Skip to main content
Log in

Volumetric Model Reconstruction from Unrestricted Camera Views Based on the Photo-consistency of 3D Voxel Mask

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This project aims to develop a three-dimensional (3D) model reconstruction system using images acquired from a mobile camera. It consists of four major steps: camera calibration, volumetric model reconstruction, surface modeling and texture mapping. A novel online scale factor estimation is developed to enhance the accuracy of the coplanar camera calibration. For the volumetric modeling, the voting-based shape-from-silhouette first generates a coarse model, which is then refined by the photo-consistency check using the novel 3D voxel mask. Our scheme can handle concave surface in a sophisticated way. Finally, the surface model is formed with the original images mapped. 3D models of some test objects are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baltzakis H., Argyros A., Trahanias P. (2003) Fusion of laser and visual data for robot motion planning and collision avoidance. Mach. Vis. Appl. 15, 92–100

    Article  Google Scholar 

  2. Beardsley, PA., Torr, PHS., Zisserman, A. 3D model acquisition from extended image sequence. In: Proceedings of the 4th European Conference on Computer Vision, vol. II, Lecture Notes in Computer Science 1065, Springer, Berlin Heidelberg New York pp. 683–695 (1996)

  3. Chatterjee C., Roychowdhury VP. (2000) Algorithms for coplanar camera calibration. Mach. Vis. Appl. 12, 84–97

    Article  MATH  Google Scholar 

  4. Chiang, KK., Chan, KL. Effect of scale factor initialisation on linear and non-linear calibrations of a mobile camera. In: Proceedings of the 5th IASTED International Conference Computer Graphics and Imaging CGIM 2002, Kaua’i, Hawaii, USA, pp. 150–155 (2002)

  5. Eisert, P., Steinbach, E., Girod, B. Multi-hypothesis, volumetric reconstruction of 3-D objects from multiple calibrated camera views. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 3509–3512 (1999)

  6. El-Hakim SF., Brenner C., Roth G. (1998) A multi-sensor approach to creating accurate virtual environments. ISPRS Jo Photogramm. Remote Sens. 53, 379–391

    Article  Google Scholar 

  7. Esteban CH., Schmitt F. (2004) Silhouette, stereo fusion for 3D object modeling. Comput. Vis. Image Underst. 96, 367–392

    Article  Google Scholar 

  8. Faugeras, O., Keriven, R. Complete dense stereovision using level set methods. In: Proceedings of the 5th European Conference on Computer Vision, Lecture Notes in Computer Science 1406, Springer, Berlin Heidelberg New York pp.~379–393 (1998)

  9. Heckbert PS. (1986) Survey of texture mapping. IEEE Comput. Graph. Appl. 6(11): 56–67

    Article  Google Scholar 

  10. Isidoro, J., Sclaroff, S. Stochastic refinement of the visual hull to satisfy photometric and silhouette consistency constraints. In: Proceedings of the 9th IEEE International Conference on Computer Vision, pp. 1335–1342 (2003)

  11. Je, C., Lee, SW., Park, RH. High-contrast color-stripe pattern for rapid structured-light range imaging. In: Proceedings of the 8th European Conference on Computer Vision, Lecture Notes in Computer Science 3021, Springer, Berlin Heidelberg New York pp. 95–107 (2004)

  12. Kutulakos KN., Seitz SM. (2000) A theory of shape by space carving. Int. J. Comput. Vis. 38(3): 199–218

    Article  MATH  Google Scholar 

  13. Laurentini A. (1994) The visual hull concept for silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16(2): 150–162

    Article  Google Scholar 

  14. Lensch HPA., Heidrich W., Seidel HP. (2001) A silhouette-based algorithm for texture registration and stitching. Graph. Models 63, 245–262

    Article  MATH  Google Scholar 

  15. Lenz RK., Tsai RY. (1988) Techniques for calibration of the scale factor and image center for high accuracy 3-D machine vision metrology. IEEE Trans. Pattern Anal. Mach. Intell. 10(5): 713–720

    Article  Google Scholar 

  16. Lhuillier, M., Quan, L. Surface reconstruction by integrating 3D and 2D data of multiple views. In: Proceedings of the 9th IEEE International Conference on Computer Vision, pp. 1313–1320 (2003)

  17. Lorensen WE., Cline HE. (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graphi. 21(4): 163–169

    Article  Google Scholar 

  18. Luebke D. (2001) A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl. 21(3): 24–35

    Article  Google Scholar 

  19. Matsumoto, Y., Fujimura, K., Kitamura, T. Shape-from-silhouette/stereo and its application to 3-D digitizer. In: Proceedings of DGCI’99, Lecture Notes in Computer Science 1568, Springer,Berlin Heidelberg New York pp. 177–188 (1999)

  20. Melax, S (1998) A simple, fast, and effective polygon reduction algorithm. Game Developer. pp. 44–49

  21. Mendonça PRS., Wong KYK., Cipolla R. (2001) Epipolar geometry from profiles under circular motion. IEEE Trans Pattern Anal. Machi. Intell. 23(6): 604–616

    Article  Google Scholar 

  22. Niem W. (1999) Automatic reconstruction of 3D object using a mobile camera. Image Vis. Comput. 17, 125–134

    Article  Google Scholar 

  23. Penna MA. (1991) Camera calibration: a quick and easy way to determine the scale factor. IEEE Trans. Pattern Anal. Mach. Intell. 13(12): 1240–1245

    Article  Google Scholar 

  24. Pollefeys M., Van Gool L., Vergauwen M., Verbiest F., Cornelis K., Tops J., Koch R. (2004) Visual modeling with a hand-held camera. Int. J. Comput. Vis. 59(3): 207–232

    Article  Google Scholar 

  25. Rocchini, C., Cignoni, P., Montani, C., Scopigno, R. Multiple textures stitching and blending on 3D objects. In: Proceedings of 10th Eurographics Rendering Workshop (1999)

  26. Schroeder W., Martin K., Lorensen B. (1997) The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Prentice Hall, Engle wood Cliffs, NJ

    Google Scholar 

  27. Seitz SM., Dyer CR. (1999) Photorealistic scene reconstruction by voxel coloring. Int. J. Comput. Vis. 35(2): 151–173

    Article  Google Scholar 

  28. Slabaugh, G., Culbertson, B., Malzbender, T., Schafer, R. A survey of methods for volumetric scene reconstruction from photographs. Technical Report 1, Center for Signal and Image Processing, Georgia Institute of Technology (2001)

  29. Tsai RY. (1987) A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. J. Robot. Automat. RA-3(4): 323–344

    Article  Google Scholar 

  30. Watt A. (2000) 3D Computer Graphics. 3rd edn. Addison Wesley, Reading, MA

    Google Scholar 

  31. Zeng, G., Paris, S., Quan, L., Lhuillier, M. Surface reconstruction by propagating 3D stereo data in multiple 2D images. In: Proceedings of the European Conference on Computer Vision, Lecture Notes in Computer Science 3021, Springer, Berlin Heidelberg New York pp. 163–174 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, K.K., Chan, K.L. Volumetric Model Reconstruction from Unrestricted Camera Views Based on the Photo-consistency of 3D Voxel Mask. Machine Vision and Applications 17, 229–250 (2006). https://doi.org/10.1007/s00138-006-0034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-006-0034-2

Keywords

Navigation