, S\gt. Figure 3a shows a scatter plot of th VErsus
X ¢, the mean of X ¢ over the trial period. The plot superim-
poses estimates for all days, MWF and TR. Rank correlation
coefficients are given in Table 1.
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Fig. 3 a—c. Scatter plots showing network tomography estimates of
SD traffic intensity versus X gt for Agt @, Asim b, and At €. Error
bars indicate one standard deviation. MWF, Monday, Wednesday,
and Friday; TR, Tuesday and Thursday

Video-based count data

Estimates j\sim and tht are derived from Y, and Y nt
using network tomography. Figure 3b and ¢ show scatter plots
of j\sim and j\mht versus X t- Rank correlation coefficients
are given in Table 1.



348 J.E. Boyd, J. Meloche: Evaluation of statistical and multiple-hypothesis tracking for video traffic surveillance

T T T T T T
Alldays  +
MWF X
L TR x|
100 Ideal
80 - 1
£ .
3 6o q
a
@
4
40 . e < 1
x - x
x X * *
20 by + 1
¥x
KT x
X
X Lt *
o K 2o % L L L L L
0 20 40 60 80 100 120

Ground Truth

Fig. 4. Scatter plot showing conventional tracking (MHT) estimates
of SD traffic intensity versus X g

Table 1. Spearman rank correlation coefficients for source—
destination (SD) traffic estimates based on different data sources
versus ground truth. MWF, Monday, Wednesday, and Friday; 7R,
Tuesday and Thursday

Data source
Subset Yt Ysm Ywmne MHTSD counts
Alldays 0.50 0.37 0.34 0.60
MWF 042 0.34 0.36 0.59
TR 0.60 0.12 0.37 0.57

Table 2. Spearman rank correlation coefficients for SD traffic esti-
mates for split-time intervals and ground-truth counts

Subset 15min  7.5min
All days 0.52 0.47
MWF 0.59 0.75
TR 0.61 0.55

Multiple-hypothesis tracker. A scatter plot of X 1unt, the mean
of X n¢ over the trial period, versus X ¢ is shown in Fig. 4.
Rank correlation coefficients are given in Table 1.

3.4 Split time intervals

In some cases, it may be possible to improve the statistical es-
timates by splitting the time intervals to increase sample size.
Issues surrounding this approach are discussed in Sect. 4.3.
Figure 5 shows the estimates obtained from Y, after split-
ting the 30-min time intervals into two 15-min intervals and
four 7.5-min intervals. Rank correlation coefficients, given in
Table 2, show an improvement for the MWF set, but not for
the others.

4 Discussion

The plots in Figs. 3-5 and the coefficients in Tables 1 and 2
give different views of the data. To compare them, we con-
sider differences inherent in methodology (i.e., statistical vs
conventional) separately from differences due to measurement
(counting) errors.
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Fig. 5 a,b. Scatter plots showing network tomography estimates of
SD traffic intensity versus X g¢ for 15-min a and 7.5-min b intervals.
Error bars are one standard deviation

4.1 Statistical versus conventional

Consider Figs. 3a and 4, which show a statistical estimate
based on perfect count data versus a conventional tracking esti-
mate. The rank correlation coefficients corresponding to these
plots are comparable. The most predominant feature of the
statistical estimates is the confidence in the estimate (shown
graphically by the error bars). The error bars in the statistical
estimates are large because the sample sizes are small, ranging
between 9 and 22 days. Statistical tracking can improve confi-
dence in estimates by increasing the sample size, i.e., counting
over a longer period of time (see Sect. 4.3).

The NNLS solution to (4) contributes errors that are unique
to the statistical method. Nonnegativity results in errors that
have a positive bias for SD pairs with little or no traffic; we
see this in the plots of Fig. 3. Data points are clustered along
the vertical axes, indicating overestimation for the paths that
have low traffic intensities. The least-squares nature of NNLS
leads to another problem: errors in estimates tend to be spread
throughout the entire set of SD pairs. However, an error in
estimating a high-intensity SD pair, when spread to other pairs,
results in a disproportionately large error for the low-intensity
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SD pairs. This can be seen in the plots. Errors appear greatest
where the true intensity is low.

In contrast to the statistical method, MHT errors are sys-
tematic. When the MHT loses the track of an object, and picks
itup later, it appears as two tracks for two distinct objects. This
breaking of tracks causes the count for the correct, longer path
to be underestimated, while the counts for two shorter paths
are overestimated. This is shown in Fig. 4 as two lines that di-
verge from the ground truth. The upper line is over-counted SD
pairs for shorter paths, while the lower line is under-counted
SD pairs for longer paths. Unlike statistical tracking, counting
over longer periods of time will not improve the conventional
tracking estimate. It is therefore necessary to prevent the sys-
tematic errors due to loss of tracks.

4.2 Measurement and counting

Measurement of link counts accounts for the differences be-
tween Ag¢, Asim, and Ayne, and is related to the divergence of
the MHT SD counts. We are not able to count the link transi-
tions perfectly and so find additional errors in traffic estimates,
and lower rg values.

A major source of link-count errors is partial occlusions.
For example, in the scene under surveillance there are several
areas where trees and shrubs partially block the view of traf-
fic paths. The blockage is only partial because the branches
are defoliated in winter. Two links affected by these partial
occlusions are the 4-1 and 2-3 links (see Fig. 1). Further con-
tributing to the problem is variations in lighting due to changes
in weather. Count accuracy was best on overcast days with
diffuse lighting, and worst on sunny days with high-contrast
shadows. Finally, the low image resolution forced by data stor-
age limitations added to the counting difficulties.

We cannot control the weather or remove vegetation for
the sake of data collection. However, the problem of image
resolution can be overcome by using more cameras. If, for
example, we were to use one camera per link, positioning each
camera with an optimal view for its link, then counting will
be more reliable due to the elimination of problems caused by
occlusions and lighting. This is demonstrated by Albiol et al.
(2000), where one camera is used to monitor traffic through
a single door. The strength of statistical tracking is evident in
this approach. No data association is required so it is easy to
use many cameras. Conventional tracking would require data
association among the different cameras, something that is not
easily implemented.

The same factors that confound tracking also affect the
MHT. Occlusions, lighting, and limited resolution make it
more difficult for the MHT to maintain a track correctly. In
the trial described here, the MHT is further confounded by the
segmentation algorithm. When an object becomes stationary
for a prolonged period, the segmentation algorithm merges it
with the background and the MHT no longer receives data for
that object, and hence drops the track. This property is con-
venient when dealing with parking cars (the track for a car
should be dropped after the car is parked), and does not af-
fect transition counting. However, the MHT is confused when
an object stops momentarily. It is possible to have the MHT
maintain a track for a longer period of time, but this leads to
the converse problem, that of wrongly merging tracks for two

different object. In fact, this is the problem of data association
in a nutshell.

4.3 Sample size

Practical limitations restricted the sample size of the trial, so to
predict what is gained from larger samples we conducted trials
on synthetic data. Figure 6 shows the results of these trials for
sample size N ranging from 10 to 360. Data are for Poisson,
independent SD traffic with mean intensities given by X at-
Error bars show one standard deviation, and are computed as
described in Sect. 3.2.

For N = 10 and N = 20 the synthetic results are compa-
rable to what is estimated for th_ As N increases so does g,
with rg > 0.9 for N > 320.

There are two issues to consider when increasing the sam-
ple size to improve accuracy. The first is stationarity. Increas-
ing the duration of a trial beyond a time interval for which SD
traffic intensity is stationary cannot result in a better estimate.
Thus adding more days to our trial may initially improve esti-
mates, but will eventually worsen them as the traffic patterns
change throughout the year. Taking more but smaller intervals
has the same risk — it only makes sense if the smaller time
intervals have similar traffic. The likely reason why splitting
the time intervals only yielded an improvement for the MWF
subset in Sect. 3.4 is that it was the only subset that was sta-
tionary across the 30-min intervals. The second issue is the
duration of a typical SD trip. It is relevant when the time inter-
vals in the sample are so short that a trip cannot be completed.
For example, in the 22-day trial an SD trip typically takes be-
tween a few seconds and a minute. Thus splitting the 30-min
interval into 60 30-s intervals is not wise, since many trips
might not be completed within the shorter interval. While this
may not seem to be a problem with the trial described here,
consider the case of estimating traffic intensities for an entire
city. Travel times for trips in a city can be 30 min or even an
hour depending on the time of day and the location. In such a
case, increasing sample size by using shorter time intervals is
not an option.

5 Conclusions

With perfect count data, the statistical tracker produced results
comparable to those of the MHT. Counting errors due to occlu-
sions, weather, and limited image resolution confound count-
ing and worsen the statistical estimates. Statistical tracking
does not exhibit the systematic errors seen in the MHT due
to incorrectly dropping the track of an object. Thus, traffic
estimates from the statistical tracker can be improved by gath-
ering data over a longer period, and by improving counting
with multiple cameras. The ability to easily use multiple cam-
eras with the statistical method is advantageous. It is ideally
suited for tasks such as estimating vehicular traffic in a city
freeway system or other large areas where data association for
conventional tracking is not practical. In order to eliminate
the need for data association, statistical tracking gives up the
ability to provide current information about a scene. Finally,
the ability to track over large areas with multiple cameras has
the potential to adversely affect privacy. However, our results
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Fig. 6. Statistical tracking of traffic estimates for varying sample size. The figures are based on synthetic Poisson data computed for the network

in Sect. 3. A is taken from the ground truth. N, sample size

show this potential is somewhat diminished by the fact that
low-intensity traffic routes are difficult to estimate when shar-
ing a network with much higher traffic.
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