
The Imalab Method for Vision Systems

Augustin Lux ?

Laboratoire GRAVIR/IMAG
Institut National Polytechnique de Grenoble

Abstract. We propose a method to construct computer vision systems
using a workbench composed of a multi-faceted toolbox and a general
purpose kernel. The toolbox is composed of an open set of library mod-
ules. The kernel facilitates incremental dynamic system construction.
This method makes it possible to quickly develop and experiment new
algorithms, it simplifies the reuse of existing program libraries, and al-
lows to construct a variety of systems to meet particular requirements.

Major strong points of our approach are: (1) Imalab is a homogeneous en-
vironment for different types of users, who share the same basic code with
different interfaces and tools. (2) Integration facility: modules for vari-
ous scientific domains, in particular robotics or AI research (e.g. Bayesian
reasoning, symbolic learning) can be integrated automatically. (3) Multi-
language integration: the C/C++ language and several symbolic pro-
gramming languages - Lisp(Scheme), Prolog, Clips - are completely inte-
grated. We consider this an important advantage for the implementation
of cognitive vision functionalities. (4) Automatic program generation, to
make multi-language integration work smoothly. (5) Efficiency: library
code runs without overhead.

The Imalab system is in use for several years now, and we have started
to distribute it.

1 Introduction

We propose to construct computer vision systems using a workbench composed
of a large set of reusable modules, and a set of sophisticated tools for system con-
struction, including an interactive programming shell, and a program generator
to automatically integrate C++ source code into the shell.

We illustrate this method with the Imalab system, which is a research system
combining all major features that are available in the workbench:

– A large set of C++ libraries (some 100 classes with more than thousand
methods and functions) makes it easy to experiment algorithms on new
images, and to develop new algorithms.

– An interactive shell, with a large subset of C++ as a shell language.

? This work was partially funded by the IST Programme of the European Commission
under contract number IST-2001-32157 DETECT



– Homogeneous environment: the same programming language is used for in-
teractive experimentation in the shell, for writing scripts to automate se-
quences of commands, and to extend the system’s native code.

– Automatic library linkage: New libraries written in C++ can be added to
the system, provided the header files are available.

– Incremental dynamic system construction, making it extensible according to
user needs.

Comparison with Existing Systems

There is a large spectrum of vision oriented software [?]. On one end of the
spectrum, one finds libraries with code for image processing operations providing
functionalities to be used in an application program. Important examples of
libraries are the Image Understanding Environment[?] defining a large hierarchy
of C++ classes modelizing all data structures necessary in computer vision in
a general way, and Intel’s Open Source Computer Vision Library[?] providing
numerous C procedures with code written for efficiency. On the other end of the
spectrum, one can find complete systems built around such libraries, containing
sophisticated tools for the development of vision applications. One outstanding
example of this kind is the Khoros system [?][?], which includes the Cantata
visual programming environment [?].

The Imalab project lives on a much smaller scale; it places the main empha-
sis on interactive development and modularity, it aims to be particularly useful
for the development of new algorithms, and for experimentation with new ap-
plications. In this respect, we have the same motivations as the authors of the
ScilImage system[?]: “The immediate feedback interactive systems provide re-
duces the time needed to develop new applications” and “the ability to see the
result of processing and to modify code or parameters within seconds brings new
insights, such as how sensitive an algorithm is to a small change in the image,
or how parameters should be tuned in response to certain shapes”. However,
in spite of so similar motivations, there is very little concrete resemblance be-
tween Imalab and ScilImage. One major reason for this is the use of C++ and
object oriented programming, rather than using C, which completely changes
the system architecture. The use of C++ as command language implies an im-
portant facility that an experimental environment “ideally” should provide [?]:
“An essential facility during testing and debugging is the ability to monitor and
examine both data and the interaction of system components”.

Another specific characteristic of the Imalab approach is the concern to in-
tegrate external libraries; this is useful e.g. to compare different solutions to a
given problem, to combine vision with other domains, to extend vision with AI
programming.

Outline of the paper

In section 2, we present the Imalab system as it is currently being used: a highly
interactive programming environment featuring a large number of vision-related



data structures and algorithms. Section 3 presents the underlying method for
constructing vision systems, available modules, and module generation tools.

2 The Imalab System

Imalab is an interactive programming shell for computer vision research. Its most
prominent features are:

– A large choice of data structures and algorithms
– A subset of C++ statements as interaction language
– Extensibility through dynamic loading
– A multi language facility including Scheme, Clips, Prolog

By the use of standard or personalized scripts, the user initializes the system
in a way that places him/her in a comfortable environment where he can effi-
ciently work on a particular problem; the initial environment includes a set or
a sequence of images, a window for image display, and a number of global vari-
ables allowing the detailed exploration of all data structures at any time during
a session.

Any shell is characterized by an interaction language and an environment,
which must have in common a set of data types: the Imalab shell uses C++ state-
ments as interaction language, including a subset of C++ expressions which is
“complete” in the sense that it gives access to all functionalities of the programs.

2.1 Data Structures and Algorithms

The standard Imalab environment contains about a hundred classes with a total
of several thousand methods to be used for work on vision problems. A help
command is available to get information on all class and function definitions; this
is particularly useful to explore external libraries, and also helps to remember
about your own programs.

Important basic classes are:

– Image classes. There is a hierarchy of image classes trying to realize a reason-
able trade-off between efficiency, generality, genericity, and simplicity. Ab-
stract classes provide a large number of virtual or generic methods for image
management and basic processing (input/output, conversions, thresholding,
histograms, etc.), base classes provide for one-, three-, or four-band images
with byte, int, or float pixels. We do not use template classes for images in
order to assure maximum portability, and a certain kind of simplicity.

– Image processing algorithms. Every user has a large set of algorithms to
work on, so these modules are fluctuating quickly. In particular, we use
fast algorithms for Gaussian filters[?] useful for working with scale space, a
“color” module providing standard color encodings; a connectivity analysis
module for image segmentation.



– Classes for image display and graphics. Using specific classes for windows and
events, rather than giving direct access to the underlying system functions,
simplifies shell programming: these system functions tend to have a large
number of parameters, most of which have “natural” default values in the
current environment.

– Objects of 2-D geometry: points, lines, rectangles, etc.
– Numerical routines, in particular matrix computations.

2.2 Friends

Excellent software exists for graphical plotting of numerical data, and for 3-D
display. We can easily profit from these using a light interface through pipes.
For example, Imalab communicates in this way with gnuplot and geomview, and
there is a series of Imalab commands generating input for gnuplot and geomview,
visualizing e.g. gradient, laplacian, or other filter values as curves or surfaces.

For the construction of graphical user interfaces, there are special provisions
to simplify the use of FLTK[?] and QT[?].

2.3 Extensibility and Dynamic Loading

As can be seen from the enumeration of basic classes and algorithms, there
is no point in trying to have a complete collection: the number of potentially
useful algorithms is illimited. A vision system must be extensible in order to add
new algorithms as they become available. One essential aspect of extensibility
is dynamic loading. The Imalab command require loads the given module into
the shell, making all classes, methods, and functions of the module source code
available in the current shell environment. 1

2.4 Basic Shell Interaction

The use of C++ as interaction and scripting language makes the shell easy to
use and powerful, because the shell language is the same as the programming
language for the source code 2. In the shell, one can create objects, activate
methods/functions, and inspect any data objects as can be done inside the source
code.

Thus the shell gives the same feeling as writing a main procedure; in fact,
it is much simpler, because a large number of initializations are carried out on
starting the shell. These initializations, based on Unix-command parameters,
define global variables that are handily used later on. In particular:

– The variable CurrentImage holds an image as a C++ object, shielding the
user from details of image acquisition/conversion

– The variable Screen holds a window to be used for all kinds of image display.

1 Module generation can be more sophisticated, see section 3.
2 we will take up the multi language aspect in the next paragraph.



As all initializations are programmed in a script file, one can define a per-
sonnalized version of Imalab with complements to this script.

Using the same language for programming in the shell, for script files and
source code is an essential feature to make the system practical and convenient:
one can work out a sequence of image operations interactively, then put the same
code into a script file (copying from the history file), and when it works correctly,
“promote” this code into a compiled module, or as part of some library.

The shell language is a carefully chosen subset of C++, which is semantically
much closer to Java: there is no pointer arithmetic, no indirection or reference
operator, no casts 3. Restrictions of this kind are necessary because C++ was
designed for compilation, not for an interpretive shell.

2.5 Multi Language Feature

In the Imalab system, the term “multi-language” has two distinct meanings:

– A syntactic meaning. In the shell, the user can choose the syntax for his
commands. The default syntax for the Imalab shell is C++, but one can
just as well use Lisp (Scheme), or Prolog. One can switch from one syntax
to another at any time; this changes the input reader, but not the shell
interpreter.

– Source code language. The source code in any file may be written in any of
Imalab’s languages; being a collection of source files, a module may combine
source code in different languages; there is a provision for easy cross-language
calls.

Seamless integration in this respect is a strong feature: when creating an object,
calling a method or a function, the shell user does not have to know which
source language has been used to implement this particular code. Of course,
this is possible only inasmuch as different programming languages share the
same basic concepts, like object, method, function. 4 A basic step to achieve
this integration was the extension of Scheme with a new data type c-object for
“handles” to C++ data. Inversely, to access Scheme data from C++, nothing
has to be done, because Scheme is implemented in C++.

As a consequence, Imalab can appear as a C++ shell (extended with Scheme),
or as a Scheme shell (extended with C++), with the same functionalities. In
practice, all Imalab users have knowledge of C++, and this is sufficient to use
the shell, and to extend Imalab with new algorithms. Few users have knowl-
edge of Scheme. In fact, Scheme becomes important to understand internal shell
programming, and the tools of the workbench presented in section 3.

If the multi-language feature appears strange to you, you may consider it
just an internal feature of the system. However, we firmly believe that it adds
much power to a vision system workbench.

3 Even though our goal always has been to implement a “comfortable C”++ shell”, a
fairly complete C++ interpreter progressively gets into reach. See the Ravi webpage
for a discussion on this point.

4 Much more shall be said on this in another paper.



2.6 Beyond C++: Memory management and Advanced Features

One good reason for combining C++ and Scheme is that Scheme, as a dialect
of Lisp, includes important high level features one expects from a programming
shell, which are not found in C++.

– Automatic storage management through garbage collection is precious for
interactive use: in complex situations, it is impossible for a human to re-
member precisely which data structures still are in use. However, garbage
collection in a Scheme system only concerns Scheme data, special care has
to be taken if we also want to manage general C++ objects like images,
windows, and the like. For this reason, the Scheme garbage collector has
been extended to handle c-objects containing reference pointers, or to delete
objects directly. Information about the way C++ objects are handled by the
garbage collector has to be supplied during module generation.

– Dynamic typing allows for dynamic type checking. Indeed, the shell verifies
all arguments for calls to C++ methods or functions. Dynamic typing also
is an important ingredient for introspection and other reflective capacities.

– Error recovery and signal handling can be carried out by the virtual machine
on which the Scheme implementation is based. This adds important func-
tionality to the shell; for instance, the shell stays alive after a segmentation
fault, so the user can go through all data to look for the problem. A control-
C suspends a computation and recursively calls the shell in the interrupted
environment: the user can inspect the situation, and then continue or abort
the suspended computation.

3 The Imalab Workbench for System Building

The description in the preceding section clearly shows that the Imalab system
is constructed in a highly modular fashion. The main point we want to make in
this paper is that the Imalab system is just one example of the use of a very
general workbench which allows to efficiently design and construct a large variety
of vision systems with different behaviors.

This workbench is our response to the fact that it is impossible to construct
a universal vision system: only a workbench can, eventually, be universal on the
meta-level, enabling us to construct a state-of-the-art vision system for a given
problem specification with little effort.

A workbench should propose a set of reusable modules, tools to create new
modules from newly available software, and support for writing a system toplevel
responsible for module integration, control, and other global aspects. These three
points are taken up in the following subsections.

3.1 Building blocks: existing libraries

Section 2.2 has mentioned some of the vision related modules. The entire set of
available modules is much larger, and also includes modules not directly related
to vision. There are modules for



– learning algorithms
– language modules for Clips, Prolog, and a frame language
– Bayesian inference
– general data structures (tables, numerics, ...)

There may be redundancy in the modules. For instance, there are several
modules implementing image classes which are quite equivalent. This eases the
problem of portability: when importing new code, it is easier to import it with its
data structures than to adapt the algorithms to our “standard” image structures.
In fact, different implementations may coexist within Imalab - this is very useful
for prototyping, and for testing combinations of different algorithms. In many
cases, conversion between different image classes turns out to be trivial, because
the pixel data are the same.

3.2 Tools for creating new modules

The major technical problem for the generation of new modules concerns the
integration of “raw” C++ programs, which may be available as source code, or
as dynamic libraries. Using C++ programs inside an interactive shell requires
a fair amount of highly technical “interface code”. The modern solution to this
requirement is automatic interface generation. This role is played by the Ravi In-
terface Generator 5 which produces all necessary code by analysing C++ header
files. Module generation does neither modify nor need the source code for li-
braries 6, nor does it need a special interface file 7. However, it does need some
informations that cannot be deduced from header files, e.g. about the use of
reference counters, about the existence of output parameters, templates to be
instantiated, etc.

3.3 Constructing a vision system

We now are able to sketch the basic steps of the Imalab method for constructing
a vision system.

– Define the modules you want; you may (re-)use existing modules, or create
new ones. Creation of new modules may take some time, even if all algorith-
mic problems are solved.

– According to the kind of system you want to create, write the basic script.
Two typical situations are:
• A stand-alone application system. In this case, the system structure is

fixed. The modules can be linked statically, there is no interactive shell,
or the shell will just be used by the system engineer.
• An interactive system for use in teaching or research, as is the case with

Imalab. The system structure is as open as possible, so we define a basic
kernel, and each user loads dynamically whatever he needs.

5 Ravi[?] is the name of the system shell Imalab is built on.
6 as is the case with OpenC++[?]
7 as is the case with Swig[?]



– Work the system’s overall behavior. The workbench furnishes several lan-
guage modules that make it possible to give a system a particular twist with
little effort; for instance by using the production system module (Clips like)
with an appropiate set of rules.

The workbench does not provide solutions to all problems, but gives impor-
tant help to combine pieces for a solution into a single system.

One important point to note is that the whole workbench uses C++ as the
basic implementation language. The source code for all tools and modules is
available. We may also note that work on the tools never is finished!

4 Conclusion: Perspectives for Cognitive Vision

4.1 About the Multi Language Feature

Do we need AI languages for cognitive vision systems?

A system is more than just the sum of its parts: a system ties together the
functionalities provided by its components, adding control and other high-level
characteristics. We don’t believe a single programming language can be well
adapted for the implementation of all aspects of a vision system. We rather con-
tend that, given that different programming languages each have their strengths
and weaknesses, one should carefully choose the right programming language for
each component of a system.

Argumenting about this point is subtle: from a theoretical standpoint, all
programming languages have equal power, being all equivalent to a Turing ma-
chine. However, it also is true that programming languages differ in important
aspects. In particular, each programming language proposes a type system which
may be more or less adapted to a given problem. A good choice of programming
language may greatly simplify the solution. For example:

– Lisp provides symbolic list structures, automatic memory management, func-
tional programming, and dynamic typing. These properties are precious for
the implementation of sophisticated object models, for the representation of
knowledge within vision programs.

– C++ provides a rich set of tools for efficient implementation of sophisticated
data structures. This is essential for image processing, all problems of “low-
level” vision, and much more.

– Prolog provides unification and automatic backtracking. Our users don’t
seem to need this . . . for the moment.

The proof will be in the eating - our feeling is that dialects of logic program-
ming languages, like Prolog and Clips, will show themselves useful to introduce
symbolic processing and knowledge manipulation into vision systems. Significant
work of this kind has been done long time ago [?][?], and should be taken up in
current work.



4.2 The Imalab method

The essential assets of our approach are

– The set of libraries, usable as interactive modules
– The system kernel with the C++ interpreter
– The interface generator RIG

The set of libraries contains the basic building blocks that make up a vision
system, as well as numerous user-specific libraries which generally are evolving
at a very fast rate. The system tools also simplify the reuse of libraries, which
is important given the tendency of research teams to produce new software at
each generation of students. It is encouraging to see that the Imalab modules
and libraries are now combining the work of three generations of thesis students.

The system kernel and RIG are not specific to computer vision. They are
general tools, just as language processors are general tools. However, adapting
such general tools for vision research will pave the way for progress in vision
systems.

The Imalab system is in use for several years now, with a total of several
dozen users in several research teams. We have started to distribute it under
GPL (see the Imalab homepage[?]).

References

1. http://www.fltk.org/
2. http://www.aai.com/AAI/IUE/IUE.html
3. http://www.intel.com/research/mrl/research/opencv/
4. http://www.khoral.com/khoros/
5. http://www-prima.inrialpes.fr/lux/Imalab/
6. http://doc.trolltech.com/3.0/
7. http://www-prima.inrialpes.fr/Ravi/
8. http://www.swig.org/index.html.
9. D.H.Ballard, C.M.Brown, J.A.Feldman. An approach to knowledge-directed image

analysis. in [?].
10. Shigeru Chiba. OpenC++ 2.5 Reference Manual. University of Tsukuba.
11. V. Colin de Verdière and J. L. Crowley (1998) Visual Recognition using Local

Appearance. European Conference on Computer Vision ECCV’98, Freiburg, June
1998.

12. J.L.Crowley and H.Christensen (editors). Experimental Environments for Com-
puter Vision and Image Processing. World Scientific, Machine Perception Artificial
Intelligence Series, Vol. 11, 1994.

13. A.R.Hanson, E.M.Riseman (eds.) Computer Vision Systems. Academic Press 1978.
14. Augustin Lux (2001). Tools for automatic interface generation in scheme. In 2nd

workshop on Scheme and Functional Programming, Florence, Italy, September 2001.
15. J.Rasure, S.Kubica (1994). The Khoros Application Development Environment In

[?].
16. J.Rasure, M.Young (1995). Cantata: Visual Programming Environment for the

Khoros system. Computer Graphics, A Publication of the ACM Siggraph, 29:22-24.
17. R.van Balen et al. (1994) ScilImage: A Multi-Layered Environment for Use and

Development of Image Processing Systems. In [?].
18. I.T.Young, L.J. van Vliet (1995). Recursive Gaussian Filtering In SCIA’95.


