Skip to main content
Log in

Efficient pose estimation using view-based object representations

  • Special issue on ICVS 2003
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract.

We present an efficient method for estimating the pose of a three-dimensional object. Its implementation is embedded in a computer vision system which is motivated by and based on cognitive principles concerning the visual perception of three-dimensional objects. Viewpoint-invariant object recognition has been subject to controversial discussions for a long time. An important point of discussion is the nature of internal object representations. Behavioral studies with primates, which are summarized in this article, support the model of view-based object representations. We designed our computer vision system according to these findings and demonstrate that very precise estimations of the poses of real-world objects are possible even if only a small number of sample views of an object is available. The system can be used for a variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burr DC, Morrone MC, Spinelli D (1989) Evidence for edge and bar detectors in human vision. Vision Res 29(4):419-431

    Article  Google Scholar 

  2. Cutzu F, Edelman S (1994) Canonical views in object representation and recognition. Vision Res 34:3037-3056

    Article  Google Scholar 

  3. Chvatal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4(3):233-235

    MathSciNet  MATH  Google Scholar 

  4. Dhome M, Richetin M, Lapreste J, Rives G (1989) Determination of the attitude of 3-D objects from a single perspective view. IEEE Trans Patt Anal Mach Intell 11(12):1265-1278

    Article  Google Scholar 

  5. Edelman S, Bülthoff HH (1992) Orientation dependence in the recognition of familiar and novel views of three-dimensional objects. Vision Res 32(12):2385-2400

    Article  Google Scholar 

  6. Eckes C, Vorbrüggen JC (1996) Combining data-driven and model-based cues for segmentation of video sequences. In: Proc. WCNN96, pp 868-875

  7. Horaud R, Conio B, Leboulleux O, Lacolle B (1989) An analytic solution for the perspective 4-point problem. Comput Vision Graph Image Process 47:33-44

    Google Scholar 

  8. Haralick RM, Lee C, Ottenberg K, Nölle M (1991) Analysis and solutions of the three point perspective pose estimation problem. In: Proc. IEEE conference on computer vision and pattern recognition, pp 592-598

  9. Jones JP, Palmer LA (1987) An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1233-1258

    Google Scholar 

  10. Koenderink JJ, van Doorn AJ (1976) The singularities of the visual mapping. Biol Cybern 24:51-59

    MATH  Google Scholar 

  11. Krüger V, Sommer G (2002) Gabor wavelet networks for efficient head pose estimation. Image Vision Comput 20(9-10):665-672

    Google Scholar 

  12. Lades M, Vorbrüggen JC, Buhmann J, Lange J, von der Malsburg C, Würtz RP, Konen W (1993) Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput 42:300-311

    Article  Google Scholar 

  13. Logothetis NK, Pauls J, Bülthoff HH, Poggio T (1994) View-dependent object recognition by monkeys. Curr Biol 4:401-414

    Article  Google Scholar 

  14. Logothetis NK, Pauls J, Poggio T (1995) Shape representation in the inferior temporal cortex of monkeys. Curr Biol 5(5):552-563

    Article  Google Scholar 

  15. Lowe DG (1987) Three-dimensional object recognition from single two-dimensional images. Artif Intell 31:355-395

    Article  Google Scholar 

  16. Maurer T, von der Malsburg C (1996) Tracking and learning graphs and pose on image sequences of faces. In: Proc. international conference on automatic face- and gesture- recognition, pp 176-181

  17. Peters G (2002) A view-based approach to three-dimensional object perception. Ph.D. Thesis, Shaker Verlag, Aachen, Germany

  18. Peters G, von der Malsburg C (2001) View reconstruction by linear combination of sample views. In: Proc. BMVC 2001, pp 223-232

  19. Pötzsch M (1994) Die Behandlung der Wavelet-Transformation von Bildern in der Nähe von Objektkanten. Technical Report IRINI 94-04, Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany

  20. Tarr MJ (1993) Orientation dependence in three-dimensional object recognition. Ph.D. Thesis, MIT, Cambridge, MA

  21. Ullman S, Basri R (1990) Recognition by linear combinations of models. IEEE Trans Patt Anal Mach Intell 13(10):992-1006

    Article  Google Scholar 

  22. Wexler M, Kosslyn SM, Berthoz A (1998) Motor processes in mental rotation. Cognition 68:77-94

    Article  Google Scholar 

  23. Wiskott L, Fellous J-M, Krüger N, von der Malsburg C (1997) Face recognition by elastic bunch graph matching. IEEE Trans Patt Anal Mach Intell 19(7):775-779

    Article  Google Scholar 

  24. Yuan J (1989) A general photogrammetric method for determining object position and orientation. IEEE J Robot Automat 5(2):129-142

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Peters.

Additional information

Published online: 13 July 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, G. Efficient pose estimation using view-based object representations. Machine Vision and Applications 16, 59–63 (2004). https://doi.org/10.1007/s00138-004-0143-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-004-0143-8

Keywords:

Navigation