Skip to main content
Log in

Hybrid object labelling in digital images

Machine Vision and Applications Aims and scope Submit manuscript

Abstract

The application of a technique for labelling connected components based on the classical recursive technique is studied. The recursive approach permits labelling, counting, and characterizing objects with a single pass. Its main drawback lies on its very nature: Big objects require a high number of recursive calls, which require a large stack to store local variables and register values. Thus, the risk of stack overflow imposes an impractical limit on image size. The hybrid alternative combines recursion with iterative scanning and can be directly substituted into any program already using the recursive technique. I show how this alternative drastically reduces the number of consecutive recursive calls, and thus the required stack size, while improving overall performance. The method is tested on sets of uniform random binary images and binary images with a random distribution of overlapping square blocks. These test sets provide insight on the adequacy of the algorithm for different applications. The performance of the proposed technique is compared with the classical recursive technique and with an iterative two-pass algorithm using the Union-Find data structure, and the results show an overall increase of speed. The performance of the algorithm in real world machine vision applications is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Alnuweiri H.M., Prasanna V.K. (1992) Parallel architectures and algorithms for image component labelling. IEEE Trans. Pattern Anal. Mach. Intell. 14, 1014–1034

    Article  Google Scholar 

  2. Luger G.F., Stubblefield W.A. (1993) Artificial Intelligence: Structures and Strategies for Complex Problem Solving (2nd edn). Chapman Hall, New York

    Google Scholar 

  3. Tarjan R.E. (1972) Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 146–160

    Article  MathSciNet  Google Scholar 

  4. Brice C.R., Fennema C.L. (1970) Scene analysis using regions. Artif. Intell. 1(3–4): 205–226

    Article  Google Scholar 

  5. Rosenfeld A., Pfaltz J. (1966) Sequential operations in digital picture processing. J. Assoc. Comput. Mach. 13, 471–494

    Google Scholar 

  6. Hoshen J., Kopelman R. (1976) Percolation and cluster distribution: cluster multiple labelling technique and critical concentration algortihm. Phys. Rev. B 14: 3438

    Article  Google Scholar 

  7. Rosenfeld A., Kak A.C. (1982) Digital Picture Processing. Academic Press, San Diego

    Google Scholar 

  8. Haralick R.H. (1981) Some neighborhood operations. In: Onoe M., Preston K., Rosenfeld A. (eds) Real Time/Parallel Computing Image Analysis. Plenum Press, New York

    Google Scholar 

  9. Lumia R., Shapiro L., Zuniga O. (1983) A new connected components algorithm for virtual memory computers. Comput. Vision Graph Image Process. 22, 287–300

    Article  Google Scholar 

  10. Dillencourt M.B., Samet H., Tamminen M. (1992) A general approach to connected-component labeling for arbitrary image presentations. J. Assoc. Comput. Mach. 39, 253–280

    MathSciNet  Google Scholar 

  11. Hoshen J., Berry M.W., Minser K.S. (1997) Percolation and cluster structure parameters: the enhanced Hoshen–Kopelman algorithm. Phys. Rev. E. 56: 1455

    Article  Google Scholar 

  12. Hoshen J. (1998) On the application of the enhanced Hoshen–Kopelman algorithm for image analysis. Pattern Recogn. Lett. 12, 575–584

    Article  Google Scholar 

  13. Martí n-Herrero J. (2004) Hybrid cluster identification. J. Phys. A: Math. Gen. 37, 9377–9386

    Article  Google Scholar 

  14. Metropolis N., Rosenbluth A., Rosenbluth M., Teller A., Teller E. (1953) Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1091

    Article  Google Scholar 

  15. Martí n-Herrero J., Peón-Fernández J. (2005) Computation of longwave electromagnetic response of nonhomogeneous media. IEEE Trans. Geosci. Rem. Sens. 43(7): 1479–1489

    Article  Google Scholar 

  16. Tarjan R.E. (1975) Efficiency of a good but not linear set union algorithm. J. Assoc. Comput. Mach. 22, 215–225

    MathSciNet  Google Scholar 

  17. Shapiro L.G., Stockman G.C. (2001) Computer Vision. Prentice Hall, New Jersey

    Google Scholar 

  18. Martí n-Herrero J., Alba-Castro J.L. (2003) High speed machine vision: The canned tuna case. In: Billingsley J. (ed.) Mechatronics and Machine Vision in Practice: Future Trends. Research Studies Press, Hertfordshire

    Google Scholar 

  19. Martí n-Herrero J., Ferreiro-Armán M., Alba-Castro J.L. (2004) A SOFM improves a real time quality assurance machine vision system, In: IEEE Proceedings of the 17th International Conference on Pattern Recognition ICPR’04. 4, 301–304

  20. Stroustrup B. (1997) The C++ Programming Language. Addison-Wesley, New York

    Google Scholar 

  21. With K.A. (1997) The application of neutral landscape models in conservation biology. Conserv. Biol. 11, 1069–1080

    Article  Google Scholar 

  22. Stauffer D., Aharony A. (1994) Introduction to Percolation Theory. Taylor and Francis, London

    Google Scholar 

  23. With K.A. (2002) Using percolation theory to assess landscape connectivity and effects of habitat fragmentation. In: Gutzwiller K.J. (ed.) Applying Landscape Ecology in Biological Conservation. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  24. Moilanen A., Hanski I. (2001) On the use of connectivity measures in spatial ecology. Oikos 95, 147–151

    Article  Google Scholar 

  25. Kearney M.J. (2002) Compact directed percolation with modified boundary rules: a forest fire model. J. Phys. A: Math. Gen. 35, L421–L425

    Article  MathSciNet  Google Scholar 

  26. Hartley H. (1958) Maximum likelihood estimation from incomplete data. Biometrics 14, 174–194

    Article  Google Scholar 

  27. Dempster A., Laird N., Rubin D. (1977) Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. B 39(1): 1–38

    MathSciNet  Google Scholar 

  28. Coindreau O., Cloetens P., Vignoles G.L. (2003) Direct 3D microscale imaging of C/C composites with computed holotomography. Nucl. Instrum. Methods Phys. Res., Sect. B, 200, 295–302

    Article  Google Scholar 

  29. Lavaud J.-F., El Hadi R., Vignoles G., Pailler R. (1998) The thermal gradient – pulse flow CVI process: a new chemical vapor infiltration technique for the densification of preforms. J. Eur. Ceram. Soc. 18, 857–870

    Article  Google Scholar 

  30. Perona P., Malik J. (1990) Scale-space and edge detection using anisotropic difussion, IEEE Trans. Pat. Anal. Mach. Intel. 12, 629–639

    Article  Google Scholar 

  31. Weickert J. (1999) Coherence-enhancing diffusion filtering. Int. J. Comp. Vis. 31(2/3): 111–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Martín-Herrero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Herrero, J. Hybrid object labelling in digital images. Machine Vision and Applications 18, 1–15 (2007). https://doi.org/10.1007/s00138-006-0041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-006-0041-3

Keywords

Navigation