Skip to main content
Log in

Retina simulation using cellular automata and GPU programming

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This article shows how the architectural modelization of biological retina allows real-time performances, on standard widespread computing systems. First, we describe the biological retina with regard to its pipeline architecture, detailing its layer behaviours and properties. Then we propose a corresponding pipelined model of artificial retina based on cellular automata. In this work, the main innovation is the computing method based on the programming of a personal computer graphical card using OpenGL shading language. The last section demonstrates the efficiency of our model through numerical and graphical results. We lay particular emphasis on the fact that our direct implementation of the Graphical Processor Unit (GPU) provides computation power about 20 times as fast as conventional programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosenfeld A. (1979). Picture Languages. Academic, New York

    MATH  Google Scholar 

  2. Devillard, F., Gobron, S., Grandidier, F., Heit, B.: Implémentation par automates cellulaires d’une modélisation architecturale de rétine biologique. In: READ’05. Institut National des Télécommunications, Evry, France (2005)

  3. Bonnet, C.: Traité de psychologie cognitive 1. Dunod (in french) (1989)

  4. Mead C. (1989). Analog VLSI and neural systems. Addison, New York

    MATH  Google Scholar 

  5. Marr D. (1982). Vision. Freeman, San Francisco

    Google Scholar 

  6. Dacey D.M. (1996). Circuitry for color coding in the primate retina. Proc. Natl. Acad. Sci. USA 93: 582–588

    Article  Google Scholar 

  7. Shreiner D., Woo M., Neider J. and Davis T (2003). OpenGL Programming Guide v1. 4. Addison-Wesley Professional, New York

    Google Scholar 

  8. Vichniac G.Y. (1984). Simulating physics with cellular automata. Physica 10D: 96–116

    MathSciNet  Google Scholar 

  9. Kobayashi H., Matsumoto T., Yagi T. and Kanaka K. (1995). Light-adaptive architectures for regularization vision chips. Proc. Neural Netw. 8(1): 87–101

    Article  Google Scholar 

  10. Kolb, H.: The neural organization of the human retina. Principles and Practices of Clinical Electrophysiology of Vision pp. 25–52 Mosby Year Boook, St. Louis (1991)

  11. Kolb H. (2003). How the retina works. Am. Sci. 91: 28–35

    Article  Google Scholar 

  12. Wässle H. and Boycott B.B. (1991). Functional architecture of the mammalian retina. Physiol. Rev. 71(2): 447–480

    Google Scholar 

  13. Conway J.H. (1970). Game of life. Sci. Am. 223: 120–123

    Google Scholar 

  14. VanBuren, J.M.: The retinal ganglion cell layer. Springfield, Illinois edn. Charles C. Thomas (1963)

  15. Tran, J., Jordan, D., Luebke, D.: New challenges for cellular automata simulation on the GPU. http://www.cs.virginia.edu (2003)

  16. Deshmukh K.S. and Shinde G.N. (2005). An adaptive color image segmentation. Electr. Lett. Comput. Vis. Image Anal. 5: 12–23

    Google Scholar 

  17. MacNeil M.A. and Masland R.H. (1998). Extreme diversity among amacrine cells: implications for function. Neuron 20(5): 971–982

    Article  Google Scholar 

  18. Harris, M.: Implementation of a cml boiling simulation using graphics hardware. In: CS. Dept, UNCCH, Tech. Report, vol. 02-016 (2003)

  19. Mahowald M. (1994). Analog vlsi chip for stereocorrespondance. Proc. IEEE Inter. Circuits Syst 6: 347–350

    Google Scholar 

  20. Ahnelt P. and Kolb H. (1994). Horizontal cells and cone photoreceptors in human retina. Comput. Neurol. 343: 406–427

    Article  Google Scholar 

  21. Chaudhuri, P.P., Chowdhury, R.D., Nandi, S., Chattopaghyay, S.: Additive Cellular Automata Theory and Applications. IEEE Computer Society Press and Wiley (1993)

  22. Rost, R.J.: OpenGL Shading Language, 2nd edn. Addison-Wesley Professional, New York (2006)

  23. Druon, S., Crosnier, A., Brigandat, L.: Efficient cellular automaton for 2D/3D free-form modelling. Journal of WSCG 11 (1, ISSN 1213-6972) (2003)

  24. Gobron S. and Chiba N. (1999). 3D surface cellular automata and their applications. J. Vis. Comput. Animat. 10: 143–158

    Article  Google Scholar 

  25. Gobron S. and Chiba N. (2001). Crack pattern simulation based on 3D surface cellular automata. Vis. Comput. 17(5): 287–309

    Article  MATH  Google Scholar 

  26. Wolfram S. (2002). A New Kind of Science. Wolfram Media, Champaign

    MATH  Google Scholar 

  27. Bernard T.M., Guyen P.E., Devos F.J. and Zavidovique B.Y. (1993). A programmable VLSI retina for rough vision. Mach. Vis. Appl. 7(1): 4–11

    Article  Google Scholar 

  28. Beaudot, W.H.A.: Le traitement neuronal de l’information dans la rétine des vertébrés - un creuset d’idées pour la vision artificielle. Ph.D. thesis, Institut National Polytechnique de Grenoble, pp. 228 (1994)

  29. Yang X.L., Tornqvist K. and Dowling J.E. (1988). Modulation of cone horizontal cell activity in the teleost fish retina I. Effects of prolonged darkness and background illumination on light responsiveness.. J. Neurosci. 8(7): 2259–2268

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Devillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gobron, S., Devillard, F. & Heit, B. Retina simulation using cellular automata and GPU programming. Machine Vision and Applications 18, 331–342 (2007). https://doi.org/10.1007/s00138-006-0065-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-006-0065-8

Keywords

Navigation